
Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Python Tutorial – Part 2: Objects and Classes

Mark A. Austin

University of Maryland

austin@umd.edu
ENCE 688P, Spring Semester 2022

February 20, 2023

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Overview

1 Working with Objects and Classes

2 Data Hiding and Encapsulation

3 Relationships Among Classes

4 Inheritance Mechanisms

5 Composition of Object Models

6 Working with Groups of Objects
Pathway from Objects to Groups of Objects

7 Case Study: GeoModeling the World’s Cities

Mark Austin

Mark Austin

Mark Austin

Mark Austin

Mark Austin

Mark Austin
Part 2

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Relationships Among

Classes

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Relationships Among Classes

Motivation

Classes and objects by themselves are not enough to describe
the structure of a system.
We also need to express relationships among classes.
Object-oriented software packages are assembled from
collections of classes and class-hierarchies that are related in
three fundamental ways.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Relationships Among Classes

1. Use: Class A uses Class B (method call).

Call Method

CLASS A CLASS B

Class A uses Class B if a method in A calls a method in an object of
type B.

Example

import math

dAngle = math.sin (math.PI / 3.0);

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Relationships Among Classes

2. Containment (Has a): Class A contains a reference to Class
B.

CLASS BCLASS A

Clearly, containment is a special case of use (i.e., see Item 1.).

Example

class LineSegment
self.start = Point() ...
self.end = Point() ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Relationships Among Classes

3. Inheritance (Is a): In everyday life, we think of inheritance as
something that is received from a predecessor or past generation.
Here, Class B inherits the data and methods (extends) from Class
A.

CLASS A CLASS B

Extends

Two Examples from Python

class ColoredCircle (Circle)
class Student (Person)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Inheritance

Mechanisms

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Inheritance Mechanisms

Inheritance Structures
Inheritance structures allow you to capture common characteristics
in one model artifact and permit other artifacts to inherit and
possibly specialize them. Class hierarchies are explicitly designed
for customization through extension.

In this approach to development:
Forces us to identify and separate the common elements of a
system from those aspects that are di�erent/distinct.
Commonalities are captured in a super-class and inherited and
specialized by the sub-classes.
Inherited features may be overridden with extra features
designed to deal with exceptions.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Base and Derived Classes

Goal: Avoid duplication and redundancy of data in a problem
specification.

In
cr

ea
sin

g
sp

ec
ial

iza
tio

n

Derived Class

Base Class

public constants ...
public methods ...

public constants ...
public methods ...

Interface to the base class

Interface to the derived class

extends

In
cr

ea
sin

g
ab

st
ra

ct
io

n

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Base and Derived Classes

Points to note:

A class in the upper hierarchy is called a superclass (or base,
parent class).
A class in the lower hierarchy is called a subclass (or derived,
child, extended class).
The classes in the lower hierarchy inherit all the variables
(static attributes) and methods (dynamic behaviors) from the
higher-level classes.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Base and Derived Classes

Python Syntax:

Base Class ...

class BaseClass:

Constructor of Base Class

Base class variables and methods ...

Derived class extends Base Class ...

class DerivedClass(BaseClass):

Constructor of Derived Class

Derived class variables and methods ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 5. Model Colored Circles by Extending Circle

Part I: Program Architecture. The TestCircle program will
create objects of type ColoredCircle.

TestColoredCircles

Circle

ColoredCircle

Circle Attributes:
x, y, radius, area, perimeter.

ColoredCircle Attributes:
color.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 5. Model Colored Circles by Extending Circle

Part IIa: Circle Object Model (with Protected Variables)
1 # ==

2 # Circle .py: Implementation of circle model with protection of

3 # circle parameters and methods .

4 #

5 # Written by: Mark Austin October , 2020

6 # ==

7
8 import math
9

10 class Circle :
11 _radius = 0
12 _area = 0
13 _perimeter = 0
14
15 def __init__ (self , x, y, radius):
16 self. _radius = radius
17 self. _area = math.pi* radius * radius
18 self. _perimeter = 2.0* math.pi* radius
19 self._x = x
20 self._y = y
21
22 # Set circle coordinates ...

23
24 def setX(self , x):
25 self._x = x
26
27 def setY(self , y):

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 5. Model Colored Circles by Extending Circle

Part IIa: Circle Object Model (Continued) ...
28 self._y = y
29
30 # Set circle radius , recompute area and perimeter ...

31
32 def setRadius (self , radius):
33 self. _radius = radius
34 self. _area = math.pi* radius * radius
35 self. _perimeter = 2.0* math.pi* radius
36
37 # Get circle parameters ...

38
39 def getX(self):
40 return self._x
41
42 def getY(self):
43 return self._y
44
45 def getRadius (self):
46 return self. _radius
47
48 def getArea (self):
49 return self. _area
50
51 def getPerimeter (self):
52 return self. _perimeter

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 5. Model Colored Circles by Extending Circle

Part IIa: Circle Object Model (Continued) ...
54 # String represention of circle ...

55
56 def __str__ (self):
57 return " --- Circle : (x,y) = (%.2f, %.2f): radius = %.2f: area = %.2f: perimeter = %.2f" % (
58 self._x , self._y , self._radius , self._area , self. _perimeter)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 5. Model Colored Circles by Extending Circle

Part IIb: Colored Circle Object Model
1 # ===

2 # ColoredCircle .py: Extend circle to create coloredcircles .

3 #

4 # Written by: Mark Austin October , 2022

5 # ===

6
7 from Circle import Circle
8
9 class ColoredCircle (Circle):

10 def __init__ (self , x, y, radius , color):
11 Circle . __init__ (self , x, y, radius)
12 self. _color = color
13
14 # Set /get color ...

15
16 def setColor (self , color):
17 self. _color = color
18
19 def getColor (self):
20 return self. _color
21
22 # String representation of colored circle ...

23
24 def __str__ (self):
25 return " --- ColoredCircle : (x,y) = (%4.1f, %4.1f): radius = %5.2f: area = %6.2f: color = %s" % (
26 self._x , self._y , self._radius , self._area , self. _color)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 5. Model Colored Circles by Extending Circle

Part II: Colored Circle Test Program
1 # ===

2 # TestColoredCircles .py: Exercise colored circle objects .

3 #

4 # Written by: Mark Austin December 2022

5 # ===

6
7 from Circle import Circle
8 from ColoredCircle import ColoredCircle
9

10 # main method ...

11
12 def main ():
13 print (" --- Enter TestCircles .main () ... ");
14 print (" --- =============================== ... ");
15
16 print (" --- Part 1: Create and print circle ... ");
17
18 x = Circle (0.0 , 0.0 , 3.0)
19 print (x)
20
21 print (" --- Part 2: Create and print colored circle ... ");
22
23 y = ColoredCircle (0.0 , 0.0 , 0.0 , "blue")
24 print (y)
25 y. setRadius (1.0)
26 print (y)
27 y. setRadius (2.0)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 5. Model Colored Circles by Extending Circle

Part II: Colored Circle Test Program (Continued) ...
28 print (y)
29
30 print (" --- Part 3: Change coordinates and color ... ");
31
32 y.setX(1.0)
33 y.setY(1.0)
34 y. setColor ("red")
35 y. setRadius (3.0)
36
37 print (y)
38
39 print (" --- =============================== ... ");
40 print (" --- Finished TestCircles .main () ... ");
41
42 # call the main method ...

43
44 main ()

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 5. Model Colored Circles by Extending Circle

Part III: Abbreviated Output:
--- Enter TestCircles.main() ...
--- =============================== ...
--- Part 1: Create and print circle ...
--- Circle: (x,y) = (0.00, 0.00): radius = 3.00: area = 28.27: perimeter = 18.85
--- Part 2: Create and print colored circle ...
--- ColoredCircle: (x,y) = (0.0, 0.0): radius = 0.00: area = 0.00: color = blue
--- ColoredCircle: (x,y) = (0.0, 0.0): radius = 1.00: area = 3.14: color = blue
--- ColoredCircle: (x,y) = (0.0, 0.0): radius = 2.00: area = 12.57: color = blue
--- Part 3: Change coordinates and color ...
--- ColoredCircle: (x,y) = (1.0, 1.0): radius = 3.00: area = 28.27: color = red
--- =============================== ...
--- Finished TestCircles.main() ...

Source Code: See: python-code.d/inheritance/

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 5. Model Colored Circles by Extending Circle

Part IV: Files before Program Execution:
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Circle.py
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 ColoredCircle.py
-rw-r--r-- 1 austin staff 847 Feb 18 13:26 TestColoredCircles.py

Part IV: Files after Program Execution:
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Circle.py
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 ColoredCircle.py
-rw-r--r-- 1 austin staff 847 Feb 18 13:26 TestColoredCircles.py
drwxr-xr-x 4 austin staff 128 Feb 18 13:27 __pycache__

./__pycache__:
total 16
-rw-r--r-- 1 austin staff 1476 Feb 18 13:27 Circle.cpython-37.pyc
-rw-r--r-- 1 austin staff 1476 Feb 18 13:27 ColoredCircle.cpython-37.pyc

Note: Python builds compiled bytecodes for Circle and
ColoredCircle (with .pyc extension).

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 6. Student is an Extension of Person

Part I: Program Architecture. The TestStudent program will
create objects of type Student.

StudentTestStudent

Person

Person Attributes:
firstname, lastname, age (age), ssn (social security), dob

(date of birth).

Student Attributes:
gpa (grade point average).

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 6. Student is an Extension of Person

Part IIa: Person Object Model (with Protected Variables)
1 # ==

2 # Person .py: Simple model of a Person . The scope of variables

3 # _age , _ssn , and _dob are protected to Person and all subclasses .

4 #

5 # Written by: Mark Austin November 2022

6 # ==

7
8 from datetime import date
9

10 class Person :
11 _age = 0 # <-- age ...

12 _ssn = 0 # <-- social security number ...

13 _dob = 0 # <-- date of birth ...

14
15 # Constructor method ...

16
17 def __init__ (self , fname , lname , dob):
18 self. _firstname = fname
19 self. _lastname = lname
20 self._dob = dob
21 self._age = self. calculateAge ()
22
23 # Get first and last names ...

24
25 def getFirstName (self):
26 return self. _firstname

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 6. Student is an Extension of Person

Part IIa: Person Object Model (Continued) ...
27
28 def getLastName (self):
29 return self. _lastname
30
31 # Set /get date of birth ...

32
33 def setDob (self , dob):
34 self._dob = dob
35
36 def getDob (self , dob):
37 return self._dob
38
39 # Calculate age ...

40
41 def calculateAge (self):
42 today = date. today ()
43 age = today .year - self._dob.year - ((today .month , today .day) < (self._dob.month , self._dob.day))
44 return age
45
46 # Set /get / print age ...

47
48 def setAge (self , age):
49 self._age = age
50
51 def getAge (self):
52 return self._age

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 6. Student is an Extension of Person

Part IIa: Person Object Model (Continued) ...
53
54 # Set /get / print social security number ...

55
56 def setSSN (self , ssn):
57 self._ssn = ssn
58
59 def getSSN (self):
60 return self._ssn
61
62 # return string represention of object ...

63
64 def __str__ (self):
65 return " Person : {:6.2 f} {:6.2 f}: age = {:f} ". format (self. _firstname ,
66 self. _lastname ,
67 self._age)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 6. Student is an Extension of Person

Part Ib: Student Object Model
1 # ==

2 # Student .py: A Student is a specialization of Person ...

3 # ==

4
5 from Person import Person
6
7 class Student (Person):
8 _gpa = 0
9

10 # Parameterized constructor ...

11
12 def __init__ (self , fname , lname , dob , year):
13 Person . __init__ (self , fname , lname , dob)
14 self. _graduationyear = year
15
16 # Set /get gpa ...

17
18 def setGpa (self , gpa):
19 self._gpa = gpa
20
21 def getGpa (self):
22 return self._gpa

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 6. Student is an Extension of Person

Part Ib: Student Object Model
24 # Boolean to confirm person is a student ...

25
26 def isStudent (self):
27 return True
28
29 # Assemble string represention of student ...

30
31 def __str__ (self):
32 studentinfo = [];
33 studentinfo . append ("\n");
34 studentinfo . append (" --- Student : {:s} {:s} ... \n". format (self. _firstname ,
35 self. _lastname));
36 studentinfo . append (" --- --- \n");
37 studentinfo . append (" --- Gpa = {:6.2 f} ... \n". format (self._gpa));
38 studentinfo . append (" --- Age = {:6d} ... \n". format (self._age));
39 studentinfo . append (" --- Graduation year = {:d} ... \n". format (
40 self. _graduationyear));
41 studentinfo . append (" --- --- ");
42 return "".join(studentinfo);

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 6. Student is an Extension of Person

Part II: Student Test Program
1 # ===

2 # TestStudent .py: Exercise methods in Student class ...

3 #

4 # Written by: Mark Austin November 2022

5 # ===

6
7 from Student import Student
8 from datetime import date
9

10 # main method ...

11
12 def main ():
13 print (" --- Enter TestStudents .main () ... ");
14 print (" --- ===================================== ... ");
15
16 print (" --- Part 1: Create student Angela Austin ...")
17
18 y = Student (" Angela ", " Austin ", date (2002 ,3 ,2) ,2023)
19 y. setGpa (3.5)
20 y. setSSN (1234)
21
22 print (" --- Part 2: Retrieve student parameters ...")
23
24 print (" --- First Name: {:s}". format (y. getFirstName ()))
25 print (" --- Last Name: {:s}". format (y. getLastName ()))
26 print (" --- Age = {:d}". format (y. getAge ()))
27 print (" --- Social Security Number = {:d}". format (y. getSSN ()))

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 6. Student is an Extension of Person

Part II: Student Test Program (Continued) ...
28 print (" --- Is student : {:s}". format (str(y. isStudent ())))
29
30 print (" --- Part 3: Assemble string representation of student ...")
31
32 print (y. __str__ ())
33
34 print (" --- ===================================== ... ");
35 print (" --- Finished TestStudents .main () ... ");
36
37 # call the main method ...

38
39 main ()

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 6. Student is an Extension of Person

Part III: Abbreviated Output:
--- Part 1: Create student Angela Austin ...
--- Part 2: Retrieve student parameters ...

--- First Name: Angela
--- Last Name: Austin
--- Age = 20
--- Social Security Number = 1234
--- Is student: True

--- Part 3: Assemble string representation of student ...

--- Student: Angela Austin ...
--- ---
--- Gpa = 3.50 ...
--- Age = 20 ...
--- Graduation year = 2023 ...
--- ---

Source Code: See: python-code.d/inheritance/

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 6. Student is an Extension of Person

Part IV: Files before Program Execution:
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Person.py
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Student.py
-rw-r--r-- 1 austin staff 847 Feb 18 13:26 TestStudents.py

Part IV: Files after Program Execution:
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Person.py
-rw-r--r-- 1 austin staff 903 Feb 18 13:21 Student.py
-rw-r--r-- 1 austin staff 847 Feb 18 13:26 TestStudents.py
drwxr-xr-x 4 austin staff 128 Feb 18 13:27 __pycache__

./__pycache__:
total 16
-rw-r--r-- 1 austin staff 1476 Feb 18 13:27 Person.cpython-37.pyc
-rw-r--r-- 1 austin staff 1476 Feb 18 13:27 Student.cpython-37.pyc

Note: Python builds compiled bytecodes for Student and Person
(with .pyc extension).

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Mutiple Inheritance Mechanisms

Multiple Inheritance Structures
In a multiple inheritance structure, a class can inherit
properties from multiple parents.
The downside is that properties and/or operations may be
partially or fully contradictory.

Example
People is a generalization of Children and Customers.
Young customers inherits properties from Customers and
Children.

Note. Python supports use of multiple inheritance. Java explicitly
prevents multiple inheritance – instead, it allows classes to have
multiple interfaces.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Mutiple Inheritance Mechanisms

Children

People

Young Customers

Customers

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Mutiple Inheritance Mechanisms

Python Syntax:
class People:

People constructor ...
People variables, and methods ...

class Customers (People):

Customers constructor ...
Customers variables, and methods ...

class Children (People):

Children constructor ...
Children variables, and methods ...

class YoungCustomers(Customers, Children):

YoungCustomer constructor ...
YoungCustomer variables, and methods ...

	Working with Objects and Classes
	Data Hiding and Encapsulation
	Relationships Among Classes
	Inheritance Mechanisms
	Composition of Object Models
	Working with Groups of Objects
	Pathway from Objects to Groups of Objects

	Case Study: GeoModeling the World's Cities

