ENCE 688R Civil Information Systems

Abstract Classes and | nterfaces

Mark Austin

E-mail: austin@sr.und. edu

Institute for Systems Research, University of Maryland|]éde Park

—

Abstract Classes and Interfaces

Part 1. Framework for Component-Based Design
e Framework for design reuse, enabled by software interfaces.
Part 2. Working with Abstract Classes
e Definition and Implementation
e Examples: Efficient modeling of shapes; class hierarchy for a retail catalog.
Part 3. Working with Interfaces, Abstract Classes and Intefaces
e Motivation and implementation.
e Example: Software interfaces for farm workers.
e Programming to an Interface
Part 4. Applications

e State design pattern; evaluation of functions with JEval; interface specification for a
spreadsheet; class diagram hierarchy and modeling for an interconnect system.

I Part 1. Motivation and Approach

Part 1. Framework for Component-Based
Design

—

Component-Based Development

Pathway of Development for Reuse-Focused Design

A

[New Design]

time

Composition of component# ¢
{ @ O CDO }

Library of Components

b

-
a
-
-
()
@

Specification

Requirements

P
Implementation of components.

Waterfall development

Iterations of analysis
and design.

time

Component-Based Development

Preliminary Observations for Reuse-Focused Design

e Component-based system development efforts are motivated by the need to keep
ever-increasing system complexity in check, to reduce system delivery times,
improve consistency, improve visibility, and provide support for parallel and
distributed development.

e In a departure from the goals of object-oriented system development, ...

... component-based system development is primarily conageed with the design
and assembly of solutions as a collection of interacting pees.

Simplified View of a Component Technology Supply Chain

Step 1 Step 2 Step 3 Step 4
Component °
Specification * i _

= '

* - - .!QLP

Implementation !:I’_
Archiecture >
Specification * *

Specifications Component Library Composition Environment Run-time Environmel

Component-Based Development

Schematic of a Simple Component-Based Software System

Implementation requires ...

... techniques for describing the overall system architectre, and for the definition
of pieces in a way that facilitates assembly with other piese

Component-Specification-Implementation Pathway

r ... external environment ... lf —— is written to work with ... lf ... IS an implementation of

Component B’s Component B’s
— ™ specification — ™| implementation

(O——1 Component A

Component C’'s Component C’s
— ™ specification — ™| implementation

L are written and delivered independentIyJ

Components B and C are defined via their specifications/interfaces. Component A
employs the services of compoments B and C.

Interface-Based Development

Pathway from Component- to Interface-Based Design
e During the early stages of design where the focus is on understanding the roles and
responsibilities of components within a domain, ...
... interfaces play the primary role in descision making forwhat the implemented
system might look like.

e This gives rise to the term interface-based design.

e Experience indicates that:
... focusing on interfaces as the key design abstraction lda to much more
flexible designs.

Remark. Interface-based design procedures are particularly important for the design and
managed evolution of systems-of-systems.

I Abstract Classes and Interfaces

Part 2. Abstract Classes

Working with Abstract Classes

Definition
Abstract classes provide an abstract view of a real-world entity or concept.

They are an ideal mechanism when you want to create somethirfgr objects that
are closely related in a hierachy.

Implementation

e An abstract class is a class that is declared abstract. It may or may not include
abstract methods.

e Abstract classes cannot be instantiated (i.e., you cannot create an object from an
abstract class). But they can be subclassed.

e When an abstract class is subclassed, the subclass usually provides implementations
for all of the abstract methods in its parent class.

Working with Abstract Classes

Example 1. Efficient Modeling of Shapes

In this example we

... model shapes under the single umbrella of a Shapes claasd then gain
computational efficiencies by organizing the implementatn of all shapes into a
single common hierarchy.

Definition
A shape is a

... high-level geometric concept that can be specializedtmspecific and well-known
two-dimensional geometric entities.

Examples: ovals, circles, rectangles, triangles, octogons, and so forth.

Working with Abstract Classes

Capturing Shape Data

There are ...

... sets of data values and computable properties that are oamon to all shapes.

Y A < Vdth (x,y) locatior

height

|

\— (x,y) location

For example, shapes have an area, perimeter, an (X,y) centroid and a position or (X,y)
location.

Working with Abstract Classes

Organization of Shapes into a Hierarchy
Specific types of shapes can be ...

... organized into a natural hierarchy.
Examples

e Squares are a specific type of rectan-
gle, which in turn, are a specific type of
guadralateral.

e Circles can be viewed as a special type of

oval.

Many other shapes are possible: point, line-
segment, rhombus, parallelogram, kite, ..etc.

<< abstract >>

Shape

/\
| |
Triangle Oval Quadrilateral

T T

Circle Rectangle

T
Square

Working with Abstract Classes

Class Diagram for TestShape Program

TestShape @ |---- — <<abstract>>
Shape
Locationc; - --- = Location
public abstract String toString(); double X, y;
public abstract double area();
public abstract double perimeter()

Circle Rectangle

double dRadius; double dSidel, dSide2;
public String toString(); public String toString();
public double area(); public double area();
public double perimeter(); public double perimeter();

All extensions of Shape will need to provide concrete implementations for the methods
area(), perimeter() and toString().

Working with Abstract Classes

Implementation Efficiency and Convenience

e Instead of solving problems with algorithms that work with specific object types (e.g.,
Rectangles and Circles), algorithms can be developed for shapes.

Shape s[] = new Shape [3] ;

s[0]
s[1]
s[2]

new Rectangle(3.0, 3.0, 2.0, 2.0);
new Circle(1.0, 2.0, 2.0);
new Rectangle(2.5, 2.5, 2.0, 2.0);

The JVM will figure out the appropriate object type at run time.

e Use of the abstract shape class reduces the number of dependencies in the program
architecture.
Thus, from a systems standpoint, ...
... the program architecture is loosely coupled and ammendé to change.

For example, it would be a trivial matter to add Triangles to the class hierarchy.

Working with Abstract Classes

Walking Along an Array of Shapes

Systemout.println("--------------------- ")

for (int ii =1; ii <=s.length; 1i =1ii + 1) {
Systemout.println(s[ii-1].toString());
Systemout.printin("Perimeter =" + s[ii-1].perineter());
Systemout.println("--------------------- ")

}

Program Output

pronpt >>

Rectangle : Sidel = 3.0 Side2
Perimeter = 12.0

3.0

Crcle : Radius = 1.0 [x,y] =1[2.0,2.0]
Perimeter = 6.283185307179586
Rectangle : Sidel = 2.5 Side2
Perinmeter = 10.0

2.5

pronpt >>

Working with Abstract Classes

Example 2. Class Diagram for Operation of a Retail Catalog

Vs

Custormer

name
address

abstract class™

Crandit

murrbar
frpe
axplate

authorzed

Order
0.* | date
t slatus
 associotion \ caleTax
alc Total
» Paymant . { 11"
= 3 | 2 calcTotaleight
amournt |
Y rode nume—h,}
bne e | 1. 4 Il_n'rr.rﬂipﬂl:ﬂg.r
| | OrderDetail M\ Nem <
Cash Check 4
quantity " shippingWeight
cashTendered narme taxStatus 0 description
banki
calcSubTolal aetPriceF aruantity
authorized catcheight gefeight «

|
. pavigability

— class name

- giiributes

operations

Working with Abstract Classes

Points to Note:

This example conveys the following messages:
e The central class is the Order.
e Associated with each order are the Customer making the purchase and the Payment.
e Payments is an abstract generalization for: Cash, Check, or Credit.
e The order contains OrderDetails (line items), each with its associated ltem.
Also note:

e UML class notation is a rectangle divided into three parts: class name, attributes, and
operations.

e Names of abstract classes, such as Payment, are in italics.

e Relationships between classes are the connecting links.

I Abstract Classes and Interfaces

Part 3. Working with Interfaces

—

Working with System Interfaces

Motivation

Interfaces are the mechanism by which ...

... components describe what they do (or provide in terms ofunctionality and/or
services).

Interface abstractions are appropriate for collections of objects that provides common
functionality, ...

... but are otherwise unrelated.
Implementation
e An interface defines a set of methods without providing an implementation for them.

e An interface does not have a constructor — therefore, it cannot be instantiated as a
concrete object.

e Any concrete class the implements the interface must provide implementations for all
of the methods listed in the interface.

Working with System Interfaces

Example 1. Software Interface for Farm Workers

Class diagram for implementation and use of a farm workers interface.

Person

ZFextends

implements

Animal

Z% extends

Dog

%extends

WorkingDog

Farmer

uses

implements

implements

Horse

% extenc

WorkingHorse

Working

FarmWorkers

Working with System Interfaces

Example 1. Software Interface for Farm Workers
Workers is simply an abstract class that defines an interface, i.e.,

public interface Working {
public abstract void hours ();

In Java, the interface is implemented by using the keyword "implements" in the class
declaration, e.g.,

public class Farner inplenents Working {
This declaration ...

... Sets up a contract that guarantees the Farmer class willrpvide a concrete
implementation for the method hours().

Working with System Interfaces

Important Point
Instead of writing code that looks like:

Far mer mac = new Farner (...);
Wor ki ngDog max = new Wor ki ngDog (...);
Wor ki ngHor se silver = new Wor ki ngHorse (...);

We can treat this group of objects as a set of Working entities, i.e.,

Wor ki ng mac
Wor ki ng max

new Farnmer (...);
new Wor ki ngbDog (...);
Working silver = new WirkingHorse (...);

Methods and algorithms can be defined in terms of all "Working" entities, independent of
the lower-level details of implementation.

Programming to an Interface

Motivation and Benefits

In Java, an interface represents ...
... What a class can do, but not how it will do it, which is the atual implementation.
Two key benefits:

e Information hiding — as long as the objects conform to the interface specification, then
there is no need for the clients to know the exact type of the objects they use.

e Improved flexibity — system behavior can be changed by swapping the object used
with another implementing the same interface.

Programming to an Interface

Combining Abstract Classes and Interfaces

implements
<< abstract>> F------------+ > << Interface >>
A B
method1()
method1() method2()
method2() method3()
method3()
/\
| |
C D E
method1() method1() method3()
method?2() method?2()
method3()

Now we can write:

Creating objects of type C D and E. Executing nethods ...

Bcl =newC¢{(...); bl. met hodl();
Bdl =newD(...); cl. nmet hod2();
Bel =newE(...); el. net hod3();

I Abstract Classes and Interfaces

Part 4. Applications

Application. State Design Pattern

Application 1. State Design Pattern (pg. 106 of Stelting)

Purpose
e To easily change an object’s behavior at runtime.
Description

e The state design patterns allows for the dynamic real-time adjustment of object
behavior.

e It represents the states of an object as discrete objects.
Implementation

e Dynamic behavior is achieved by delegating all method calls that certain values of to
a State object (i.e., to the system’s current state).

e In this way, the implementation of those methods can vary with the state of the object.

e No need for lengthy if-else statements.

Application. State Design Pattern

Class Hierarchy for Implementation

Uses

Context o <<interface>>
State
State currentState
void someMethod()
void setCurrentState (State s)
i | Z% |
Uses ConcreteStateA ConcreteStateB
void someMethod() void someMethod
Uses |

Implementation of the state design pattern requires:

e A Cont ext object that keeps reference to the current state. State-specific method
calls are delegated to the current state object.

e A St at e interface that defines all of the methods that depend on the state of the
object.

e A family of Cont r et eSt at e objects.

Application. State Design Pattern

Application. Toggle Behavior for a Simple Button

State behavior can be summarized as follows:

e If the system state is ON and the button is pushed, then the system will transition to
an OFF state, and

e If the system state is OFF and the button is pushed, then the system will transition to
an ON state.

Here is the State interface:

public interface State { public void push(Button b); }

and here is the Button class:

public class Button {
private State current;
public Button() { current
public void setCurrent(State s) { current

COFF.instance(); }
s; }
public void push() { current.push(this); }

Application. State Design Pattern

Application. Toggle Behavior for a Simple Button

Here is ToggleButton.java: Here is ON.java
public class Toggl eButton { public class ON inplenents State {
public static void main(String[] args) { private static ON inst = new ON();
Button power = new Button(); private ON() { }
for (int i =1; i <=5, 1 =i +1)
power . push(); public static State instance() {
} return inst;
} }

The program output is as follows:

pronpt >> java Toggl eButton public void push(Button b) {

b.set Current(OFF.instance());
System out . println(
button: turning OFF");

button: turning ON
button: turning OFF
button: turning ON
button: turning OFF
button: turning ON

pronpt >>

Application. Evaluation of Functions with JEval

Application 2: Parsing and Evaluation of Functions with JEval

JEval is the advanced library for adding mathematical, string, Boolean and functional
expression parsing and evaluation to your Java applications.

Summary of features:
e Parses and evaluates dynamic and static expressions at run time.
e A great solution for filtering data at runtime.
e Supports mathematical, Boolean, String and functional expressions.
e Supports all major mathematical and Boolean operators.
e Supports custom functions.
e 39 Math and String functions built in and ready to use.

e Supports variables and nested functions.

Application. Evaluation of Functions with JEval

Examples: Relational and Arithmetic Expressions

e String sExp="(2<3) || ((1==1) && (3 < 3))";
e String sSExp ="1 + 2 + 3*4 + 10.0/2.5",
e String sExp = "1 + abs(-1)";
e String sExp = "atan2(atan2(1, 1), 1)";
e String sExp = "acos(-1.0)";
Examples: Working with Strings
e String sExp = "toLowerCase('Hello World!’)";

e String sExp = "toUpperCase(trim(trim(’ab c’)))";

Application. Evaluation of Functions with JEval

Examples: Working with variables

String skEexp = "#{a} >= 2 && #{b} >= 5 && #{c} >= 8";

Long a = (Long) row. get(0);
eval uat or. put Vari abl e("a", a.toString());
Long b = (Long) row. get(1);
eval uat or. put Vari abl e("b", a.toString());
Long ¢ = (Long) row. get(2);
eval uat or. put Vari abl e("c", a.toString());

. etc ...

String result0l = eval uator.evaluate(sExp);

Application. Evaluation of Functions with JEval

Builtin String Functions

Char At . j ava
Eval . j ava

Conpar eTo. j ava
| ndexOr . j ava
StartsWth.java Substring.java

Builtin Math Functions

Abs. j ava Acos. j ava
Ceil.java Cos. j ava
Max. j ava Mn.java
Round. j ava Sin.java

ToRadi ans. | ava

Builtin Operator Functions

Concat .] ava
Last | ndexOF . | ava
ToLower Case. j ava

Asin.java
Exp.] ava
Pow. | ava
Sgrt.java

EndsWth.java
Lengt h. j ava
ToUpper Case. j ava

At an. j ava
Fl oor.j ava
Random j ava
Tan. j ava

Equal s. j ava
Repl ace. j ava
Trimjava

At an2.j ava
Log. | ava
Rint.java
ToDegr ees. | ava

Abstract Operator.java Di vi si onQperator.java Modul usQper at or . j ava

Addi ti onOperator.java Equal Operat or.j ava Mul tiplicationQOperator.java

Bool eanAndQper at or. j ava G eat er ThanQper ator. j ava Not Equal Oper at or.j ava

Bool eanNot Oper at or. j ava G eat er ThanOr Equal Oper ator . j ava OpenPar ent hesesQper ator. j ava

Bool eanOr Operator. j ava LessThanQperator.j ava QOperator. java

Cl osedPar ent hesesQperat or.java LessThanOr Equal Operator.java Subtracti onQperator.java

I Application. Evaluation of Functions with JEval

Syntax and Semantics

StringsEexp="#{a} >= 2 && #{b} >=6 && #{c}>=8}"

o

Variable a Variable b

Logical And Operator

Greater than or equal to Operater—

String skexp = "atan2 (atan2 (1,1), 1)
| |

!

Builtin Function

Application. Evaluation of Functions with JEval

Function Interface

public interface Function {
/'l Return nanme of the function ..
public String getNane();
/| Execute the function for a specified argunent ...

public FunctionResult execute(Eval uator evaluator, String argunents) ...

}

Using the Function Interface

public class Acos inplenments Function { ... }
public class Max inplenents Function { ... }

Application. Evaluation of Functions with JEval

Operator Interface

public interface Operator {
/| Eval uates two doubl e operands.

publ i c abstract doubl e eval uat e(doubl e | eft Operand, doubl e right Operand);

/| Eval uate one doubl e operand ...

publ i c abstract doubl e eval uate(final double operand);

}
Using the Operator Interface

public abstract class Abstract Operator inplenents Operator { ... }

public class D visionQperator extends AbstractQperator { ... }
publ i c cl ass Bool eanAndOper at or extends Abstract Operator { ... }

I Application: Using Interfaces in Spreadsheets

Application 3: Graphical Interface

Spisadshpet GUI

.Expression: [ok] ™ [compur

b C d e f a h

Application: Using Interfaces in Spreadsheets

Modeling a Spreadsheet Cell

public class Cell {

private String expression; /'l expression in cell

private Set<String> children; // list of cells which reference this
private Set<String> parent; /'l list of cells this references
private Object val ue; /'l Val ue of displayed cell

/] Cl ass constructor

public Cell () {
children = new TreeSet<String>();
par ent = new TreeSet <String>();

Application: Using Interfaces in Spreadsheets

Basic Spreadsheet Interface

public interface Spreadsheetlnterface {
public static final String LOOP = "#LOOP"; // | oop Error Val ue
public int get Col umCount(); [l Nunmber of columms in the spreadsheet.
public int get RowCount(); /1 Nunber of rows in the spreadsheet.

/] Set and get the cell expression at prescribed | ocation..

public voi d set Expression(String | ocation, String expression);
public String getExpression(String |ocation);

/'l Returns the expression stored at the cell at |ocation.

public Cbject getValue(String | ocation);

/'l Returns the value associated with the conputed stored expression.

public void reconpute();

Application: Using Interfaces in Spreadsheets

Extended Spreadsheet Interface

public interface Iterabl eSpreadsheetlnterface extends Spreadsheetlnterface {
/| Set/get the nunber of tinmes to conpute the value stored in each | oop cell.

public void setMaxi num terations(int maxlterati onCount);
public int getMxinmunlterations();

/| Set/get the maxi mum change in val ue between successive |loop iterations..

public voi d set Maxi nunChange(doubl e epsil on);
publ i ¢ doubl e get Maxi muntChange();

/'l Reconpute value of all cells ..

public void recomputeWthlteration();

Application: Using Interfaces in Spreadsheets

Creating the Spreadsheet Model

public class Spreadsheet inplenents Spreadsheetlnterface {

private int nunRows, nunCol ums; /1 no. of rows and cols for spreadsheet
private Map<String, Cell> cells; /'l collection of all cells in spreadsheet
private String | astCell Locati on; /'l stores location of last cell accessed

/| Set expression of the cell at location ...

public void setExpression(String | ocation, String expression) { ... }
/'l Reconpute value of all cells

public void recompute() { ... }

/'l Use DFS to check for loops in the relationships anong cells ...

private void checkLOOP(String cellLocation) { ... }

Application: Using Interfaces in Spreadsheets

Creating a Spreadsheet Object

I nt colums = Integer.parselnt(args[0]);
| nt eger. parselnt(args[1]);

int rows

final Spreadsheetlnterface spreadsheet = new Spreadsheet (rows, colums);
javax. swi ng. Swi ngUtilities.invokeLater(new Runnabl e() {

public void run() {
new Spreadsheet GUI (" Spreadsheet GUI ", spreadsheet);

1),

Application. Architecture for Interconnect System

Problem Statement.Hierarchy and network abstractions in a two-layer

component/container model.

Level 1

Level 2 Port

r

Z Relations

Componen

Organizational constraints:
e Within a hierarchy, each level is logically connected to the levels above and below it.

e A port cannot be contained by more than one entity. Links cannot cross levels in the
hierarchy,

e Port-to-port communications must have compatible data types (e.g., signal, energy).

Application. Architecture for Interconnect System

Actor-Oriented Models and Design(adapted from Lee, 2003)

Object—Oriented Design Actor—Oriented Design
Class Name Actor Name
Data Input data Data (state)

Methods Parameters Output dat:
Ports
Call Return

Object-Oriented Modeling and Design
e Components interact primarily through method calls (transfer of control).
Actor-Oriented Modeling and Design
e Components interact via some sort of messaging scheme that is typically concurrent.
e Constraints in the flow of control define the model of computation.

e Rules define what an actor does (e.g. perform external communication) and when.

Application. Architecture for Interconnect System

Typical Ptolemy Application (see Brooks et al., 2008)

pL_arch

Fil. View Edt Graph Debug Help

Gca@a @ PO Pmehoe

[trities
| Directors

[2) Actors |
| Moret ioreries

| Usertibrary

1:50F Diracior

test for messages from other smart node
number of cars

-
ST AT
Conats 1 Aumulatord
=
e Vo If {tIncreased the number of cars) and
A = 1:Consts: (number of cars is 2 o more), then
¢

d ey
e s soaee e B

tradio_in

mparaior_VEwniERera
i 5 Constit

oo T

it both nodes see something at the same time,
inhibi the dumb node 10 not causa confusion

1 EventFiller

TEquals?

I delect_car.

sadio_queue
1ratio_out

_—
o o e e o8
T

Ly v e

File view Edt Graph Debug Help

G-I hpHCPmED>b e

|| Ltiities e

|_|Directors e Gors oo een soribn Wi z = T

™) nctors iyl A Wi o b A file:/C-/home/tmp/_archive/class/uch. . .oject/smart_node_sdf.xmi#1:radio_queue
& Comprid feSa th SUTRRRS, 10 2k e

|| toreLioraries
|| UserLiorary

File Wiew Edt Graph Debug Help
Consiun

Loachinciond
i Gcx@aTrHNOPRmEh e
— e | Ltites
s | | Directors
|| actors g e
|| MoreLibraries ot i
|| UserLiorary. i e -
prpe— s s £

a1 ot e outt e
acinarsn prasant and

Application. Architecture for Interconnect System

Abbreviated class diagram for modeling of system architectures in Ptolemy.

Workspace 0.n NamedObj <}
Port Relation
<<interface>> Entity - ComponentPort ComponentRelation
container
Executable
<<interface>> ComponentEntity <]7 CompositeEntity
Actor

container‘

X R

AtomicActor H CompositeActor

I
————————————————— Manager

Application. Architecture for Interconnect System

From Individual Components to Networks of Components

Networks of components form graphs:

e Graph. A graph is an object that contains nodes and edges. Edges are accessed
through the nodes that they connect.

e Node. A node is an object that is contained by a graph and is connected to other
nodes by edges.

A node has a semantic object that is its semantic equivalent in the application and
may have a visual object which is its syntactic representation in the user interface.

e Edge. An edge is an object that is contained by a graph and connects nodes.

An edge has a “head” and a “tail” as if it was directed, but also has a method
isDirected() that says whether or not the edge should be treated as directed.

An edge has a semantic object that is its semantic equivalent in the application and
may have a visual object which is its syntactic representation in the user interface.

Application. Architecture for Interconnect System

4. Port. A Port is the interface of an Entity to any number of Relations.

Normally, a Port is contained by an Entity, although a port may exist with no
container.

The role of a port is to aggregate a set of links to relations.

Thus, for example, to represent a directed graph, entities can be created with two
ports, one for incoming arcs and one for outgoing arcs.

5. Relation. A Relation links ports, and therefore the entities that contain them.

To link a port to a relation, use the link() method in the Port class.

References

e Brooks C., Lee E.A,, Liu X., Neuendorffer S., Zhao Y., and Zheng H., Heterogeneous
Concurrent Modeling and Design in Java (Volume 1: Introduction to Ptolemy II),
Department Electrical Engineering and Computer Sciences, Technical Report
ECB/EECS-2008-28, University of California, Berkeley, CA, April, 2008.

e Chunithipaisanl S., James P., Parker D., The Integration of Spatial Datasets for
Network Analysis Operations, Department of Geomatics, University of Newcastle
upon Tyne, Newcastle, UK, NE1 7 RU. DIS2004, pp. 123-132, August 2004.

e FutureEye 3.0: Computational Fluid Finite Elements, 2012.

e Lee E., Model-Driven Development — From Object-Oriented Design to Actor-Oriented
Design, Presentation at Workshop for Software Engineering for Embedded Systems,
From Requirements to Implementation, Chicago, September 24, 2003.

e Stelting S. and Maassen O., Applied Java Patterns, The SUN Microsystems
Press/Prentice-Hall, 2002.

	ptsize {14} Abstract Classes and Interfaces
	ptsize {14} Part 1. Motivation and Approach
	ptsize {14} Component-Based Development
	ptsize {14} Component-Based Development
	ptsize {14} Component-Based Development
	ptsize {14} Interface-Based Development
	ptsize {14} Abstract Classes and Interfaces
	ptsize {14} Working with Abstract Classes
	ptsize {14} Working with Abstract Classes
	ptsize {14} Working with Abstract Classes
	ptsize {14} Working with Abstract Classes
	ptsize {14} Working with Abstract Classes
	ptsize {14} Working with Abstract Classes
	ptsize {14} Working with Abstract Classes
	ptsize {14} Working with Abstract Classes
	ptsize {14} Working with Abstract Classes
	ptsize {14} Abstract Classes and Interfaces
	ptsize {14} Working with System Interfaces
	ptsize {14} Working with System Interfaces
	ptsize {14} Working with System Interfaces
	ptsize {14} Working with System Interfaces
	ptsize {14} Programming to an Interface
	ptsize {14} Programming to an Interface
	ptsize {14} Abstract Classes and Interfaces
	ptsize {14} Application: State Design Pattern
	ptsize {14} Application: State Design Pattern
	ptsize {14} Application: State Design Pattern
	ptsize {14} Application: State Design Pattern
	ptsize {14} Application: Evaluation of Functions with JEval
	ptsize {14} Application: Evaluation of Functions with JEval
	ptsize {14} Application: Evaluation of Functions with JEval
	ptsize {14} Application: Evaluation of Functions with JEval
	ptsize {14} Application: Evaluation of Functions with JEval
	ptsize {14} Application: Evaluation of Functions with JEval
	ptsize {14} Application: Evaluation of Functions with JEval
	ptsize {14} Application: Using Interfaces in Spreadsheets
	ptsize {14} Application: Using Interfaces in Spreadsheets
	ptsize {14} Application: Using Interfaces in Spreadsheets
	ptsize {14} Application: Using Interfaces in Spreadsheets
	ptsize {14} Application: Using Interfaces in Spreadsheets
	ptsize {14} Application: Using Interfaces in Spreadsheets
	ptsize {14} Application: Architecture for Interconnect System
	ptsize {14} Application: Architecture for Interconnect System
	ptsize {14} Application: Architecture for Interconnect System
	ptsize {14} Application: Architecture for Interconnect System
	ptsize {14} Application: Architecture for Interconnect System
	ptsize {14} Application: Architecture for Interconnect System
	ptsize {14} References

