ENCE 688R Civil Information Systems

Software Design and Devel opment

Mark Austin

E-mail: austin@sr.und. edu

Department of Civil and Environmental Engineering, Unsmr of Maryland,
College Park

—

Lecture Topics

Part 1. Problem Solving with Computers

e Orchestration of good design solutions.

e Strategies for problem solving and dealing with system complexity.
Part 2: Implementation

e High-level problem solving procedure.

e \Writing and running the software code.

e Compiling and running the program.

e Languages that are both compiled and interpreted.
Part 3: Program Development in Java

e Flowchart for development of Java programs.

e Strengths and weaknesses of Java.

e Integrated development environments (IDES)

I Part 1. Problem Solving with Computers

Part 1. Problem Solving with Computers

—

Problem Solving with Computers

Orchestration of Good Design Solutions

Generally speaking, a good (system or software) design provides (MIT, 2002):

1. Bang for the buck — minimal mechanism; maximal function (i.e., a good, balance of
functionality, performance and economics),

2. Reliable operation in a wide range of environments, and

3. Ease of accommodation for future technical improvements.

Problem Solving with Computers

Complexity of Systems and Software versus Time

Future engineering systems will be more complex than today. Designers will need to be

more productive ...

... Just to keep the duration and economics of design develaogent in check.

System A [Gaps in Capability]
Complexity

Time

Upper limit for complexity
of systems that can be design

Design
Productivity

Validation
Productivity

Problem Solving with Computers

Evolution of Abstractions in Software Development

The pathway forward can be found by looking to the past, where ...

... Major increases in designer productivity have nearly avays been accompanied
by new methods for solving problems at higher levels of abs#ction.

4)

Programmer Productivity

1000 5

1960 - Machine Instructions B38
1965 - Macro Azsemblers
1970 - High-Level Languages

1975 - Database Managers
142

100 1
- Regrezzion Testing
- Online Development
- Prototyping
- 4GL

10 4
1 1290 - Subsecond Timesharing
1992 - Small-=cale Reuze

ke 1995 - OO
2000 - [Large-zcale Reuse)

Ratio of Source Lines to Machine Instructions

19600 1965 1970 1975 15978 19800 1535 1938 1990 1992 1995 2000

Year
Fef. Bernztein 1997

£ 2003-2005 by Digital Aggregates Corp. All rights reserved,

Problem Solving with Computers

High-Level Problem Solving Procedure

High—level Solution Procedure

Problem —— Algorithm —— Write / Run Software ——» Result

t f

Algorithm validation * Development errors ...

Run-time errors ...

System Validation

Computer programming is all about ...

... learning how to translate an algorithm into a set of instiuctions that a computer
can understand.

Machine code, assembly language, high-level languages (e.g., Fortran), object-oriented
programming (e.g., Java), scripting languages (e.g., Python).

Problem Solving with Computers

Simplify Software Design through Separation of Concerns

Design
‘ = - ~ o
\
N
\ L \
Behavior P Structure \ Communication I
’
/ . . N I
Function Hierarhical Decomposition y Protocols !
O @ @ @ D_>|:|:| I —— syntax, semantics,....
I I
Ordering of functions Topology I Interface /

0—+~0—+~0) ’
Objects I @

] [e] [

Geometry

— Position (x,y), Size

Problem Solving with Computers

Getting Started

1. Develop Model of System Context

What is the context within which the system will operate?

2. Operations Concept.
What is the required system functionality?

What will the system do in response to external stimuli?

3. Requirements.
What are the system inputs and outputs?

What requirements are needed to ensure that the system will operate as planned?

Remark. Usecase diagrams are a good way of capturing fragments of required system
functionality.

Problem Solving with Computers

Creating a Behavior Model...

1. Identify top-level functionality
What are the top-level functions?
Define inputs and outputs for each top-level functions.
In what order will execution of the top-level functions occur?

Trace inputs to outputs through network of connected functions.
2. ldentify sub-tasks within each top-level function

Goal is to simplify models of funtionality by decomposing high-level functions into
networks of lower-level functionality.

3. ldentify opportunities for concurrent behaviors
4. Insert low-level functionalities

Note. Several views of behavior may be required to obtain a complete picture of overall
behavior.

I Abstractions for Modeling System Behavior

Functional Decomposition

System behavior defined through decomposition and ordering (control) of functions.

Function Decomposition Connectivity and Ordering of Functions

[System Mission] Inputs and outputs

__________ System _
| | : Boundary ;

u]
[Function Fl] [Function Fz] [Function F3] 1
| !]]

| | Control |
[Function] [Function] C] : F2 T—$_| !
| | ' :
=

(o) o) (o)

I //—-

[Connectivity of components

Note. The functional decomposition hierarchy says nothing about inputs and outputs. |

Abstractions for Modeling System Behavior

Decomposition.Decomposition is the process of ...

... breaking the design at a given level of the hierarchy int@omponents that can be
designed and verified almost independently.

Decomposition of System Functionality

.r"/-’ E
e B,
B ” — Function GE)
LT Inputs Outputs °
- _ o
=
c
(]
2
! 21 3
o “—
Funcl o o
7 5 £
Outputs .~ 2
Inputs p p @ o
Func2 0 3]
= £
\L o
/ £
Func3 |—f—= 7 @
: o
g
(8]
gl v

Note. Details of implementation are addressed in the lower levels of functional
decomposition.

Bottom-Up Software Development

The strategy of bottom-up design ...

... Starts with low-level procedures, modules, and subpragm library routines, and
tries to combine them into higher-level entities.

A key benefit of bottom-up design is its use of already implemented code.

For example, software libraries for,
e Graphical user interface development.
e Numerical analysis.
e Distributed computing over networks.
In this class,
e \Working with Java Collections.

e Network and graph-based engineering analysis.

I Bottom-Up Software Development

Top-Down and Bottom-Up Design

INDEPENDENT MODULES COUPLED MODULES |

I Top-Down and Bottom-Up Development

Advantages/Disadvantages of Top-Down Decomposition
e Can customize a design to provide what is needed and no more.

e Decomposition simplifies development — lower-level (sub-system)
development may only require input from a single discipline.

e Start from scratch implies slow time-to-market.
Advantages/Disadvantages of Bottom-up Development
e Reuse of components enables fast time-to-market.

e Reuse of components improves quality because components will have

already been tested.

e Design may contain (many) features that are not needed.

Abstractions for Modeling System Behavior

Program Control — System Behavior
Behavior models coordinate a set of what we will call steps.

Such a specification requires that at least two questions be answered for each step:
1. When should each step be taken?
2. When are the inputs to each step determined?
Abstractions that allow for the ordering of functions include:
e Sequence constructs,
e Branching constructs,
e Repetition/looping constructs,

e Concurrency constructs.

Abstractions for Modeling System Behavior

Sequencing of Steps in an Algorithm

Which functions must precede or succeed others?

Finishing
Point

Starting
Point

Stepl —=>= Step2 r---- = Step N

The textual/pseudocode counterpart is:

Starting Point
Step 1.
Step 2.
Step 3.
Step N.
Fi ni shi ng Poi nt

Abstractions for Modeling System Behavior

Selection Constructs

Capture choices between functions

me is tr
|Outco eistrue | Compute Block A ——=

——= Logical Decision

| = Compute Block B ————=
Outcome is false...

Languages need to support decision making through ...
... the implementation of relational and logical expressibs.

For example ...

Question: Is 4 greater than 3?
Expression: 4 > 3 ... evaluates to ... true.

Question: Is 4 equal to 3?
Expression: 4 == 3 ... evaluates to ... false.

I Abstractions for Modeling System Behavior

Repetition/Looping Constructs

—0 StepM —l>{ [Sequence of sterﬂsJ—(> StepN ———=>=

Repitition constructs want to know:

e Which functions can be repeated as a block?

Abstractions for Modeling System Behavior

Ordering of Functions: Concurrency

Most real-world scenarios involve concurrent activities in one form or another.

The key challenge lies in the ...

... sequencing and coordination of activities to maximize aystem’s measures of
effectiveness (e.g., production).

Example 1. Running multiple threads of execution on one processor.

Process A+

Process B+

| | []]

Time t
—— Process B starts.

Process A starts.

I Part 2. Implementation

Implementation

Implementation

Writing the Program Source Code

When you write the source code for a computer program, all you are doing is ...
... using text to fill-in the details of programming templates.

While the basic problem solving strategy will be language-independent, the
syntax details will vary from one language to another, e.g.,

Branchi ng Construct in Java Branchi ng Construct in Matl ab
if (1 <3) { if i < 3,

do sonething do sonmething
} else { el se

do sonething else do sonething else

I Implementation

Interpreted Programming Languages

In an interpreted computer program, ...

... high-level statements are read one by one, and translateand executed
on the fly (i.e., as the program is running).

Examples
e HTML and XML.
e Visual Basic and Javascript.

Scripting languages such as Tcl/Tk and Perl are interpreted, as are application

programs written in the MATLAB programming language.

Implementation

Compiling the Program Source Code

A compiler translates the computer program source code into ...

... lower level (e.g., machine code) instructions.

Program Source Compiler Low-level Machine| Save Executable
> —
Code Code File
For example, ...

... high-level programming constructs (e.g., evaluationfdogical
expressions, loops, and functions) are translated into eqealent low-level
constructs that a machine can work with.

Examples.C and C++.

Implementation

Benefits of Compiled Code

e Compiled programs generally run faster than interpreted ones. This is because ...

... an interpreter must analyze each statement in the prognan each time it is
executed and then perform the desired action,

whereas the compiled code just performs the action within a fixed context
determined by the compilation.
Benefits of Interpreted Code
e With an interpreted language you can do things that cannot be done in a compiled
language. For example, interpreted programs can ...
... modify themselves by adding or changing functions at runme.
e Also, it is usually easier to develop applications in an interpreted environment

because you don’'t have to recompile your application each time you want to test a
small section.

Implementation

Code that is both Compiled and Interpreted

Most modern interpreter systems also perform some form of compilation — that
IS, ...

... they take the source code and transform it into a lower-leel
iIntermediate format. An interpreter then executes command in the
intermediate format.

Compiled Code

Program Source Compiler Low-level Machine
Code Code

Compiled and Interpreted Code

Program Source Compiler Intermediate Interpreter Read and execute
e .
Code Code commands

Examples. MATLAB, Java and Python.

I Part 3. Program Development with Java

Program Development with Java

—

Program Development with Java

Flowchart for Software Development in Java

Use text editor or development
enviroment to create source

code files.... Libraries Data
Algorithm —T= Source code —T> Bytecode —T= Loader — Java
Virtual
l% Compiler; javac Machine
Syntax errors
Algorithm errors ... Run-time errors

i

Output

I Program Development with Java

Strengths of Java

1. Java is both a compiled and interpreted language. Java source code is
compiled into a bytecode format

2. Bytecodes are the lowest possible instruction format that remain
architecture neutral. As a result, the bytecode can travel across the
Internet and execute on any computer that has a Java Virtual Machine.

3. Java is an object-oriented language Implementation details are made
efficient by exploiting the relationship among objects

Weaknesses of Java

1. There’s a lot to learn, especially if you want to become really skilled at

developing software in Java.

Integrated Development Environments for Java

Eclipse is an integrated software development tool (or IDE) for Java Software

Development.

= -]

L TSR |
) B
< 52 com.aramco.powersZ.ui 3

v @arc

~ i com.aramco.powers2.ui
[3) sppActionBaradyisorjava
[3) spplication java,
(3] &ppWarkbenchadvisor java
(3] &ppWorkbenchiWindowadyis
[3] ICommandlds java
[1] MessagePopupAction java
[3] NbBundle java
[1] Openviewfiction java
[3) Perspective.java
[3] PluginConstants java
[3) PowierszPlugin java
(3] Projectviewjava
[3] TableEditarjava
[3] Table View java
[2 Bundle properties
i com.aramco.powers2.ui action
3 com.aramco.powers2.uiforms
£ com.arameo.powersZ.uiproject.r
£ com.aramco.powersZ uitahle
[com.aramco.powersZ ui.wizards
[com.arameo powers2 Xy plot dats
test
3 com.aramco powers2 internal ui
= [comaramnco powers? ui test

v T T TTTTTETYTTTTT

v v v v o v

-

b 1 com.aramco powersZ xyplot.date
b samples

=4 JRE System Library [jdk1.5.0_08]
=i Plug-in Dependencies

=, Junit 4

(=doc

(=icans

(= META-INF

[554 build properties

[2] com.aramco powersZ ui.project moc
PlotDatatodel violet

|51 plugin_customization.ini

LK] |

v v v v T v

= O ||l com.aramco powers

File Edt Source Refactor Mavigate Search Project Run Window Help
GrEd =0 | BF G |d4 @ ARE |8 B e P
Plug-ing [T} GenericBranch java [] MbBundleTestjava 33 - “a

5 powers2gui.product

§7lmport COM.arameco. EnwersZ ui N‘h‘éi;ﬂ\e; |
28

2l hand

30 * Tests the behavior of wility class NbBundle.

31 * Tests need to run against the background of a known set of objects

32 * This set of objects is called a test fixture. (Refer to http:/fws junit.org)

33+

34 * @author Guanglin Du {dugl@petrochina.com.cn), Software Engineering Center, RIPED, PetroChina
il

36public class NbBundleTest {
a7

a8
33
4
41

pr

* Uses the Bundle properties to test NbBundle's behavior.
*
!

@Test

public void testExistingResource() {
String s1 = NbBundle get\fasszga(Projectview.class, "add_new_pwt_sat");
assertEquals{"Add New PYT or SAT table”, s1);

o

* Uses the Bundle.properties to test NbBundle's behavior.
w
L

@Test

public void testNonExistingResource() {
String 51 = NbBundle get\iassage(Projectview.class, "non-existing”);
assartEquals("venon-existing”, s1J;

o
* Iethod main to run this class directly.

* Can be run this way also on a command line:

* java orgjunit.runnerdUnitCore samples.SimpleTestFixture
*

public static void main(String args[]) {
JUnitCore.main("com.aramco.powers2 ulutiltest NbBundleTest™);

[4

Error Log| Tasks Problems Console | Properties | Search | gfu JUnit 2

Finished after 0,129 seconds

Runs:

b Eijcom.arameo powers2 uitest NbBundleTest [Runner: JUnit 4]

2re B Erors: 0 B Failures: 0

= Failure Trace

i i{l&‘Prug—\h Dev.. >

5= Outline 2 =]

e s o &~
i comarameo powers2 ui test
b *= import declarations
= (&, NbBundleTest
® *main(String])
@ testExistingResourcel)
® testhonExistingResource()

o [£) 1 0826

	ptsize {14} Lecture Topics
	ptsize {14} Part 1. Problem Solving with Computers
	ptsize {14} Problem Solving with Computers
	ptsize {14} Problem Solving with Computers
	ptsize {14} Problem Solving with Computers
	ptsize {14} Problem Solving with Computers
	ptsize {14} Problem Solving with Computers
	ptsize {14} Problem Solving with Computers
	ptsize {14} Problem Solving with Computers
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Bottom-Up Software Development
	ptsize {14} Bottom-Up Software Development
	ptsize {14} Top-Down and Bottom-Up Development
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Abstractions for Modeling System Behavior
	ptsize {14} Part 2. Implementation
	ptsize {14} Implementation
	ptsize {14} Implementation
	ptsize {14} Implementation
	ptsize {14} Implementation
	ptsize {14} Implementation
	ptsize {14} Part 3. Program Development with Java
	ptsize {14} Program Development with Java
	ptsize {14} Program Development with Java
	ptsize {14} Integrated Development Environments for Java

