e A ,-—n-f'-—-“h '_"I“[L]J |E-]|l

ENCE 688R CIVIl Information Systems

Engineering Software Development
in Java

Lecture Notes for ENCE 688R,
Civil Information Systems

Spring Semester, 2019

Mark Austin,
Department of Civil and Enviromental Engineering,
University of Maryland,
College Park,
Maryland 20742, U.S.A.

Copyright(©2012-2019 Mark A. Austin. All rights reserved. These notegymot be reproduced
without expressed written permission of Mark Austin.

Engineering Software Development in Java

Contents

11 Java Collections Framework
11.1 Pathway from Objects to Groups of Objects
11.2 Introduction to Java Collections Framework
General Purpose Operations
General Purpose Implementation
11.3 The Core Collection Interfaces
The Collection Interface
The List Interface
The Set Interface
The Map Interface
The Queue Interface
11.4 Working with Array Lists and Linked Lists
11.5 Example 1. Arraylist of Shapes
11.6 Example 2. Create and Sort an Arraylist Folded Boxes
11.7 Working with Maps
Example 1. Create a Simple HashMap of Strings
Example 2. Use HashMap and TreeMap to Count Frequency of $Nardocument
Example 3. Use a Comparator to Order a TreeMap of Employees
Example 4: Create HashMap for Point(x,y)-Value Pairs
Example 5. Demonstrate DeepCopy for a HashMap
11.8 Working with Sets
Example 1. Create a HashSet of Strings
Example 2. Create Sets of Enumerated Data Types
11.9 Modeling Association Relationships
Uni-Directional Association
Bi-Directional Association
One-to-Many Associations
Many-to-Many Associations
11.10Working with Java Generics
Introduction to Programming with Generics
Use of Generics in Java
Example 1. Use of Generics in a LinkedList
Example 2: Avoiding Run-Time Failure of an ArrayList

(ol RF NN S &

11
11
12
13
15
17
18
20

27
28

22

32

48
48

53
53
56
60
65
73
73
74
74

34

40
43

75

51

Table of Contents

Working with Parameterized Types

Implementing Generic Types

Working with Generic Methods

Working with Wildcards
11.11Exercises

References

Index

e
77
78
78
80

86

87

Chapter 11

Java Collections Framework

11.1 Pathway from Objects to Groups of Objects

Now that we know how to create objects, the next subject obiti@mce is ...

... how to organize collections of objects so that they are s@to store, easy to find, and
easy to modify.

We address this problem in two-step procedure:

1. Choose an appropriate mathematical formalism.

2. Develop software to support each formalism.

As a starting point, Figure 11.1 shows how groups of objeatshe organized inteetsandmaps
Part I. Sets

A set is nothing more than ...

... a group of objects containingno duplicates.

The left-hand schematic in Figure 11.1 shows three sets And,Z. Some real-world examples of set
include the following:
1. The set of lowercase letters “a” through “z.”

2. The set of digits “0” through “9.”

3. Sets of people — friends, relatives, co-workers.

Sets have the following properties:
1. They can contain only one instance of an item.
2. They may be finite or infinite.

3. They can define abstract concepts (e.g., family relatives).

2 Engineering Software Development in Java

Sets Maps
XuyYy)mn Z

C S o
| |
N it U

Figure 11.1.Organizing groups of objects into sets and maps.

X

y

w N

Lh
T

Arrays Linked List

O O = =
Hash Map Queues

e e] =

] tail head

Trees Graphs

| |
I R N e B <~ < |

Figure 11.2. Schematics for array, list, queue, hashtable, tree andhgtaja structures.

Chapter 11 3

Sets are fundamental to logic. As such, things get intergsthen we want to evaluate the relationship
among sets; for example, compute the intersection, unidalifference of sets.

Part Il. Maps

A map defines ...

.. aset of pairs each pair representing aone-directional mappingfrom one element
to another.

Examples of maps include:
1. The map of IP addresses to domain names (DNS).
2. A dictionary of words mapped to their meanings.
3. A Celsius to Fahrenheit temperature conversion (this isfiniie map).
4. A telephone directory connecting names to phone numbers.
5. Source and destination maps for edges in a graph.
6. Parent and child relationships connecting dependenciesigells in a spreadsheeet.

In geographic information systemmap relationships connect spatial coordinates to feafuseswhat
features are at this location?) and vice versa.

Data Structures and Algorithms

Long before the advent of computers, mathematicians eshttze benefits in casting problems
as sets and maps. More recently, computer scientists haetoged techniques for dealing with these
concerns ...

... through the study of data structures and algorithms.

Simply put, a data structure is ...

... a particular way of storing and organizing datain a computer so that it can be used
efficiently.

Data structures means to manage large amounts of datarffiéad, as such, they are used in almost
every program or software system. The study of data strestaind algorithms is interesting because ...

... different kinds of data structures are suited to different kinds of applications.

Usually, efficient data structures are a key to designingiefit algorithms (e.g., for adding/removing
elements). Figure 11.2 shows, for example, schematicsrifay,dist, queue, hashtable, tree and graph
data structures. A few key points:

4 Engineering Software Development in Java

1. An array data structurstores a number @lements of the same typ&hese elements are accessed
using an index to indicate which element is required.

2. A linked list data structure consists of a group of nodes Wwhagether represent a sequence. In
the simplest implementation, each node is composed of andatd a link to the next node in the
sequence. More complex implementations provide additiimies to allow for traversal in both
directions. Linked lists allow for efficient insertion omneval of elements from any position in
the sequence.

3. A queue is a linked list that only allows insertions at the /eitdand removal of items from the
front/head of the queue.

4. A hash map provides a key-value pair.

5. A tree data structure orders it data items into a hierarclne major advantage of trees over other
data structures is that the related sorting and searchithligns; and traversals can be very efficient.

6. A graph data structure consists of a finite set of ordered pealed edges or arcs, of certain entities
called nodes or vertices. An edge (x,y) is said to point orrgmfx to y. The nodes may be part
of the graph structure, or as illustrated in Figure 11.2 Ielseel graphs.

In applications where the data requirements are known apitertime, the data structures can be of a
fixed size throughout the program operation. A programmehtrihoose a data structure that provides
very fast access to data. Increasingly, however, softwargrams are required to operate on streams of
data of unknown length. In these cases, a programmer migloseha data structure for its flexibility —
that is, ease of adding and removing elements.

11.2 Introduction to Java Collections Framework

A collectionis an object that groups multiple elements into a unit (infreatatical terms it is
equivalent to a set) that can be treated as a single entifyicdly, collections represent items of data
that form a natural group:

1. A poker hand (a collection of cards),
2. A mail folder (a collection of letters), or a
3. Telephone directory (a mapping of names to phone numbers).
A collection that requires all of its elements to be of the sappe is called homogeneous. Heteroge-

neous collections allow for elements to be of different §/pefor example, a collection of fruit might
contain apples, oranges and bananas.

The collections framework is a ...

... unified architecture for representing and manipulating collections.

Chapter 11 5

Collections are used to store, retrieve, manipulate, anthoanicate aggregate data. This includes:

1. Sets.

A set is a collection that cannot contain duplicate elements

2. Lists.

An ordered collection (sometimes called a sequence). t#tiontain duplicate elements.

3. Queues.

Queues typically order elements in a FIFO (first-in-firstyaaanner.

4. Maps.

An object that maps keys to values.

5. SortedSet.

A Set that maintains its elements in ascending order. See&xlare used for naturally ordered
sets, such as word lists and membership rolls.

5. SortedMap.

Sorted maps are used for naturally ordered collectionsygf/gkie pairs, such as dictionaries and
telephone directories.

A few points to note:

1. Some collections allow duplicate elements and others do not

Some are ordered and others unordered.

2. Lists, queues and maps are examples of linear collectidemdnts are arranged in a sequence such
that all elements except the first have a unique predecessbrll except the last have a unique
Successor.

3. Asillustrated in Figure 11.2, trees are hierarchical aitens. The elements of the tree are called
nodes. A non-trivial tree (i.e., one that is not empty) hapecil node called the root. The root
node has no predecessors (called parents) and zero or nomessars (called children). Tree
elements called leaves have one parent and no children.

4. Graph collections are similar to trees (more preciselgdi@e a subset of graphs), but unlike trees,
graph collections permit cyclic relationships. The eleta@fia graph are called vertices. Vertices
are connected by edges. The graph shown in the bottom réagitt-borner of Figure 11.2 is an
example of a directed graph — each edge has a clearly defieddqassor (head) and successor
(tail).

6 Engineering Software Development in Java

Benefits. The collections framework offers the following benefits:

1. Reduces programming effort,
2. Increase programming speed and quality,
3. Provide a standard way of accessing collections,

4. Allow for effective reuse of code.

General Purpose Operations

In any implementation of a collection (details specifiedolgl we need a well defined set of
operations that will be supported, even across collecipeg that serve different purposes. The basic
operations include support for:

1. Adding an Element

We need to be able to add elements to a collection. The détailsow this will happen are
collection dependent. For example, collections that asitipo dependent may allow for insertion
at a specific position (e.g., at the front or rear of the ctbegd. Other collections will insert new
elements in a position that maintains order in the value e@heints. Some collections such as
arraylists allow for duplicates; set collections do novaliduplicates.

2. Removing an Element

We also need to be able to remove elements from a collectome8mes we will remove an ele-
ment based on its position — for example, removing an elefin@mt the top of a stack. Elements
can also be removed from collections based on their tardeesa- for example, remove items
from a collection having a specific value.

3. Replacing an Element

Given a position or target element, this operation replaceslement with a different element.

4. Finding and retrieving and Element

Given a position or target element, this operation finds atideves a specific element from the
collection.

5. Determining if an Element is contained in a Collection

This operation will determine if an eleent is contained irobection. The operation will return a
boolean value of true if it exists. Otherwise, it will retualse.

Chapter 11 -

6. Computing the Size of a Collection

The operation computes and returns the number of elemetiis irollection.

7. Testing to see if a Collection is Empty

This operation will test to see if a collection is empty. Theeation will return a boolean value
of true if it is empty. Otherwise, it will return false.

8. Traversing a Collection

Traversal is a strategy for systematically visiting thenedats of a collection, one element at a
time. We will see that iterators provide a uniform framewfwkcollection traversal.

More advanced operations include:

9. Equality

This boolean operation determines if two collections ang&ghat is, the collections contain the
same number of elements, for each element in the first cigiesttheir is an equal element in

the second collection. Collections that are ordered wslbakquire that the positions of the equal
elements also match.

10. Cloning

The cloning operation produces a copy of the collection.

A shallow copyduplicates the structure of the original collection, but the elements contained
in the collection (i.e., in other words, a shallow copy reples the structure and referenes to

objects). As such, in a shallow copy, both the original atiter and its copy will share access to
the original elements.

In adeep copy both the elements and the element structure will be replica

11. Serialization

Serialization is the ability to write and save the data in lkection to disk.

8 Engineering Software Development in Java

General Purpose Implementation
From an implementation standpoint, the Java Collecticaméwork is ...

... a set of utility classes, interfaces (located in the javatil package), and algorithms
for working with collections of objects.

In a bit more detail:

1. Interfaces

These are abstract data types that represent collectiatesfalces allow collections to be manip-
ulated independently of the details of their represemntatio

2. Implementations
These are the concrete implementations of the collectimnfates. In essence, they are reusable
data structures.

3. Algorithms

These are the methods that perform useful computations,asusearching and sorting, on objects
that implement collection interfaces.

Relationship between Interfaces and Implementations

Table 11.1 provides a simplified view of data structure immatations for each of the Set,
List and Map interfaces.

Interfaces Hash Resizable| Balanced L?nked
Table Array Tree List

Set HashSet TreeSet

List ArrayList LinkedList

Map HashMap TreeMap

Table 11.1.Matrix of collection interfaces mapped to data structurplamentations.

And Figure 11.3 shows the organization of interfaces, abstrlasses, and concrete classes in the Java
Collections Framework.

Key points to note:

1. There are only three container components — Map, List andaBdtas shown above only 2 or 3
implementations of each one.

Chapter 11 9

ST i

: : : I.&bStI"ECtMEID |
--------- F‘I’DdutE!S e ___
LISﬂ terator -l LISt Set | i'i
':';"::'_":: ______ v dﬂ
| | AbstractCollect ot 1| S ------- e
B S ket
R S TreeMap
| AbstractList | | | AbstractSet | | Hashivlap |
- EE ____________ %‘ [dertityH ashiMap
LinkedHashMap
Hash3et | | TreesSet Hashtable
“% WeakHashMap | (Legacy)
LinkedHashSet Comparable*—h(:omparator
| J Utilities
.:EQE;;. Arraylist || | AbstractSequentiallist | Collect ons
43 ?F Arrays
s LinkedList

Figure 11.3. Organization of interfaces, abstract classes, and canctasses in the Java Collections
Framework.

10 Engineering Software Development in Java

2. The dotted boxes represent interfaces, the dashed boxeseap abstract classes, and the solid
boxes are regular (concrete) classes.

3. The dotted-line arrows indicate that a particular clasmjglémenting an interface (or in the case of
an abstract class, partially implementing that interface)

4. The solid arrows show that a class can produce objects ofléiss the arrow is pointing to. For
example, any Collection can produce an Iterator and a Lisjppcaduce a Listlterator (as well as
an ordinary lterator, since List is inherited from Collec].

Iterators provide a way for ...

... collections to be traversed in a uniform way.

For a good overview, see Chapter 22 of Liang [2].

Chapter 11 11

11.3 The Core Collection Interfaces

As illustrated in Figure 11.4 below, collections come inrfbasic flavors, Lists, Sets, Maps and Queues.

Figure 11.4. Hierarchy of interfaces in the Java Collections Framework.

A Collection holds single elements, and a Map holds asstipairs. Collection and Map are two top
level interfaces.

The Collection Interface

The following fragment of code shows the Collection integfa
public interface Collection<E> extends |terabl e<E> {

/1 Basic operations

int size();

bool ean i sEnpty();

bool ean cont ai ns(Chj ect el enent);
bool ean add(E el ement);

bool ean renmove(Obj ect el ement);
Iterator<E> iterator();

/1l Bul k operations

bool ean contai nsAll (Col | ection<?> c);

bool ean addAl | (Col | ecti on<? extends E> c);
bool ean renoveAl | (Col | ection<?> c);

bool ean retai nAll (Col | ection<?> c);

voi d clear();

/1 Array operations
hject[] toArray();
<T> T[] toArray(T[] a);

This is the root interface in the collections hierarchy. Triterface has methods to tell you:

e How many elements are in the collection (size, isEmpty),

e To check whether a given object is in the collection (corggin

12 Engineering Software Development in Java

e To add and remove an element from the collection (add, rejnene

e To provide an iterator over the collection (iterator).

All of the general-purpose Collection implementation stsstypically implement Collection indirectly
through one of its subinterfaces. The collections interfsgecifies that implementations provide two
"standard” constructors:

1. A void (no arguments) constructor, which creates an emgtgateon, and

2. A constructor with a single argument of type Collection, gthcreates a new collection with the
same elements as its argument.

The latter constructor allows the user to copy any collegtproducing an equivalent collection of the
desired implementation type. There is no way to enforcedbisention (as interfaces cannot contain
constructors) but all of the general-purpose Collectioplementations in the Java platform libraries
comply.

The List Interface

The list interface is an extention of the collections irded, i.e.,

public interface List<E> extends Collection<BE> {

/] Positional access

E get (int index);

E set(int index, E elenent);

bool ean add(E el enent);

voi d add(int index, E elenent);

E renove(int index);

bool ean addAl | (i nt index, Collection<? extends E> c);

/'l Search
int indexOf (Qoj ect 0);
int |astlndexOf (Cbject 0);

/1 lteration
Listlterator<BE> listlterator();
Listlterator<E> listlterator(int index);

/'l Range-vi ew
Li st<E> subList(int from int to);
and defines methods for ...

. creating and working with an ordered collection (also krown as a sequence) that
allows duplicates.

Chapter 11 13

Users of this interface have precise control over where énlit each element is inserted. Users can
access elements by their integer index (position in thi Bstd search for elements in the list. Unlike
sets, lists usually allow dupilicate elements.

Implementations of the List Interface

The Java Collections Framework provides three implemiemsbf List interface:

1. ArrayList

An ArrayList is an array which grows dynamically and prowdda ordered collection (by index),
but not sorted. Array lists give you fast iteration and fastdom access.

2. Vector

A Vector (legacy class) is basically the same as an ArrayhigtVector methods are synchronized
for thread safety (i.e., programs that have multiple preess

3. LinkedList

A LinkedList is ordered by index position, like ArrayListxeept that the elements are doubly-
linked to one another. This linkage gives you new methodgdibé what you get from the List
interface) for adding and removing from the beginning or,ewmtich makes it an easy choice for
implementing a stack or queue.

Keep in mind that a LinkedList may iterate more slowly thanfarayList, but it's a good choice when
you need fast insertion and deletion. Moreover, as of Jattaed, inkedList class has been enhanced to
implement thg ava. uti | . Queue interface. As such, it now supports the common queue methods
peek(), poll(), and offer().

The Set Interface

The set interface builds upon methods declared in the ¢mfecinterface, i.e.,
public interface Set<E> extends Collection<BE> {

/| Basic operations

int size();

bool ean i sEnpty();

bool ean cont ai ns(Chj ect el enent);
bool ean add(E el ement);

bool ean renove(Obj ect el ement);
Iterator<E> iterator();

/1 Bul k operations

bool ean contai nsAll (Col | ecti on<?> c);

bool ean addAl | (Col | ecti on<? extends E> c);
bool ean renoveAl | (Col | ection<?> c);

bool ean retai nAll (Col | ection<?> c);

14 Engineering Software Development in Java

voi d clear();

/'l Array QOperations
hject[] toArray();
<T> T[] toArray(T[] a);

and defines methods for ...

... creating and working with a collection that contains no diplicate elements.

Implementations of the Set Interface

The Java Collections Framework provides three implemiemsbf Set interface:

1. HashSet

A HashSet is an unsorted, unordered Set. It uses the hasbttiteobject being inserted, so the
more efficient your hashCode() implementation the bettees& performance you'll get.

Use this class when you want a collection with no duplicatekyeu don't care about order when
you iterate through it.

2. LinkedHashSet

A LinkedHashSet is an ordered version of HashSet that mias&doubly-linked List across all
elements.

Use this class instead of HashSet when you care about tlaidterorder. When you iterate
through a HashSet the order is unpredictable, while a LiHkesthiSet lets you iterate through the
elements in the order in which they were inserted.

2. TreeSet

The TreeSet is one of two sorted collections (the other b&egMap). It uses a Red-Black tree
structure to guarantee that the elements will be in ascgrafither, according to natural order.

Optionally, you can construct a TreeSet with a construdtat kets you give the collection your
own rules for what the order should be (rather than relyinghenordering defined by the ele-
ments’ class) by using a Comparable or Comparator.

As of Java 6, TreeSet implements NavigableSet.

Chapter 11 15

The Map Interface

The Map interface, i.e.,

public interface Map<K V> {

/1 Basic operations

V put (K key, V val ue);

V get (oj ect key);

V renove(Obj ect key);

bool ean cont ai nsKey(Qbj ect key);
bool ean cont ai nsVal ue(Obj ect val ue);
int size();

bool ean i sEnpty();

/1 Bul k operations
voi d put Al'l (Map<? extends K, ? extends V> m;
voi d clear();
/1 Collection Views
public Set<K> keySet();
public Collection<V> val ues();
public Set<Map. Entry<K, V>> entrySet();
/'l Interface for entrySet el enents
public interface Entry {
K getKey();

V get Val ue();
V set Val ue(V val ue);

is an object that maps keys to values (i.e., key/value or hathue pairs). A map cannot contain dupli-
cate keys; each key can map to at most one value.

The Map interface provides three collection views, whidbvala map’s contents to be viewed as ...

... a set of keys, collection of values, or set of key-value mpings.

Implementations of the Map Interface
Implementations of the Map interface let you do things like:
e Search for a value based on the key,
e Ask for a collection of just the values, or
e Ask for a collection of just the keys.
The order of a map is defined as the order in which the iteratorthe map’s collection views return

their elements. Some map implementations, like the TreedV&egs, make specific guarantees as to their
order; others, like the HashMap class, do not.

The Java Collections Framework provides three implemiemsiof Map interface:

16 Engineering Software Development in Java

1. HashMap

The HashMap gives you an unsorted, unordered Map.

When you need a Map and you don't care about the order (wherntgrate through it), then
HashMap is the way to go.

HashMap allows one null key and multiple null values in aection.

2. Hashtable

Like Vector, Hashtable has existed from prehistoric Javeesi.
Hashtable is the synchronized counterpart to HashMap.

Note, however, that unlike HashMap, Hashtable doesn’tdathave anything that’s null.
3. LinkedHashMap
Like its Set counterpart, LinkedHashSet, the LinkedHaghktzllection maintains insertion order

(or, optionally, access order). Although it will be somewslawer than HashMap for adding and
removing elements, you can expect faster iteration withnkédHashMap.

4. TreeMap

You can probably guess by now that a TreeMap is a sorted Mag.yAn already know that by
default, this means "sorted by the natural order of the efaegie

Like TreeMap lets you define a custom sort order (via a Conipp@rar Comparator) when you
construct a TreeMap, that specifies how the elements sheuthimpared to one another when
they’re being ordered.

As of Java 6, TreeMap implements NavigableMap.

Like Sets, Maps rely on the equals() method to determine lvendtvo keys are the same or different.

Chapter 11 17

The Queue Interface

A Queue is a collection for holding elements prior to progegsn some way. Queues are
typically thought of as ...

... FIFO (first-in, first-out), but other orders are possible.

Besides basic Collection operations, queues provideiaddltinsertion, removal, and inspection
operations. The Queue interface is as follows;

public interface Queue<E> extends Collection<E> {
E el enent ();
bool ean offer(E e);
E peek();
E poll();

E renove();

The collections framework provides a priority queue impternation:

1. PriorityQueue

The PriorityQueue class was introduced with the releasava 3.

Since the LinkedList class has been enhanced to implemeQukue interface, basic queues can
be handled with a LinkedList.

The purpose of a PriorityQueue is to create ...

... a"priority-in, priority out” queue as opposed to a typic al FIFO queue.

A PriorityQueue’s elements are ordered either by natudgring (in which case the elements that
are sorted first will be accessed first) or according to a Coatpa In either case, the elements’
ordering represents their relative priority.

18 Engineering Software Development in Java

11.4 Working with Array Lists and Linked Lists

An arraylist is an object that provides ...

... aresizable-array implementation of the List interface

Arraylists haveone major constraint:

... they can only store references to objects, not primitive

So, for example, an array list can store a collection of §tabjects, but cannot store a list of (primitive)
floats or ints.

Otherwise, arraylists are straightforward. The fragméole:

Arrayli st grocery = new Arraylist();

creates an empty arraylist object. To add an object to ttaylist, we call the add() method, passing a
reference to the objects we want to store. Let's add a fewsitenour grocery list,

grocery.add ("Bread");

grocery.add ("MI1k");
grocery. add ("Cheese");

The arraylist gives each element an index number. Like ezgafrays, the first element has index
number 0, the next is 1, and so forth. We can retrieve and grinindividual grocery items with:

Systemout.println ("Item1l: " + grocery.get(0));
Systemout.println ("Item2: " + grocery.get(1));
Systemout.println ("Item3: " + grocery.get(2));

Thesi ze() method (e.g., grocery.size()) returns the number of elésriarthe arraylist.

Now let’s repeat the grocery list assembly, but define sép&ting objects first. For example,

String itenl = "Bread";
String iten2 = "M I k";
String iten8 = "Cheese";

ArrayLi st grocery = new ArrayList();
grocery.add (itentl);
grocery.add (itenR);
grocery.add (itenB);

The variables item1, item2, and item3 are references toemective String objects. When we call the
add() method, we pass a reference to the String objectsylistrdoes not make a copy of the object
— instead there is only one copy of each String object, anctiay list only stores a reference to that
object. This results in the layout memory shown in Figuré11.

Chapter 11

19

ArrayList Object

grocery

String Objects

iteml

I e

"Bread"

item2

[]

item3

"Milk"

|

[]

"Cheese"

Figure 11.5.Layout of memory for arraylist of grocery items.

Figure 11.6. Spatial layout of circle, rectangle and triangle shapes.

6 X

20

Engineering Software Development in Java

11.5 Example 1. Arraylist of Shapes

In Chapter?? we we used the fragment of code,

Shape sJ[]

s[0]
s[1]
s[2]

new Shape [3];

new Rectangle(3.0, 3.0, 2.0, 2.0);
new Circle(1.0, 2.0, 2.0);
new Rectangle(2.5, 2.5, 2.0, 2.0);

to create an array of abstract shapes implemented as cdiohmaf circles and rectangles.

The following program builds upon this idea, and uses aryhstao store a grid of rectangle,
circle and triangle shapes as shown in Figure 11.6. The smndlllarge rectangles have sidelength
0.25 and 0.5 respectively. The small and large circles hadiis 0.5 and 1.0 respectively. Circle and
rectangle shapes are positioned at their center pointanglgs are defined by the position of the three
nodal/corner paints.

Here is the source code:

~

Witten

ShapeGrid.java: Use an array list to store itens in a grid of

spatial ly arranged shapes.

By: Mark Austin

Decenber 2009

I I S I

/

i mport java.
i mport java.
i mport java.

util.ArraylLi st;
util.lterator;
util.List;

public class ShapeGid {
public static void main (String args[]) {

/1 Create and initialize a grid of ten shapes

Li st shapes

Shape
Shape
Shape
Shape
Shape
Shape
Shape
Shape
Shape
Shape

s0
sl
s2
s3
s4
s5
s6
s7
s8
s9

= new ArraylList();

new Rect angl e(
new Rect angl e(
new Rect angl e(
new Circle (
new Circle (
new Triangle (
new Triangle (
new Rect angl e(
new Rect angl e(
new Rect angl e(

/1 Add shapes to the array |ist

ern
coo
NN

Chapter 11 21

shapes. add(sO); shapes.add(s1);
shapes. add(s2); shapes.add(s3);
shapes. add(s4); shapes.add(s5);
shapes. add(s6); shapes.add(s7);
shapes. add(s8); shapes.add(s9);

/1 Print details of individual shapes in the grid

Systemout.printin("Gid of spatially arranged shapes");
Systemout.printIn("-----------cmmmm o ")

for (int ii = 1; ii <= shapes.size(); ii =ii + 1)
Systemout.println (shapes.get(ii-1).toString());

Systemout.printin("--------------------------------- ")
/1 Conpute and print total shape area

doubl e dArea = 0.0;
for (int ii = 1; ii <= shapes.size(); ii =ii + 1) {

Shape s = (Shape) shapes.get(ii-1);
dArea = dArea + s.area();
}
Systemout.printin("");
Systemout.printf("Total Area = 9%40.2f\n", dArea);
Systemout.printin("-----------cmmmmmmi o ")

The abbreviated output is as follows:

pronpt >>
pronpt >> java ShapeGid
Gid of spatially arranged shapes

Rectangle : Sidel = 0.25 Side2 = 0.25
Rectangle : Sidel = 0.25 Side2 = 0.25
Rectangle : Sidel = 0.25 Side2 = 0.25
Circle : Radius = 0.5 [x,y] =[3.0,2.0]
Crcle : Radius = 1.0 [x,y] =1[4.0,3.0]

details of triangle and rectangl e output renmoved

Total Area = 5.86

Key points to note are as follows:

1. We can combine the tasks of shape creation and addition trtaglist into a single statement. For
example,

shapes. add(new Rectangle(0.25, 0.25, 1.0, 2.0));

22 Engineering Software Development in Java

2. The looping construct:

for (int ii 1; ii <= shapes.size(); ii =ii + 1) {
Shape s (Shape) shapes.get(ii-1);
dArea = dArea + s.area();

walks along the array list, retrieves the (ii-1)th item,rtle®mputes the required operation. While
this approach is very straightforward, it is slow primatigcause the operation

shapes. get (ii-1)

has to start at the list and walk to the (ii-1) item.

A faster approach is to use Iterators. The correspondindeimgntation looks like:

Iterator iteratorl = shapes.iterator();

while (iteratorl.hasNext() != false) {
Shape s = (Shape) iteratorl. next();
dArea = dArea + s.area();

Now the iterator simply walks along the list once and comgtite required operation.

11.6 Example 2. Create and Sort an Arraylist Folded Boxes

In the following script of code we create an arraylist of fdidoox objects (see the classes and
objects chapter for details),

Fol ded Box: Nanme Length (in) Wdth (in) Height (in)
Mat ch 2.0 1.0 0.5

Shoe 12.0 8.0 7.0

Packi ng 36.0 36.0 36.0

Gft 12.0 12.0 5.0

Dunpst er 72.0 48.0 48.0

and then use inner classes implemented wittomparator interface to sort and print the collection
ranked according to surface area and volume.

The source code is as follows:

Chapter 11

Fol dedBoxArray.java: Create and sort an arraylist of folded box objects.

Witten By: Mark Austin May 2007

I R I T

/

import java.util.x;

import java.util.Arraylist;
inmport java.util.lterator;
import java.util.List;

public class Fol dedBoxArray {
ArrayLi st boxes = new ArraylList();

/1 Sort boxes by surface area

public void sortBySurfaceArea() {
Col | ections. sort(boxes, new areaConpare());

}

cl ass areaConpare inplenments Conparator {
public int conpare(Ohject ol, Object 02) {
Fol dedBox bl = (Fol dedBox) o1;
Fol dedBox b2 = (Fol dedBox) 02;

if (bl.surfaceArea() == b2.surfaceArea())
return O;

else if (bl.surfaceArea() > b2.surfaceArea())
return 1,

el se
return -1,

}

/1 Sort boxes by volune

public void sortByVol ume() {
Col | ections. sort(boxes, new vol uneConpare());

}

cl ass vol uneConpar e i npl ements Conparator {
public int conpare(Object ol, Object 02) {
Fol dedBox bl = (Fol dedBox) o1;
Fol dedBox b2 = (Fol dedBox) 02;
if (bl.volume() == b2.volune())

return O;

else if (bl.volume() > b2.volune())
return 1;

el se
return -1;

I

24

Engineering Software Development in Java

/1l Create an array list of folded box objects ...

I

public static void main (String args []) {

/1l Create an object of type folded box array

Fol dedBoxArray fba = new Fol dedBoxArray();

/1 Create and initialize fol ded box objects

Fol dedBox
Fol dedBox
Fol dedBox
Fol dedBox
Fol dedBox

/1 Add boxes to the array list

f ba
f ba
f ba
f ba
f ba

. boxes
. boxes
. boxes
. boxes

f bMat ch
f bShoe
f bPacki ng
fbG ft

f bDunpst er

new Fol dedBox (" Match",
= new Fol dedBox (" Shoe",

new Fol dedBox(
new Fol dedBox(
new Fol dedBox(

.add(fbMatch);
.add(fbShoe);
.add(fbPacking);
.add(fbGft);

2.0,
12.0,
" Packi ng",

"Gft",

"Dunpster",

w

S

® oS
[oNeNe)
N N N

. boxes. add(fbDunpster);
/1 wal k along unsorted list and print details ...

Systemout. println("Open fol ded boxes ");
Systemout. println(" "

for (int i =0; i < fba.boxes.size(); i =i + 1) {
Fol dedBox fp = (Fol dedBox) fba. boxes. get(i);
Systemout.println(fp.toString());

}

/] Sort and print list by volune..
f ba. sort ByVol une();

System out . println("Fol ded boxes sorted by volune ");
Systemout. println(" ")

for (int i =0; i < fba.boxes.size(); i =i + 1) {
Fol dedBox fp = (Fol dedBox) fba. boxes. get(i);
Systemout.println(fp.toString());

}

/] Sort and print list by surface area..
fba. sort BySurfaceArea();

System out . println("Fol ded boxes sorted by surface area ");
Systemout. println(" ");

for (int i =0; i < fba.boxes.size(); i =i + 1) {

Chapter 11 25

Fol dedBox fp = (Fol dedBox) fba.boxes.get(i);
Systemout.println(fp.toString());

The abbreviated input and output is as follows:

pronpt >> java Fol dedBoxArray
Open fol ded boxes

Fol dedBox: WMatch
Vol une =1.0
Surface Area = 5.0
out put renoved ...

Fol dedBox: Dunpster
Vol une = 165888.0
Surface Area = 14976.0

Fol ded boxes sorted by vol une

Fol dedBox: Match
Vol une 1.0
Surface Area 5.0

Fol dedBox: Shoe
Vol urme =

= 672.0
Surface Area = 376.0
out put renoved ...

Fol dedBox: Dunpster
Vol une = 165888.0
Surface Area = 14976.0

Fol ded boxes sorted by surface area

Fol dedBox: Match
Vol ume =1.0
Surface Area = 5.0

Qutput is as for sort by surface area ...

pronmpt >>
pronmpt >> exit

Points to note:

1. This program uses the FoldedBox class provided in ChaptaréaCompare and volumeCompare
are inner classes. Hence, the files before and after compilate as follows:

26

Engineering Software Development in Java

Bef ore Conpil ation After Conpilation
Fol dedBox. j ava Fol dedBox. cl ass
Fol dedBoxArray. j ava Fol dedBox. j ava

Fol dedBoxAr r ay$ar eaConpar e. cl ass
Fol dedBoxArray$vol unmeConpar e. cl ass
Fol dedBoxArray. cl ass

Fol dedBoxArray. j ava

2. The first thing that main() does is create an object of typel&aBoxArray.
3. FoldedBoxArray creates objects of type FoldedBox(), theesaode as in Sectigpf?.

4. The methods sortByVolume() and sortBySurfaceArea() take of the arraylist sorting. However,
since an object of type FoldedBoxArray exits, the methotscaded to be:

f ba. sort ByVol une();
fba. sort BySurfaceArea();

ar eaConpar e andvol uneConpar e are inner classses that implement tBenpar at or
interface specification. Each class provides details foethod compare that sysematically com-
pares the surface area and volume properties of two foldedbjects.

5. An example of sorting with Collections can be found on thesheb page, in Family.java, which
creates an arraylist of person objects for the Simpsons.

Chapter 11 27

11.7 Working with Maps
Maps are objects that ...

... map keys onto values.

Keys cannot be duplicated. Maps have three collection vievegt of keys, a collection of values, and
a set of key-value mappings. Some maps have a guaranteadhurdeot all do.

HashMaps. HashMaps provide ...

... a hashtable-backed implementation of the Map interface

Under ideal circumstances (no collisions), HashMap oft(&) performance. Worst case performance
(very unlikely) is O(n) — this occurs when all keys map to taene hash code.

HashMap is part of the JDK Collections API. It differs from stdiable (now deprecated/out-
of-date) in that it accepts the null key and null values, d@mhés not support Enumeration views. Also,
it is not synchronized. If you plan to use it in multiple thdsaconsider using:

Map m = Col | ecti ons. synchroni zedMap(new HashMap(...));

TreeMaps. The treemap algorithms are adopted from Cormen, LeisesuhRivest'd ntroduction to
Algorithmstext [1] and provide:

... a red-black tree implementation of the SortedMap interace.

Elements in the Map will be sorted by either a user-providexin@arator object, or by the natural
ordering of the keys.

A redblack tree is a type of self-balancing (or reasonablgrizged) binary search tree, typically
to implement associative arrays. As illustrated in Figute7]the following requirements apply to
redblack trees:

1. A node is either red or black.

2. The root is black.

3. All leaves are the same color as the root.
4. Both children of every red node are black.

5. Every simple path from a given node to any of its descendaveke contains the same number of
black nodes.

28 Engineering Software Development in Java

Figure 11.7.Schematic for a small red-black tree.

These constraints work together to ensure that the pathtfienoot to the furthest leaf is no more than
twice as long as the path from the root to the nearest leafrd$ét is that the tree is roughly balanced.
Since operations such as inserting, deleting, and findihgesaequire worst-case time proportional to

the height of the tree, this theoretical upper bound on thghhallows redblack trees to be efficient,
even in the worst-case.

Figure 11.8 illustrates the assembly and incremental badgrof a larger red-black tree. The
complexity of implementation is justified by good worst-easnning time for its operations and overall
efficiency in practice. It can search, insert, and deletastéen O(log N) time, where N is the total
number of elements in the tree. It is important to keep in miralvever, that there is a large constant
in front of "log n” (overhead involved in keeping the tree &ated). As a result, TreeMap may not
be the best choice for small collections. If something igady sorted, you may want to just use a
LinkedHashMap to maintain the order while providing O(1¢ess.

TreeMap is a part of the JDK Collections API. Null keys areattd only if a Comparator is
used which can deal with them; natural ordering cannot catrerwll. Null values are always allowed.
Note that the ordering must lwensistent with equals to correctly implement the Map interface. If this
condition is violated, the map is still well-behaved, butiyoay have suprising results when comparing
it to other maps.

And like HashMap, the implementation of TreeMap is not syonfzed. If you need to share
this between multiple threads, do something like:

SortedMap m = Col | ecti ons. synchroni zedSort edMap(new TreeMap(...));
Example 1. Create a Simple HashMap of Strings

In this example we create ...

. a hashmap between the social security number for an empjee, represented in a
string format, and a reference to the employee object.

Chapter 11 29

Insert(2) Insert(1) Insert(4)
@ ﬁ
O @
Insert(5)

(2)
case 3: o o g
tep 2
o 3 (?oetapte) g X

X

Insert(3) Insert(6)
(2) (2) (2)
D (5) @l () (5)9 ® ()
u o o
© Q) ©

Insert(7)

(2) case 2: (2) case 2: case 2:
(1) (5) (féiﬂclm (0 (5 (rotateSt:ztfout p) oeo (rmat:t:zsom 9) oeo
() () g (4) (8)a (4) (2) 9 (4) (1)
® @ OO OJOL ® ® @
of * © p

Figure 11.8. Schematic for assembly and incremental balancing of a lecktree.

30 Engineering Software Development in Java

This program demonstrates most of the useful map operatfdhadding new relationships to the map,
(2) printing the contents of the map, (3) removing an en#yréplacing an entry, (5) finding an entry,
and (6) iterating through all of the entries in the map.

A stripped-down version of the Employees class is as follows

source code

* Enpl oyee.java. A mininalist enployee class for testing purposes.

*/

public class Enpl oyee {
private String nane;
private doubl e sal ary;

public Enployee(String n) {
name n;
sal ary 0;

}

public String toString() {
return "[nane=" + nane + ", salary=" + salary + "]"

}

And the source code for assembling and testing the hashmap is

source code

*

Test HashMap. j ava. This program denonstrates the use of a map with
key type String and val ue type Enpl oyee.

Aut hor: Cay Hor st mann.
Modi fied by: Mark Austin

L I S I I

~

import java.util.x;

public class TestHashMap {
public static void main(String[] args) {

/1 Create and popul ate the hash map
Map<String, Enployee> staff = new HashMap<String, Enployee>();

staff. put("144-25-5464", new Enpl oyee("Any Lee"));
staff. put ("567-24-2546", new Enpl oyee("Harry Hacker"));

Chapter 11

31

staff.put("157-62-7935", new Enpl oyee(" Gary Cooper"));
staff. put("456-62-5527", new Enpl oyee("Francesca Cruz"));

/1 Print all entries

Systemout.printin("Print all entries in the HashMap as a set");
Systemout. println(" ")

Systemout.println(staff);
/'l Renpbve an entry

Systemout. println("Renmove entry with id = 567-24-2546");
staff.renove("567-24-2546");

/'l Replace an entry

Systemout.printin("Replace entry with id = 456-62-5527");
staff. put("456-62-5527", new Enpl oyee("Francesca Mller"));

/1 Look up a val ue

Systemout.printIn("Find enployee with id 157-62-7935");
Systemout. println(" ")

Systemout.println(staff.get("157-62-7935"));
/1 lterate through all entries

Systemout.printin("lterate over the Hashnap Entries ");
Systemout. println(" ")

for (Map. Entry<String, Enployee> entry : staff.entrySet()) {

String key = entry. getKey();

Enpl oyee val ue = entry. getVal ue();

Systemout.printin("key =" + key + ", value =" + val ue);
}
Systemout. println(" ");

And here is the program output (slightly reformatted):

Print all entries in the HashMap as a set

{

157-62-7935=[name=Gary Cooper, sal ary=0.0],
567- 24- 2546=[nanme=Harry Hacker, sal ary=0.0],
144- 25- 5464=[nane=Any Lee, sal ary=0.0],

456- 62- 5527=[name=Fr ancesca Cruz, salary=0.0] }

Rermove entry with id = 567-24-2546
Repl ace entry with id = 456-62-5527

32 Engineering Software Development in Java

Fi nd enpl oyee with id 157-62- 7935

[nane=Gary Cooper, sal ary=0.0]

Iterate over the Hashmap Entries

key = 157-62-7935, value = [nane=Gary Cooper, sal ary=0.0]
key = 144-25-5464, value = [nane=Any Lee, sal ary=0. 0]
key = 456-62-5527, value = [nane=Francesca M Il er, sal ary=0. 0]

Points to note are as follows:

1. The statement:

Map<String, Enployee> staff = new HashMap<String, Enployee>();

creates an empty hashmap. The use of Java Generics presfatitsnships from being added to
the map that are not a String, Employee pair.

2. Hashmaps have their own toString() method. Hence, thenstate

Systemout. println(staff);

creates and prints a string representation of the entriggihashmap.
Example 2. Use HashMap and TreeMap to Count Frequency of Words in Document

The following program reads a stream of words from the kegthod/e use a hashmap to store
words and their frequency of usage. Then, we use a treemapdo the mapping.

The source code is follows:

source code

Count Wr dFr equency: Count frequency of words in text read from keyboard.

* O F X X *

/

import java.util.x;

public class Count WrdFrequency {

public static void main(String args[]) {
Map map = new HashMap();
I nteger ONE = new I nteger(1);

/] Read stream of input from keyboard ..

Chapter 11 33

for (int i=0, n=args.length; i<n; i++) {
String key = args[i];
I nteger frequency = (Integer)map. get (key);
if (frequency == null) {
frequency = ONE;
} else {
int value = frequency.intVal ue();
frequency = new I nteger(value + 1);
}
map. put (key, frequency);
}

/1 Print (unordered) contents of map ..

Systemout. println("HashMap of [word, frequency] usage");
Systemout. println(" ")

System out . println(nmap);
/] Create and print an ordered treenap...

Systemout.println("TreeMap of [word, frequency] usage");

Systemout. println(");
Map sortedMap = new TreeMap(nmap);

System out . println(sortedMap);

Systemout. println(" ");

For the stream of text:

This is the test file. Here is a short sentence in the English

| anguage that contains all twenty six letters. The quick brown fox
jumps over the |azy dog.

the (edited) program output is as follows:

pronpt >>
pronpt >> java Count WordFrequency This is the test file. Here is the ... etc.

HashMap of [word, frequency] usage

{ short=1, fox=1, test=1, letters.=1, quick=1l, sentence=1l, contains=1, a=1,
dog. =1, This=1, six=1, The=1, over=1, Here=1, all=1, file.=1, is=2, junps=1,
the=3, in=1, English=1, that=1, twenty=1, brown=1, |anguage=1, |azy=1}

TreeMap of [word, frequency] usage

{ English=1, Here=1, The=1, This=1, a=1, all=1, brown=1, contains=1, dog.=1, file.=1,

34 Engineering Software Development in Java

Map: key, value pairs Integer object
dog ® —» 1
jumpS ._/

IS @ e 2
the @ = 4

Figure 11.9. Schematic of key,value pairs and connection to word frequemodeled as references to
integer objects.

fox=1, in=1, is=2, junps=1, |anguage=1, |azy=1, letters.=1, over=1,
qui ck=1, sentence=1, shortest=1, six=1, test=1, that=1, the=4, twenty=1}

Notice that the hashmap contents are printed accordingetfkéy, value] pairs, where key is the word
being stored and value is a reference to an object of typgeéntstoring the word frequency. Figure
11.9is a partially complete schematic for the map contédenerally speaking, a user will not need to
know these details.

The treemap constructor takes the hashmap as an argumestis-dh example of a treemap
being created from another collection — and creates andemtdeapping. A more sophisticated imple-
mentation would remove the punctuation symbols (e.g.,)dogm the words.

Example 3. Use a Comparator to Order a TreeMap of Employees

In this example we use customized comparators to affectriferiog of items in a treemap of
university employees. The source code is divided into tfiles

1. Employees.java — a simple definition for an employee,
2. EmployeeCoparator.java — an implementation of the Conmgiairsterface to order employees, and

3. TestUniversity.java — source code to assemble the em@ogee systematically build the treeset
according to three strategies.

Employee.java. The details of Employee.java are as follows:

Chapter 11 35

* 0% X X *

source code

Enpl oyee.java: Create objects for conpany enpl oyees. ..

/

i mport java.util.Conparator;

public class Enpl oyee i npl enents Conparabl e {

}

String departnent, nane;

public Enpl oyee(String departnent, String nane) {
this.departnent = departnent;
t hi s. nane = nane;

}

public String getDepartment () {
return departnent;

}

public String getNane() {
return nane;

}

public String toString() {
return "\'n [dept =" + departnent + ", nane =" + nane + "]";

}

public int conpareTo(Object obj) {

Enpl oyee enp = (Enpl oyee) obj;
int dept Conp = departnent.conpareTo(enp.getDepartment());

return ((deptConp == 0) ? nane.conpareTo(enp.getNane()) : dept Conp);
}

publ i c bool ean equal s(Obj ect obj) {
if (!(obj instanceof Enployee)) {
return fal se;
}
Enpl oyee enp = (Enpl oyee) obj;
return departnment. equal s(enp. get Departnent ())
&& nane. equal s(enp. get Nane());
}

public int hashCode() {
return 31 = departmnent. hashCode() + nane. hashCode();

}

The statement:

int dept Conp = departnent.conpareTo(enp.getDepartnent());

36 Engineering Software Development in Java

evaluates to zero when both employees belong to the samemep& Then, the syntax:

((dept Conmp == 0) ? nane. conpareTo(enp. get Nane()) : dept Conp);

is equivalent to:

if (deeptConmp == 0)

return nane. conpareTo(enp. get Nanme() ;
el se

return dept Conp;

A summary of the strategy is as follows: first, the compargToé¢thod compares employees based
on the department to which they belong. For those cases vilweremployees belong to the same
department, employees are ordered alphabetically by name.

EmployeeComparator.java The following class compares the names of company empdoyéénen
two employees have the same name, then they are ranked iagctordepartment.

source code

Enpl oyeeConpar ator. java: C ass for conparing the nanes of conpany
enpl oyees. |If two enpl oyees have the sane nane, then they are
ranked according to departnent.

L N A

/
i mport java.util.Conparator;
public class Enpl oyeeConpar ator inplenents Conparator {
public int conpare(Qbject objl, Cbject obj2) {
Enpl oyee enpl = (Enpl oyee) obj1;
Enpl oyee enp2 = (Enpl oyee) obj 2;
i nt nameConp = enpl. get Nane().conpareTo(enp2.getName());

return ((nameConp == 0) ? enpl.getDepartnent (). conpareTo(
enp2. get Departnment ()) : naneConp);

TestUniversity.java. And finally, the details of TestUniversity.java are asdalk:

source code

| *

*

* TestUniversity.java: Assenble university enployees into a variety of

Chapter 11 37

* treeset organi zations.
*
*/
import java.util.Arrays;
import java.util.Collections;
i mport java.util.Conparator;
import java.util.Set;

import java.util.TreeSet;

public class TestUniversity {
public static void main(String args[]) {

/1 Define enployees at the University of Maryland ...

Enpl oyee e01 = new Enpl oyee("I SR/ Fi nance", "Strahan, Jason");

Enpl oyee e02 = new Enpl oyee("ISR', "Sutton, Steve");
Enpl oyee e03 = new Enpl oyee("ISR', "Coriale, Jeff");
Enpl oyee e04 = new Enpl oyee("ISR', "Austin, Mark");

Enpl oyee e05 = new Enpl oyee("CEE", "Austin, Mark");

Enpl oyee e06 = new Enpl oyee("ISR', "Lovell, David");
Enpl oyee e07 = new Enpl oyee("CEE", "Lovell, David");
Enpl oyee e08 = new Enpl oyee("I SR', "Ghodssi, Reza");
Enpl oyee e09 = new Enpl oyee("ECE", "Ghodssi, Reza");
Enpl oyee €10 = new Enpl oyee("CEE", "Baecher, Geg");
Enpl oyee ell new Enpl oyee("CEE", "Haghani, Ai");

Enpl oyee el2 new Enpl oyee("CEE"', "Gabriel, Steve");
/1 Define arry of reference to enpl oyees

Enpl oyee enps[] = { e01, e02, e03, e04, e05, €06,
e07, e08, e09, el0, ell, el2 };

/] Part 1. Assenble treeset fromarray of objects.

Systemout.printin("Part 0l: Create Treeset based on array of enployees");
Systemout. println(" ");

Set set01 = new TreeSet(Arrays. asList(enps));
Systemout.println(set0l);

/1 Part 2. Now use Collection.reverseOrder() nethod to reverse treeset
I assenbl y.

Systemout.println("\nPart 02: Reverse order assenbly of itens in TreeSet ");
Systemout. println(" ");

Set set02 = new TreeSet(Collections.reverseOrder());
set 02. addAl | (Arrays. asLi st(enps));
Systemout.println(set02);

/1 Part 3. Use Enpl oyeeConparator to order itens in Treeset.

Systemout.printin("\nPart 03: Use Enpl oyeeConparator to Order TreeSet itens");
Systemout. println(" ");

38

Engineering Software Development in Java

Set set03 =
for (int i

}

new TreeSet (new Enpl oyeeConparator());
=0, n=-enps.length; i <n; i++) {
set 03. add(enps[i]);

Systemout.println(set03);

Systemout. println("

}
}

The program output is as follows:

Part 01: Create Treeset based on array of enpl oyees
[

[dept = CEE, nane = Austin, Mark],

[dept = CEE, nane = Baecher, Gegq],

[dept = CEE, nane = Gabriel, Steve],

[dept = CEE, nane = Haghani, Ali],

[dept = CEE, nane = Lovell, David],

[dept = ECE, nane = Ghodssi, Rezal,

[dept = ISR, nane = Austin, Mark],

[dept = ISR, nane = Coriale, Jeff],

[dept = ISR, nane = Ghodssi, Reza],

[dept = ISR, nane = Lovell, David],

[dept = ISR nane = Sutton, Steve],

[dept = I SR/ Finance, nane = Strahan, Jason]]
Part 02: Reverse order assenbly of itens in TreeSet
[

[dept = I SR/ Finance, nane = Strahan, Jason],
[dept = ISR nane = Sutton, Steve],

[dept = ISR, nane = Lovell, David],

[dept = ISR, nane = Ghodssi, Reza],

[dept = ISR, nane = Coriale, Jeff],

[dept = ISR, nane = Austin, Mark],

[dept = ECE, nane = Ghodssi, Reza],

[dept = CEE, nane = Lovell, David],

[dept = CEE, nane = Haghani, Ali],

[dept = CEE, nane = Gabriel, Steve],

[dept = CEE, nane = Baecher, Gegq],

[dept = CEE, nane = Austin, Mark]]

Part 03: Use Enpl oyeeConparator to Order TreeSet itens
[

[dept = CEE, nane = Austin, Mark],

[dept = ISR, nane = Austin, Mark],

[dept = CEE, nane = Baecher, Gegq],

[dept = ISR, nane = Coriale, Jeff],

[dept = CEE, nane = Gabriel, Steve],

[dept = ECE, nane = Ghodssi, Rezal,

Chapter 11 39

[dept = ISR, nane = Ghodssi, Reza],

[dept = CEE, nane = Haghani, Ali],

[dept = CEE, nane = Lovell, David],

[dept = ISR, nane = Lovell, David],

[dept = | SR/ Fi nance, nane = Strahan, Jason],
[dept = ISR, nane = Sutton, Steve]]

Key points to note:

1. The pair of statements:

Set set01 = new TreeSet(Arrays. asList(enps));
Systemout.println(setOl1);

in Part 1 employ the comparable interface, i.e.,

public interface Conparable {
public int conpareTo(Obhject o)
}

and the methodonpar eTo() to impose a total ordering of Employee objects. This ordgisn
referred to as the class’s natural ordering, and the class'gareTo method is referred to as its
natural comparison method. As previously explained, eygae are first ordered by name of the
department to which they belong (e.g., CEE, ISR, ECE) andl ltlyetheir name. The statement

Systemout.println(setOl1);

is equivalent to:

Systemout.println(set0l1.toString());

2. Part 2 uses the Collection.reverseOrder() method to rewéefault ordering in the treeset. The
TreeSet class has access to Collections methods becamgéditrients the Set interface, which in
turn, subclasses the Collections interface.

3. Part 3 uses the custom EmployeeComparator() to order itertreéset. In contrast to Part 1,
employees are first ordered by name, then by the departntewtsich they belong.

40

Engineering Software Development in Java

Example 4: Create HashMap for Point(x,y)-Value Pairs

This section demonstrates how hashmaps can store mapping$x,y) coordinates to values.

In a sparse matrix or spreadsheet application, the valued y@aould correspond to the row and column
numbers. In a geography application, (x,y) values mightesgpond to latitude and longitude and the
value might represent a physical quantity associated \Weh [bcation — elevation, measured rainfall,

and so forth.

Figure 11.10 shows the mapping of four coordinate pairsuo values.

Y
3+ 2.0
51 3.0
1+ 1.0 4.0

0 : : : :

1 2 3 4 X

Figure 11.10.Hashmap for storing point(x,y) - double value pairs.

The source code to setup and print the mapping relationskp follows:

source code

| *
*
* Test HashMapPoi nt.java: Create and print (x,y) coordinate point to double
* val ue nap.
*
* Witten By: Mark Austin March, 2013
*
*/
i mport java.awt . Point;
i mport java.util.HashMap;
inmport java.util.lterator;
i mport java.util.Mp;

public class TestHashMapPoi nt {

/1 Print details of (x,y) coordinate point-to-double mapping ...

private static void printHashMap(Map<Poi nt, Doubl e> map, final String nessage) {

Chapter 11

41

}

Systemout.println("Begin: " + nessage);
Systemout.printin("-------omm "

final lterator iterator = map. keySet().iterator();
while (iterator.hasNext()) {
final Point key = (Point) iterator.next();
final Double value = map.get(key);

Systemout.printin(key + " " + value.toString());

}

Systemout.printin("---------------"-"“"-"-"-"-----““"-“-“““““-““-“-------- - "
Systemout.println("End: " + nessage);

/1 Exercise nethods in (x,y) coordinate point-to-double mapping ...

public static void main(String[] args) {

/] Part 01: Create point-to-double hashmap ...

Systemout.println("Part 01l: Build sinple hashmap<Poi nt, Doubl e>");
Map<Poi nt, Doubl e> map = new HashMap<Poi nt, Doubl e>();

/1 Add data to the hashmap

Poi nt keyOl
Doubl e val 01
Poi nt key02
Doubl e val 02
Poi nt key03
Doubl e val 03
Poi nt key04
Doubl e val 04

new Point(1, 1);
new Double(1.0);
new Point(1, 3);
new Double(2.0);
new Point (4, 2);
new Double(3.0);
new Point (3, 1);
new Doubl e(4.0);

map. put (key01, val 01);

map. put (key02, val 02);

map. put (key03, val 03);

map. put (key04, val 04);

/] Print details of hashmap ...

pri nt HashMap(map, "Map (x,y) coordinate --> double value");
/] Part 02: Create point-to-double hashmap ...

Systemout.printin("");

Systemout.printin("Part 02: Denonstrate that points nust be unique ..

/1 Modify mappings for (1,1) and (1,3)

map. put (new Point(1, 1), new Double(5.0));
map. put (new Point(1, 3), new Double(6.0));

/1 Print details of hashmap ...

42 Engineering Software Development in Java

print HashMap(map, "Map (x,y) coordinate --> double value");

The program output is as follows:

pronmpt >>
Part 01: Build sinple hashmap<Poi nt, Doubl e>
Begi n: Map (Xx,y) coordinate --> doubl e val ue

java. awt . Poi nt [x=4,y=2] 3
java.awt . Poi nt[x=1,y=1] 1
java. awt . Poi nt [x=1, y=3] 2.
java. awt . Poi nt [x=3,y=1] 4

End: Map (x,y) coordinate --> doubl e val ue

Part 02: Denonstrate that points nmust be unique ..
Begin: Map (Xx,y) coordinate --> double val ue

java. awt . Poi nt[x=4,y=2] 3.0
java. awt . Poi nt [x=1,y=1] 5.0
java. awt . Poi nt [x=1,y=3] 6.0
java. awt . Poi nt [x=3,y=1] 4.0

End: Map (X,y) coordinate --> double val ue
pronmpt >>

Key points to note:
1. The statement:

Map<Poi nt, Doubl e> map = new HashMap<Poi nt, Doubl e>();

creates a hashmap that will map keys of tymeva. awt . Poi nt to values of typeDoubl e.
The use of ava. awt . Poi nt is simply a convenience — you could just as well define a class
Coordinate of the type:

public class Coordinate {
doubl e dX, dY;

etc

and use

Chapter 11 43

Map<Coor di nat e, Doubl e> map = new HashMap<Coor di nate, Doubl e>();

instead.

2. Within the methodpr i nt HashMap(. . .) the line:

Systemout.printin(key + " " + value.toString());

systematically assembles a character string to be asseémblben the method argument is tra-
versed from left to right, the argument key (of type java.&eint) is automatically converted to
an entity of type String (i.e., key.toString()) and then catenated to the second argument. The
elementval ue. t oSt ri ng() explicitly defines that a string will be generated for theueal

3. HashMap key-value relationships need to be unique. Theipeh purpose of Part 2 is to test
that this requirement is maintained. We systematicallgnait to give the keyoi nt (1, 1)
the value 5.0 while maintaining the original value, 1.0. sTfails. A similar story applies to the
statement:

map. put (new Point(1, 3), new Double(6.0));

Example 5: Demonstrate DeepCopy for a HashMap

This example demonstrates the difference between shadiodideep- copies of a java collec-
tion. As previously noted:

1. A shallow copyduplicates the structure of the original collection, butthe elements contained in
the collection. In other words, a shallow copy replicatesgtructure and referenes to objects.

As such, in a shallow copy, both the original collection ateddopy will share access to the
original elements.

2. In adeep copy both the elements and the element structure will be replica

Creating a deep copy of a java collection is often a lot easi@f than done, since this requires a copy
of the basic organizing mechanism (e.g., a map structure arraylist structure) plus copies of all of
the items that are referenced from the collection.

The following program illustrates the basic differencenmn a shallow copy and a deep copy,
and the consequences of these mechanims when items aréradu®atd from a collection.

source code

DeepCopyTest.java: Illustrate the difference between shall ow copy
and a deep copy of a HashMap.

* X X X *

Engineering Software Development in Java

* Witten by: Mark Austin March, 2013

*

*/

import java.util.HashMap;
inmport java.util.lterator;

public class DeepCopyTest ({
public static void main(final String[] args) {

}

t est Ref erence();
t est DeepCopy() ;

/| Deep Copy Test

private static void testDeepCopy() {

}

Systemout.printin("");
Systemout.printin("Deep Copy Test");
Systemout.printin(" ")

HashMap<I nt eger, String> datal = new HashMap<Integer, String>();
datal. put(new Integer("1"), "thing one");

datal. put(new Integer("2"), "thing two");

datal. put(new Integer("3"), "thing three");

HashMap<| nteger, String> data2 = new HashMap<lnteger, String>(datal);

pri nt HashMap(datal, "datal");
pri nt HashMap(data2, "data2");

Systemout.println("Renove data in data2");

dat al.renove(new Integer(2));
datal. put(new Integer("2"), "thing two (version2)");

print HashMap(datal, "datal");
pri nt HashMap(data2, "data2");

Systemout.printin(" ")

/1 A HashMap is referenced by two variables, datal and data2....

pr

vate static void testReference() {

Systemout.printin("");
Systemout.printin("Sinple Copy Test");
Systemout.printin(" ")

HashMap<I nteger, String> datal = new HashMap<Integer, String>();
datal. put(new Integer("1"), "one");
datal. put(new Integer("2"), "two");

HashMap<I nteger, String> data2 = datal,

Chapter 11 45

print HashMap(datal, "datal");
pri nt HashMap(dat a2, "data2");

Systemout.println("Renove data in data2");

datal.renove(new Integer(2));

print HashMap(datal, "datal");

pri nt HashMap(data2, "data2");
Systemout.printin(" ")

}

private static void printHashMap(HashMap<l nteger, String> map, String nessage) {
Systemout.println("---- " + nmessage + " Begin ----");

final lterator iterator = map. keySet().iterator();
while (iterator.hasNext()) {
final Integer key = (Integer)iterator.next();
final String value = map.get(key);

Systemout.printin(key + " " + value);

}

Systemout.printin("---- " + nessage + " End ----");

The program output is as follows:

Si npl e Copy Test

---- datal Begin ----

---- datal End ----
---- data2 Begin ----
1 one

2 two

---- data2 End ----
Renove data in data2
---- datal Begin ----
1 one

---- datal End ----
---- data2 Begin ----
1 one

---- data2 End ----

Deep Copy Test

---- datal Begin ----
1 thing one
2 thing two

46 Engineering Software Development in Java

3 thing three

---- datal End ----
---- data2 Begin ----
1 thing one

2 thing two

3 thing three

---- data2 End ----
Renove data in data2
---- datal Begin ----
1 thing one

2 thing two (version2)
3 thing three

---- datal End ----
---- data2 Begin ----
1 thing one

2 thing two

3 thing three

---- data2 End ----

Key points to note:

1. Figure 11.11 shows the layout of memory for the shallow copyhe hashmap referenced by

dat al.
Shallow Copy
datal
= |
]
"1 "one" "2" "two"
data2

Figure 11.11.Shallow copy of a hashmap and its contents.

In a shallow copy, a copy of the reference structure is madenat the(key, val ue) items
themselves, i.e.,

HashMap<l nteger, String> data2 = datal;

Chapter 11 47

Deep Copy
datal
ol | l | l | | l | l | | l | l |
"1 "thing one" 2" "thing two" "3" "thing three"
data2
ol | | l | | l | l | | l | l |
"1 "thing one" "2 "thing two" "3" "thing three"

Figure 11.12.Deep copy of a hashmap and its contents.

Hence, in the methotest Ref er ence() , when the reference to2" and"t wo" is removed
from one structure, the items are also removed from the skecon

2. Figure 11.12 shows the layout of memory for the deep copyehtshmap referenced bt al.
The statement:

HashMap<l nteger, String> data2 = new HashMap<l nteger, String>(datal);

will make a deep copy offashMap dat al if and only if all of the elements imlat al have
clone methods. Objects of type Integer and String both coiitie @lone methods. This tiny
observation is the key to cloning more complicated datecgiras such as composite hierarchy
design patterns.

48 Engineering Software Development in Java

11.8 Working with Sets

Sets provide ...

... a collection of things containing no duplicates.

The Set interface provides methods for adding individwahi to a set (i.e., with the method add (Object
0)), a complete collection to a set (i.e., with the methoddi§Gollection c)), removing an object from
the set (i.e., with remove (Object 0)), and tests to see if em#ains a specific object (i.e., with contains
(Object 0)). The method toArray() converts the contents sétanto an array format.

HashSets.HashSets provide ...

...a hashmap-backed implementation of the Set interface.

Most operations are O(1), assuming no hash collisions. dénatbrst case (where all hashes collide),
operations are O(n). Setting the initial capacity too lol ferce many resizing operations, but setting
the initial capacity too high (or loadfactor too low) leadstasted memory and slower iteration.

HashSet accepts the null key and null values. It is not symibed, so if you need multi-
threaded access, consider using:

Set s = Collections.synchronizedSet(new HashSet(...));

TreeSets.TreeSets provide ...

... a TreeMap-backed implementation of the SortedSet intdace.

The elements will be sorted according to thatural order, or according to the provided Comparator.

Most operations are O(log n), but there is so much overheastdhiis makes small sets expen-
sive. Note that the ordering must bensistent with equals to correctly implement the Set interface. If
this condition is violated, the set is still well-behavedt fpou may have suprising results when compar-
ing it to other sets.

TreeMap implementations are not synchronized. If you neeshare this between multiple
threads, do something like:

SortedSet s = Coll ections.synchroni zedSortedSet(new TreeSet(...));
Example 1. Create a HashSet of Strings

In this example we use a hashset to store unique words in anstoé text read from the
keyboard (or standard input). The program then prints uggb2D distinct words.

The source code is as follows:

source code

Chapter 11

49

| * %
*
*
*
*

*

*/

Test HashSet . javat: Use a HashSet to print all unique words in Systemin.

Aut hor: Cay Hor st mann

import java.util.x;

public class TestHashSet {

public static void main(String[] args) {

Set<String> words = new HashSet<String>(); // HashSet

long total Time = 0;

/1 Use a Scanner to read words from standard input.
/'l Keep track of the time, nmeasured in milliseconds.

Scanner in = new Scanner(Systemin);

while (in.hasNext()) {
String word = in.next();
long call Time = SystemcurrentTineM | 1is();
wor ds. add(wor d) ;

cal I Time = SystemcurrentTineM I lis() - callTineg;

total Tine += cal |l Ti ne;

}

/1 Print up to the first 20 words

Systemout.printin("Print up to the first 20 distinct

i mpl enents Set

Systemout. println("

Iterator<String> iter = words.iterator();

for (int i =1; i <= 20 & iter.hasNext(); i++)

Systemout.printin(iter.next());

/1 Print nunber of distinct words ...

Systemout. println("
System out. println(words. size() +

di stinct words.

words ");
")
")

+ total Tine + " nmilliseconds.");
")

Systemout. println("

For the input stream (for convenience we put the text in a &lied input),

Here is the shortest sentence in the english | anguage

that contains all twenty six letters.
The qui ck brown fox junps over the |azy dog.

And now for a few nore words just to increase the
nunber of distinct words. dog. dog.

dog. dog. dog.

50 Engineering Software Development in Java

the program input and output is as follows:

pronpt >>
pronpt >> java TestHashSet < input
Print up to the first 20 distinct words

to

short est
f ox

for
letters.
qui ck
sent ence
wor ds.
cont ai ns
dog.

di stinct
Si x

of

The

over
nor e

wor ds
Her e

al

j ust

36 distinct words. O m|liseconds.

pronpt >>

Points to note are as follows:

1. Let us assume that the script of text is stored in a file calipdtitxt. A simple way of executing the
program from a command prompt in the terminal window is:

pronpt >> java Test HashSet < input.txt

Here, the unix redirection symbok] tells the scanner to read input from input.txt instead ef th
console.

2. The command:

Set <String> words = new HashSet <String>();

creates a hashset object to store the words that appeanintidpNotice, that we simply record
the word and not the number of times it appears in the tezt file.

Chapter 11 51

Example 2. Create Sets of Enumerated Data Types

An enumerated data type is a type whose fields consist of a $igedf constants. Common
examples include compass directions (e.g., North, Soudht, and West), days of the week, months
of the year, sexes of organisms, letter grades in a courgsesaifiorth. A key benefit in the use of
enumerated data type include enhanced readability of cogecal uses include assignment statements,
comparison expressions, iteration, selection with swstetements, and in java collections such as maps
and sets.

In this example we create sets of enumerated data typesespirey various days of the week.
The source code for days of the week is as follows:

source code

Day.java: Enunerated data type for days of the week.

* 0 F F X *

/

public enum Day {
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday;
}

Now we can sets of enumerated data types for “days | go inté&'waord “days | don’t go into work,”
i.e.,

source code

Test DaysSet.java: Create sets for days of the week.

* 0 F F X *

/

import java.util.Enuntet;
inmport java.util.lterator;

public class TestDaysSet {
public static void main(String[] args) {
EnuntSet weekDays = EnunSet . of (Day. Monday, Day. Tuesday, Day.Wdnesday,
Day. Thur sday, Day. Friday);
EnuntSet weekEnd = EnunSet.of (Day. Saturday, Day.Sunday);

Systemout.printin("l go into work during the week!");
Systemout. println(" ")

for(Iterator it = weekDays.iterator(); it.hasNext();) {
Day day = (Day) it.next();
System out . printl n(day);

52 Engineering Software Development in Java

Systemout.println("");
Systemout. println("And stay home on the weekend!");
Systemout. println(" ")

for(Iterator it = weekEnd.iterator(); it.hasNext();) {
Day day = (Day) it.next();
System out . printl n(day);

}

System out. println(" ")

The program output is as follows:

pronpt >> java Test DaysSet
I go into work during the week!

Monday
Tuesday
Wednesday
Thur sday
Fri day

And stay hone on the weekend!

Sunday
Sat ur day

pronpt >>
pronpt >>

Points to note:

1. An EnumSet is a specialized Set implementation for use withretypes. All of the elements in an
enum set must come from a single enum type that is specifigd Qay), explicitly or implicitly,
when the set is created. An iterator traverses the set eterimetheir natural order.

2. Enum sets are represented internally as bit vectors. Thigsentation is extremely compact and
efficient. The space and time performance of this class dimigood enough to allow its use as
a high-quality, typesafe alternative to traditional isked "bit flags.” Even bulk operations (such
as containsAll and retainAll) should run very quickly if tepecified collection is also an enum
set.

Chapter 11 53

11.9 Modeling Association Relationships

When we model a system, certain concepts will be related écaoiother, and these relationships need
to be modeled. An association represents the ...

... static relationship shared among the objects of two clags.

Binary associations (with two ends) are normally represgbrats a line. An association defines the
multiplicity between two objects, e.g., one-to-one, oogrtany, many-to-one, and many-to-many. As-
sociations can be named, and the ends of an association cafobeed with role names, ownership
indicators, multiplicity, visibility, and other propees.

Uni-Directional Association

Definition. In a uni-directional association, two classes are reldtatipnly one class knows that the
relationship exists.

Example. In this example, we model the uni-directional associatietwieen a customer and a book.
The customer owns a book, but the book is not aware of the masta.e.,

owns

Customer Book

Figure 11.13.Uni-directional relationship between a customer and book.

Here we say that the customer owns a book, but do not say tlwtkaid owned by a customer. Hence,
only the owning side of the relationship (i.e., the custondetermines the updates between a customer
and book.

The details of Book.java and Customer.java are as follows:

source code

Book. java: A sinple book object ...

* % X X *

/

public class Book {
/1 Data attributes

private String nane;
private String author;

/'l Constructor

public Book () {}

54 Engineering Software Development in Java

/1 String representations

public String toString() {
String s = "Book name: " + getNane() + "\n" +
" author: " + getAuthor() + "\n";

return s;

}

/1 Set and access attributes

public String getNanme() {
return nane;

}

public void setName(String nane) {
thi s. name = nane;

}

public String getAuthor() {
return author;

}

public void setAuthor(String author) {
thi s. aut hor = aut hor;

}
}
and
source code

| *

*

* Custoner.java: A custonmer object has an association with a book.
*

*/

public class Custoner {
/] Data attributes

private String nane;
/1 String representations
public String toString() {

String s = "Custoner: " + getNanme() + "\n";
return s;

}

/1 Association attributes

publi ¢ Book book;

Chapter 11 55

/1l Attribute accessors

public String getName() {
return nang;

}

public void setName(String nane) {
thi s. nanme = nane;

}

/1 Associ ation accessors

publ i ¢ Book getBook() {
return book;

}

public void set Book(Book book) {
t hi s. book = book;

}

The file TestRelationship.java assembles Customer and Blojekts and assembles the uni-directional
association relationship, i.e.,

source code

| *

*

* TestRel ationship: Create a undirectional relationship between a custoner
* and a book object.

*

* Witten by: Mark Austin Decenber 2009
*

*/

public class TestRel ati onship {
public static void main (String args []) {

/1 Create book and custoner objects.
Book book = new Book();

book. set Nane("The Cat in the Hat");
book. set Aut hor (" Dr Seuss");

Cust oner custoner = new Custoner();
cust oner. set Name(" Angel a Austin");

/1 Create unidirectional custoner-book relationship.
cust oner. set Book(book);

/1 Retrieve and print customner-book relationship.

56 Engineering Software Development in Java

Systemout.printin (customer.toString());
Systemout.println (custoner.getBook().toString());

The test program input/output is as follows:

pronpt >> java TestRel ati onship
Cust oner: Angel a Austin

Book nanme: The Cat in the Hat
aut hor: Dr Seuss

pronpt >>
The important point with this model is that ...

... the customer refers to a book, but a book does refer to a ctmmer.

Bi-Directional Association
Definition. By default, associations are assumed to be bi-directidrtas means that ...

... both classes are aware of each other and their relationgh

Example. Let’s recode the customer-book association so that themgstowns a book and the book
is owned by a customer, i.e.,

owns

Customer Book

owned by

Figure 11.14.Bi-directional relationship between a customer and book.

The modified details of Book.java and Customer.java are lasifs:

source code

Book.java: Create a book object with an association to a custoner

E I T T

/

public class Book {
/1 Data attributes

Chapter 11

private String nane;
private String author;

/1 Set relationship
private Custoner owner;
/1 Constructor

public Book () {
this.ower = null;

}

/1 String representations

public String toString() {

String s = "Book name: " + get Name() + "\n" +
" author: " + getAuthor() + "\n";
if (this.owner !'=null)
s +=" owned by: " + owner.getNane() + "\n";
return s;

}

/] Set and access attributes

public String getName() {
return nane;

}

public void setNanme(String nane) {
thi s. namre = nane;

}

public String getAuthor() {
return author;

}

public void setAuthor(String author) {
this.author = author;

}

/| Associ ation accessor nethods ...

publ i c Customer getCustoner() {
return owner;

}

public void setCustoner(Custoner owner) {
if (owner !'= null)
t hi s. owner = owner;

58 Engineering Software Development in Java

and

source code

Custoner.java: Create a Custoner object with an association to a book.

b I I

/

public class Custoner {

private String nane; /] Data attributes

publ i ¢ Book book; /'l Association attributes

/1l Constructors

public Custoner () {
t his. book = null;

}

/1 String representation ...

public String toString() {

String s = ""
if (this.book !'= null)
s += "Custoner: " + getNane() + " owns " + book.getName() + "\n";
° Ses += "Custoner: " + getNane() + " doesn’t own a book \n";
return s;

}

/1l Attribute accessors

public String getName() {
return nane;

}

public void setName(String nane) {
t hi s. name = nane;

}

/] Associ ation accessors

publ i ¢ Book get Book() {
return book;

}

public void setBook(Book book) {
if (book !'= null)
t hi s. book = book;

Chapter 11 59

The file TestRelationship.java assembles Customer and Bbjekts and assembles the bi-directional
association relationship. Details of the associationtisiahip are then printed from the customer and
book perspectives.

source code

Test Rel ati onship: Create a bi-directional relationship between a custoner
and a book object.

Witten by: Mark Austin Decenber 2011

L T S I

~

public class TestRel ati onship {
public static void main (String args []) {

/1 Create book and custoner objects.
Book book = new Book();

book. set Nane("The Cat in the Hat");
book. set Aut hor (" Dr Seuss");

Cust oner owner = new Customer();
owner . set Nanme(" Angel a Austin");

/1 Create a bidirectional custoner-book association.

owner . set Book(book);
book. set Cust oner (owner);

/] Retrieve and print owner-book relationship.

Systemout.println ("Retrieve and print owner-book rel ationship");

Systemout.printin (")

Systemout.println (owner.toString());
/'l Retrieve and print book-owner relationship.

Systemout.printin ("Retrieve and print book-owner relationship");
Systemout.printin (" ")

Systemout.println (book.toString());

60 Engineering Software Development in Java

The test program input/output is as follows:

pronpt >> java TestRel ati onship
Retrieve and print owner-book relationship

Custoner: Angela Austin owns The Cat in the Hat

Retrieve and print book-owner relationship

Book nane: The Cat in the Hat
aut hor: Dr Seuss
owned by: Angel a Austin

pronpt >>

One-to-Many Associations

Definition. In a one-to-many relationship, ...
... a single object can be related to many relating objects.
In a one-to-many relationship between classes A and B, dgjelotmf type A is linked to 0, 1 or many

instances of object B. For example, if A and B represent compad employees, generally speaking,
a specific company will have many employees.

Example. In this example we assemble a one-to-many associationomsaip between an academic
department (CEE) and five students enrolled in the depattmen

Department Students

CEE Joe

Jill

Naomi

Alexi

Zach

Figure 11.15.0ne-to-many relationship between an academic departmergtadents.

The source code is organized into three files: Student.[agpartment.java and Main.java. The details
of Student.java are as follows:

Chapter 11 61

source code

Student.java: Create student objects ...

* % X X *

/

public class Student {
private int id;
private String nane;

private Departnent departnent;

public int getld() {

return id;

}

public void setld(int id) {
this.id = id;

}

public String getNane() {
return nane;

}

public void setNanme(String nane) {
thi s. nane = nane;

}

publ i c Department getDepartnent () {
return departnent;

}

public void setDepartnent(Departnent department) {
thi s.departnent = departnent;

}

public String toString() {
String s = "Student: " + getNane() + " id: " + getld() + "\n";
if (getDepartnent() != null)
s = s + "Departnment: " + getDepartnent() + "\n";

return s;

Notice that each student will be associated with one, ang@m department. Set() and get() methods
are provided to manage the student-department relatjpnshi

A department is modeled with a name, id and a Map to a colledfstudents, i.e.,

source code

62 Engineering Software Development in Java

Departnent.java: Create acadeni c departnent objects ...

E I T R

/

import java.util.Map;
i mport java.util.HashMap;

public class Departnent {
private int id;
private String nane;

private Map<String, Student> students;

public Department() {
students = new HashMap<String, Student>();

}

public int getld() {
return id;

}

public void setld(int id) {
this.id = id;
}

public String getName() {
return nane;

}

public void setNanme(String dept Nane) {
thi s. name = dept Naneg;

}

public void addStudent (Student student) {
if (!getStudents().containsKey(student.getNane())) {
get Student s(). put (student. get Nane(), student);
if (student.getDepartnent() !'= null) {
student . get Depart nment (). get Students().renove(student.get Nane());

}
student . set Departnent (this);

}

public Map<String, Student> get Students() {
return students;

}

public String toString() {
return "Departnent id: " + getld() + ", nane: " + getNane();

}

Chapter 11 63

In Main.java we systematically assemble the one-to-malayioaship graph illustrated in Figure 11.15,
i.e.,

source code

Mai n.java: Systematically assenble a one-to-many rel ationship graph
bet ween an academni c departnent and students.

L R

/

import java.util.Map;
i mport java.util.HashMap;
import java.util.TreeMap;

public class Main {
public static void main(String[] args) {

/1 Create student objects ...

Student student0l1 = new Student();
student 01. set Nane(" Joe");

student 01. set1d(001);

Student student02 = new Student();
student 02. set Name("Jill");

student 02. set1d(002);

St udent student03 = new Student();
st udent 03. set Nanme(" Naomi ") ;
student 03. set1d(003);

Student student04 = new Student();
st udent 04. set Narme(" Al exi ") ;
student 04. set1d(004);

Student student05 = new Student();
st udent 05. set Nanme(" Zack") ;

student 05. set1d(005);

/] Print details of individual students (not yet enrolled in a departnent)

Systemout.println("List of students (not yet enrolled)");
Systemout. println(" ")

Systemout. println
Systemout.println
Systemout. println
Systemout. println
Systemout.println

student 01);
student 02);
student 03);
student 04);
student 05);

A~~~

/1 Create departnent object
Department dept = new Departnment();
dept . set Name("CEE");

dept.setld(004);

/1 Add students to department

64 Engineering Software Development in Java

dept . addSt udent (student01);
dept . addSt udent (student 02);
dept . addSt udent (student03);
dept . addSt udent (student 04);
dept . addSt udent (student 05);

Systemout.println("List of students enrolled in CEE ");
Systemout. println(" ")

Map students = dept.getStudents();
Systemout.println (students);

/1 Organize students into a tree map ...

Systemout.printin("Ordered |ist of students enrolled in CEE ");
Systemout. println(" ")

Map organi zedStudents = new TreeMap(students);
Systemout.println (organi zedStudents);

The (slightly edited) program input/output is:

pronmpt >> java Main
Li st of students (not yet enrolled)

Student: Joe id: 1
Student: Jill id: 2
St udent: Naom id: 3
Student: Alexi id: 4
Student: Zack id: 5

Li st of students enrolled in CEE

{ Naomi =Student: Naonmi id: 3 Departnent: Departnent id: 4, nane: CEE,
Zack=Student: Zack id: 5 Departnment: Departnent id: 4, name: CEE,
Al exi =Student: Alexi id: 4 Departnent: Departnent id: 4, nane: CEE,
Jill=Student: Jill id: 2 Departnment: Departnent id: 4, name: CEE,
Joe=Student: Joe id: 1 Department: Department id: 4, nanme: CEE

}
Ordered |ist of students enrolled in CEE

{ Alexi=Student: Alexi id: 4 Departnent: Departnent id: 4, nanme: CEE,
Jill=Student: Jill id: 2 Departnment: Departnent id: 4, name: CEE,
Joe=Student: Joe id: 1 Department: Department id: 4, nane: CEE,
Naom =St udent: Naomi id: 3 Departnent: Departnent id: 4, nane: CEE,
Zack=Student: Zack id: 5 Departnment: Departnent id: 4, name: CEE

}

pronpt >>

Chapter 11 65

Many-to-Many Associations
Definition. The many-to-many relationship between classes A and Bsexisén ...

... multiple objects of type A associated with multiple objets of type B, and vise versa.

Here are a few examples:

1. In most schools each teacher teaches multiple studentsaahdseudent can be taught by multiple
teachers.

2. An author can write several books, and a book can be writtesefgral authors.

Example. We now extend the one-to-many example, and assume thanstuchay be enrolled in
multiple departments.

Departments Students
CEE Joe
Jill
ECE
David
Scott

Figure 11.16.Many-to-many association relationships among acadengartteents and students.

The following scripts of code assemble the many-to-mangtiaiship between students and depart-
ments illustrated in Figure 11.16. The source code is orgahinto three files: Student.java, Depart-
ment.java, and SimSchool.java.

The details of Student.java are as follows:

source code

Student.java; Create student objects ...

E I T T

/

import java.util.Collection;
import java.util.Arraylist;
inmport java.util.lterator;

66 Engineering Software Development in Java

public class Student {
private int id;
private String nane;
/1 Collection of departnents in which the student enrols.
private Coll ecti on<Departnent> departnents;

// Constuctor nethod ...

public Student() {
departments = new Arrayli st <Department>();

}

/1 Setup student lds ...

public int getld() {

return id;

}

public void setld(int id) {
this.id = id;

}

/! Set student nane ...

public String getName() {
return nane;

}

public void setNane(String nane) {
thi s. namre = nane;

}

/1 Student enrols in a departnment
public void addDepart nent (Departnent departnment) {
/1 Add new department to students resune ..
if (getDepartnents().contains(departnent) == false) {

get Depart nent s() . add(depart nent);
}

/1 Synchronize with [ist of students enrolled in the departnent

if (departnment.getStudents().contains(this) == false) {
depart nent . get St udent s() . add(this);

}
}

/1 Student drops-out of a departnment

public void renpveDepartment (Departnent department) {

Chapter 11

67

/'l Remove departnent from students resune ..

if (getDepartnents().contains(department) == true) {
get Departnents() . renove(departnent);

}

/1 Synchronize with [ist of students enrolled in the departnent

if (department.getStudents().contains(this) == true) {
depart nent . get St udent s().renove(this);

}
}

/'l Return collection of departnments ...

public Collection<Departmnment> get Departnents() {
return departnents;

}

public void setDepartnent(Collection <Departnent> departnents) {
this.departnents = departnments;

}

/1 Create String representation of student object

public String toString() {

String s = "Student: " + name + "\n";

s = s + "Departnents: ";

if (departnents.size() ==0)
s =s + " none \n";
el se {

Iterator iteratorl = departnents.iterator();

while (iteratorl.hasNext() != false) {
Departnment dept = (Departnment) iteratorl. next();
s = s + dept.getName() + " ";

}

s =s + "\n",;
}
return s;

The details of Department.java are as follows:

source code

Departnent.java; Create sinple nodel of an academni c departnent.

* F X *

68 Engineering Software Development in Java

*/
inmport java.util.ArraylList;
import java.util.Collection;
inmport java.util.lterator;
public class Departnent {
private int id;
private String nane;
/1l Setup collection of students ...
private Coll ection<Student> students;

/1 Constructor nethod

public Departnent(){
students = new ArraylLi st <Student>();

}

/1 Set/get the departnent Id.

public int getld() {

return id;
}
public void setld(int id) {
this.id = id;
}

/1 Methods to deal with the departnent nane ...

public String getName() {
return nane;

}

public void set Nane(String dept Nane) {
thi s. namre = dept Naneg;

}
/1 Add a student to departnent
public void addStudent (Student student) {

if (getStudents().contains(student) == false) {
get Student s() . add(student);

}

/1 Synchronize with departments on the student side

if (student.getDepartnments().contains(this) == false) {
student . get Depart nment s() . add(this);

}

Chapter 11

69

public Coll ection<Student> getStudents() {
return students;

}

public void setStudent(Collection<Student> students) {
this.students = students;

}

// Create a String representation for the departnent

public String toString() {
String s = "Departnent: " + nane + "\n";

s = s + "Students: ";

if (students.size() ==0)
s =s + " none \n";
el se {

Iterator iteratorl = students.iterator();

while (iteratorl.hasNext() != false) {
Student student = (Student) iteratorl.next();
s = s + student.getNane() + " ";

}

s =s + "\n",;

}

return s,

The graph of many-to-many relationships is assembled irS8huol.java, i.e.,

source code

Si nSchool . java: Simul ate nany-to-many rel ati onshi ps between students
and the departnents in which they enroll.

E N T R T

/
import java.util.List;

public class SinSchool ({
public static void main(String[] args) {

/1 Create student objects ...

Student student0l1 = new Student();
student 01. set Nanme(" Joe");

Student student02 = new Student();
student 02. set Name("Jill");

Engineering Software Development in Java

Student student03 = new Student();
st udent 03. set Nanme(" Davi d");

Student student04 = new Student();
st udent 04. set Nanme(" Scott");

/1 Add students to civil and environnmental engineering ...

Departnment civil = new Departnent();
civil.setNanme("CEE");
civil.addStudent(studentOl1l);
civil.addStudent(student02);

/1 Add students to electrical and conputer engineering ...

Department eecs = new Departnent();
eecs. set Nanme(" ECE") ;

eecs. addSt udent (studentO1);

eecs. addSt udent (student03);

eecs. addSt udent (student04);

/1 Print details of student-departnent assocations ...

Systemout.printin("Part 1: Summary of Student-Departnment Associations");
Systemout.printin(" "),

Systemout. println(student0l);
Systemout. println(student02);
Systemout.println(student03);
Systemout.println(student04);

/1 Print details of departnent-student assocations ...

Systemout.printin("Part 2: Summary of Department-Student Associations”);
Systemout.printin(" "),

Systemout.println(civil);
Systemout.printin(eecs);

/1 David drops out of ECE to concentrate on CEE ...

Systemout.println("Part 3: David switches fromECE to CEE");
Systemout.printin(" "),

student 03. renoveDepart nent (eecs);
student 03. addDepartnent (civil);

/1 Validate David' s enrollnment in CEE and ECE ...
Systemout.println(student03);

Systemout.println(civil);
Systemout.println(eecs);

Chapter 11 71

The (slightly edited) program input/output is:

pronpt >> java Si nSchool
Part 1: Summary of Student-Departnent Associ ations

Student: Joe
Departnments: CEE ECE

Student: Jill
Departnents: CEE

St udent: David
Departnents: ECE

Student: Scott
Departnents: ECE

Part 2: Summary of Departnent-Student Associations

Departnment: CEE
Students: Joe Jill

Departnment: ECE
Students: Joe David Scott

Part 3: David switches from ECE to CEE

St udent: David
Departnents: CEE

Departnment: CEE
Students: Joe Jill David

Departnent: ECE
Students: Joe Scott

pronpt >>

A few key points:

1. Figure 11.17 shows the relationship among classes needeagport the modeling of many-to-many
relationships.

Both the Student and Depatment classes employ Arraylistthéostorage of their counterpart
associations. On the student side we have:

private Col |l ecti on<Departnent> departnents;

public Student() {
departnents = new ArraylLi st <Depart ment>();

}

72 Engineering Software Development in Java

Students

Arraylist<Students>

[Synchronize]

ist< >
Departments : Arraylist<Departments

Figure 11.17.Relationship among classes in modeling of many-to-mangcéstion relationships.

And on the department side we have:

private Coll ection<Student> students;

public Departnent(){
students = new ArrayLi st <Student>();
}

HashMaps of the form:

private Collection<String, Departnent >

departnments = new HashMap<Stri ng, Depart ment >();
private Collection<String, Student>
students = new HashMap<Stri ng, St udent >();

would also work as well. The interesting part of the code ithin methodsaddSt udent (),
renoveSt udent () ,addDepart nent () ,andr enroveDepar t ment () where code is writ-
ten to synchronize association relationships from bothddmartment and student viewpoints.

2. SimSchool assembles the graph of Students and Depatmestaiaions shown in Figure 11.15.
The simulation presents summaries of student-departnmehdi@partment-student associations.

Then, student David switches from department ECE to depatti@EE. This action is handled
by the pair of method calls:

student 03. renoveDepart ment (eecs);
student 03. addDepartnent (civil);

Of course, a department might also decide to terminate @stsigenroliment, in which case the
method call would be something like:

civil.renoveStudent(student03);

Chapter 11 73

11.10 Working with Java Generics

As we have seen, a Java collection is a flexible data strutihatecan hold heterogeneous
objects where the elements may have any reference type..ltis

... your responsibility, however, to keep track of what type of objects your collections
contain.
Consider, for example, the task of adding a double to a dadlec

e Since you cannot have collections of primitive data types, must convert the double to the corre-
sponding reference type (i.e., Double) before storing ihacollection.

e Then when the element is extracted from the collection, ae@@s returned that must be cast to an
Double in order to ensure type safety.

e If the programmer accidentally makes an error (e.g., cagtsdturned value to a String), then a
run-time error will occur.
The manual overhead in ensuring type safety makes ...
... this aspect of Java programming more difficult than it neels to be.
To address this problem, J2SE 5.0 has added a new core |lanfgadgre known as generics (also known
as parameterized types), that provides ...

... compile-time type safety for collections and eliminat¢he drudgery of casting.

Introduction to Programming with Generics

Broadly speaking generic programming is ...

... a style of computer programming in which algorithms are witten in terms of to-be-
specified-later types that are then instantiated when needdor specific types provided
as parameters.

Generic programming techniques date back the the earlys1@8@ the development of Ada. From a
software development standpoint, having an ability to ...

... write common functions or types that differ only in the se of types on which they
operate when used,

reduces the need for duplication.

Software entities created using generic programming ave/kras:
1. Tenerics in Ada, Eiffel, Java, C#, and Visual Basic .NET.,
2. Templates in C++. and,

3. Parameterized types in the influential 1994 book DesigreReit

74 Engineering Software Development in Java

Use of Generics in Java

Support for the generics, or containers-of-type-T, subkgeneric programming were ...

... added to the Java programming language in 2004 as part of2BE 5.0.

In Java, generics are checked at compile time for type cmess. The generic type information is then
removed via a process called type erasure, and is unaaaablintime.

For example, a List String> is converted to the raw type List. The compiler inserts tygssto convert
the elements to the String type when they are retrieved franist.

Using generics, a collection is no longer treated as a li€dloject references, but you would be able
to differentiate between a collection of references togete and collection of references to Bytes. A
collection with a generic type has a type parameter thatifigethe element type to be stored in the
collection.

Example 1. Use of Generics in a LinkedList

Consider the following segment of code that creates a litikednd adds an element to the list
(source: http://www.oracle.com/technetwork/artigesdse/generics-136597.html):

Li nkedLi st |ist = new LinkedList();
list.add(new Integer(1));
Integer num= (Integer) list.get(0);

When an element is extracted from the list it must be cast. cHséing is safe as it will be checked at
runtime, but if you cast to a type that is different from, amd a supertype of, the extracted type then a
runtime exception, ClassCastException will be thrown.

Using generic types, the previous segment of code can biewas follows:

Li nkedLi st<lI nteger> |ist = new Li nkedLi st<I nteger>();
list.add(new Integer(1));
Integer num= |ist.get(0);

Here we say that LinkedList is a generic class that takesepgpameter, Integer in this case.

The benefit in using generics is that you no longer need totoash Integer since the get() method
would return a reference to an object of a specific type (knta@gthis case). If you attempt to assign an
extracted element to a different type, then ...

... the error would be at compile-time instead of run-time.

This early static checking increases the type safety ofdkia lhnguage.

To reduce the clutter, the above example can be rewritteollass...using autoboxing:

Li nkedLi st<lI nteger> |ist = new Li nkedLi st<I nteger>();
list.add(1);
int num= list.get(0);

Chapter 11 75

Example 2: Avoiding Run-Time Failure of an ArrayList

Consider the following class, Ex1, which creates a colectf two Strings and one Integer,
and then attempts to print out the collection:

source code

Ex1.j ava

*F X X X

/
import java.util.x;
public class Ex1 {

private void testCollection() {
List list = new ArrayList();
l'ist.add(new String("Hello world!"));
|'ist.add(new String("Good bye!"));
I'ist.add(new I nteger(95));
printCollection(list);

}

private void printCollection(Collection c) {
Iterator i = c.iterator();
whil e(i.hasNext()) {
String item= (String) i.next();
Systemout.printin("ltem "+item;

}

public static void main(String argv[]) {
Ex1l e = new Ex1();
e.testCol l ection();

Notice that an explicit cast is required in the printCollestmethod. This class compiles fine, but
throws a CLassCastException at runtime as it attempts tacdsteger to a String, i.e.,

Item Hello world!

Item Good bye!

Exception in thread "main" java.l ang. C assCast Exception: java.l ang. | nteger
at Ex1.printCollection(Exl.java: 16)
at Ex1l.testCol | ection(Ex1.java: 10)
at Ex1. main(Ex1.]java: 23)

Now let’s fix the problem by adding generics to the array list.

source code

76 Engineering Software Development in Java

Ex2.j ava

E I T R

/
import java.util.x;
public class Ex2 {

private void testCollection() {
List<String> list = new ArrayLi st<String>();
list.add(new String("Hello world!"));
l'ist.add(new String("Good bye!"));
list.add(new Integer(95));
printCollection(list);

}

private void printCollection(Collection c) {
Iterator<String>i = c.iterator();
whi | e(i.hasNext()) {
Systemout.printin("ltem "+i.next());
}
}

public static void main(String argv[]) {
Ex2 e = new Ex2();
e.testCol l ection();

Now, if you try to compile this code, ...

... acompile-time error will be produced informing you that you cannot add an Integer
to a collection of Strings.

So we see that use of generics enables more compile-timelgo&ing, thereby reducing the likelihood
of having to deal with run-time errors.

You may have already noticed the new syntax used to createstance of ArrayList,i.e.,

List<String> list = new ArrayLi st<String>();

ArrayList is now a parameterized type.

Chapter 11 77

Working with Parameterized Types

A parameterized type consists of a class or interface nanmal & @arameter section

<T1, T2, ..., Tn>,

which must match the number of declared parameters of E,afdactual parameter must be a subtype
of the formal parameter’s bound types. The following segnuércode shows parts of the new class
definition for ArrayList:

public class ArraylLi st<E> extends AbstractlList<E> inplenents List<E>,
RandomAccess, Cl oneable, Serializable {
...

Here E is a type variable, which is an unqualified identifiesirhply acts as a placeholder for a type to
be defined when the list is used.

Implementing Generic Types

In addition to using generic types, you can implement youn.o generic type has one or
more type parameters. Here is an example with only one tyreer called E. A parameterized type
must be a reference type, and therefore primitive typesa@rallowed to be parameterized types.

interface List<E> {
voi d add(E x);
Iterator<E> iterator();

}

interface Iterator<BE> {
E next();
bool ean hasNext ();

}

public class LinkedList<E> inplenents List<E> {
/1 inplenentation

}

Here, E represents the type of elements contained in thectiolh. Think of E as a placeholder that will
be replaced by a concrete type. For example, if you write ...

Li nkedLi st <Stri ng>

then E will be replaced by String.

In some of your code you may need to invoke methods of the eletyige, such as Object’s hashCode()
and equals(). Here is an example that takes two type paresnete

78 Engineering Software Development in Java

cl ass HashMap<K, V> extends Abstract Map<K, V> inplenments Map<K, V> {
...
public V get(Ohject k) {

int hash = k. hashCode();

The important thing to note is that you are required to replhe type variables K and V by concrete
types that are subtypes of Object.

Working with Generic Methods

Genericity is not limited to classes and interfaces, you define generic methods. Static
methods, nonstatic methods, and constructors can all lseneéerized in almost the same way as for
classes and interfaces, but the syntax is a bit differenhe@e methods are also invoked in the same
way as non-generic methods.

Before we see an example of a generics method, consider ltbeiftg segment of code that
prints out all the elements in a collection:
public void printCollection(Collection c) {
Iterator i = c.iterator();
for(int k = 0; k<c.size();k++) {

Systemout.println(i.next());
}

Using generics, this can be re-written as follows. Note thatCollectior<?> is the collection of an
unknown type.

void printCollection(Collection<?>c) {
for(Object o:c) {
System out. println(o);
}

This example uses a feature of generics known as wildcards.

Working with Wildcards

There are three types of wildcards:

1. "? extends Type”: Denotes a family of subtypes of type TypisTs the most useful wildcard

2."? super Type”: Denotes a family of supertypes of type Type

Chapter 11 79

3."?". Denotes the set of all types or any

As an example of using wildcards, considedraaw() method that should be capable of drawing any
shape such as circle, rectangle, and triangle. The impleti@m may look something like this. Here
Shape is an abstract class with three subclasses: CiratariRge, and Triangle.

public void draw Li st <Shape> shape) {
for(Shape s: shape) {
s.draw(this);

}
}

It is worth noting that the draw() method can only be calledists of Shape and cannot be called on a
list of Circle, Rectangle, and Triangle for example.

In order to have the method accept any kind of shape, it sHmilgritten as follows:

public void draw List<? extends Shape> shape) ({
/'l rest of the code is the sane

}

Here is another example of a generics method that uses wdil¢a sort a list into ascending order.
Basically, all elements in the list must implement the Corapke interface.

public static <T extends Conparabl e<? super T>> void sort(List<T> list) {

hject a[] = list.toArray();

Arrays.sort(a);

Listlterator<T> i = list.listlterator();

for(int j=0; j<a.length; j++) {
i.index();

i.set((Malj]);

80 Engineering Software Development in Java

11.11 Exercises

11.1 The left-hand side of Figure 11.18 shows the esserdtaild of a domain familiar to many chil-
dren. One by one, rectangular blocks are stacked as highsatfgountil they come tumbling
down — the goal, afterall, is to create a spectacular crash!!

y
L
| |
| |
| | | | Rectangle
| |
| |
| |
| | BlockTower 1 = Block
Lo |
X
Tower of Blocks Classes in "Tower of Blocks" Progran

Figure 11.18.Schematic and classes for “Tower of Blocks”

Suppose that we wanted to model this process and use erigmeéanciples to predict incipient
instability of the block tower. Consider the following olpgations:

1. Rather than start from scratch, it would make sense to cee8ieck class that inherits the
properties of Rectangle, and adds details relevant to eagimg analysis (e.g., the density
of the block).

2. Then we could develop a BlockTower class that systemafieabembles the tower, starting
at the base and working upwards. At each step of the towemdbgeanalysis procedures
should make sure that the tower is still stable.

The right-hand side of Figure 11.18 shows the relatioshipragrthe classes. One BlockTower
program (1) will employ many blocks, as indicated by the rils{).

Develop a Java program that builds upon the Rectangle cldtssmin the previous ques-
tions. The class Block should store the density of the bltiuk (vill be important in determining
its weight) and methods to compute the weight and centro@hoh block. The BlockTower class
will use block objects to build the tower. A straight forwasgy of modeling the block tower is
with an ArrayList. After each block is added, the programuti@onduct a stability check. If the
system is still stable, then add another block should bedadtiee simulation should cease when
the tower of blocks eventually becomes unstable.

Not e. To simplify the analysis, assume that adjacent blocks ardyficonnected.

Chapter 11 81

11.2

Stability Considerations. Ifthe blocks are stacked perfectly on top of each other,
then from a mathematical standpoint the tower will neveobee unstable. In practice, this never

happens. There is always a small offset and, eventualiyth# accumulation of offsets that leads

to spectacular disaster.

For the purposes of this question, assume that blocks areitite wide and one unit
high. When a new block is added, the block offset should beumie To make the question
interesting, assume that four blocks are stacked with aebfb the right, then three blocks are
added with an offset to the left, then four to the right, thiethe left, and so forth. This sequence
can be accomplished with the looping construct:

offset = (int) (Math.floor ((BlockNo - 1)/5.0) + (BlockNo-1)%);
if ((BlockNo-1)% == 4) offset = offset - 2;

The tower will become unstable when the center of gravitylofks above a particular level falls
outside the edge of the supporting block.

This problem will give you practice at using abstraassks to and array lists simplify the imple-
mentation of engineering property (e.g., position of thetiéd, moments of inertia, orientation
of the principal axes) computations for element cross @estiThe computation of these proper-
ties can be complicated by irregular section shapes andiss section shapes that change as a
function of loading (e.g., crack patterns in a concrete Heam

Engineering Property Formulae. If the total number of shapes is denoted by N, then the total
area of the grid, A, is given by

A= Z A; (11.2)
The (x,y) coordinates of the grid centroid are defined by:
N N
AT =) x;i- A and Ag=) yi- A (11.2)
i=1 =1
The area moments of inertia about the x- and y-axes are giyen b
N N
Lio=Y yi-A; and I, =) a7 A (11.3)
=1 i=1

respectively. Similarly the cross moment of inertia is givey

N
Ly =Y i yi A (11.4)
=1

82 Engineering Software Development in Java

The corresponding moments of inertia about the centroidji@em by the parallel axes theorem.
Finally, the orientation of the principle axes are given by

2Ly] (11.5)

tan(20) = |:ﬁ
T vy

Things to do.

The computation of engineering properties for this spdéigbut can be simplified if the basic
algorithms for area, centroid, and inertia calculatiore specified in terms of shapes. Java will
take care of the details of calling the appropriate methatisimeach specific shape object.

1. Download, compile and run the abstract shape example @h@pe.java, Location.java,
TestShape.java) from the java examples page. Then dowrdoatpile and run the Triangle
code from the java examples web page.

2. The computation of engineering properties depends on ifi@ggnsuch as the cross section
area and centroid (i.e., (X,y) location). An algorithm witted to retrieve this information
from each of the object types.

Extend the abstract shape class so that methods for regi¢vé x and y coordinates are
included. | suggest that you simply add the method dectarsti

public abstract double getX();
public abstract double getY();

to Shape.java and then add concrete implementations of ofifthodgiet X() andget Y()
to Circle.java, Rectangle.java and Triangle.java.

3. Modify the Triangle code so that it extends Shape, i.e.,

public class Triangle extends Shape {

Triangles are defined by the (x,y) coordinates of the threeezqoints. The center point of
a triangle should be defined as the average of the three tegpeaordinate values, i.e.,

. {w} and cy = [w} (11.6)

3 3

4. Write a Java program that will initialize and position céclrectangle and triangle shapes
as shown on Figure 11.6, and then compute and print the grél] arand y coordinates of
the grid centroid, moments of inertfa,, 7,,,, and/,, computed about the axes/origin and,
finally, the grid centroid. For details, see equations 1Araugh 11.4.

Hint. Notice that the layout of shapes in Figure 11.6 is symmebrauathe line y = x + 1. Hence,
you should expect that: (1) the centroid will lie along thige| and (2) the principal axes will be
oriented along this line.

Chapter 11 83

11.3 A footprint model simply defines the area that will beer@d by an object. Footprint models of
buildings are commonly used in the earliest stages of demighin high-level models of urban
areas.

Figure 11.19 shows, for example, the AV Williams buildingfprint.

Polygon Model of Bulding Footprint Triangle Model of Building Footprint
simplifying b ¢ f
abstraction d
—
a e

Figure 11.19.Polygon and triangle models for a building footPrint.

Modeling Footprints. Because the footprint area is defined by its perimeter, alyua general-
purpose polygon model is the first approach that comes to.mihdurns out, however, that
polygon operations (e.g., computing the area) can quicklyolme very complicated. Suppose
that a building has an internal courtyard (i.e., the footipcontains a hole). What would you do
then?

Many potentially difficult computational problems can beiged by modeling the footprint as a
collection of simple triangular regions, as shown on thatrigand side of Figure 11.19.

Coordinates of A.V. Williams Building Footprint. Let us assume that the AV Williams Build-
ing footprint can be modeled with six trianglar alementsihgwgeometry as shown in Figure
11.20. And Figure 11.21 shows the relationship among catbee would be used in a software
implementation.

Simply put, Figure 11.21 says that one Footprint object éllcomposed of many Triangle ob-
jects. In turn, triangles will be defined in terms of Node amigi&objects. Nodes are an extension
of Vector.

Properties of the building footprint (e.g., area, centemafss) will be computed and summed
across the ensemble of triangles.

Things to do.

1. Download, compile and execute the Triangle source code fhenglass website.

2. Write a class calledrootprint to setup the simplified footprint model for the AV. Williams
building, e.qg.,

Foot print avw = new Footprint();
avw. set Name("AV. W Il ians Buiklding");

84

Engineering Software Development in Java

Figure 11.20.Geometric details of the footprint for AV Williams Building

Vector

/\

extends

Node

Footprint

3

1

Edge

Triangle

Figure 11.21.Class diagram for building footprint model.

Chapter 11 85

Your program should create the six triangles defining thépidat, and then add them to an
arraylist.

3. Write a method oSt ri ng() to create a string representation of the building footprint

4. Within Footprint, write a method calleér ea() that will compute the building area by
walking along the arraylist and summing the triangle areas.

5. Finally, write methods getCentroidX() and getCentroidi¥()compute the x- and y- coordi-
nates of the building centroid.

Not e. For parts 4 and 5, most of what you need is already defined angle.java.

11.4 A polyline defines a set of one or more connected strédiightsegments. Polyline abstractions
can be found in many areas of Civil Engineering (e.g., roagettories in transportation, the
orange line on the DC Metro, rebar trajectories in stru¢tengineering). As illustrated by these
examples, polyline elements typically define open shapes.

Engineering Abstraction Modeling Abstraction

Node 1 Bounding Box

%— Road Contour from Points A to F.

Node 6 ‘

B c

D E Node 4 Node 5

Figure 11.22.Real world and modeling abstractions for polylines

Polyline objects can be created by specifying the endpointsich segment.

Insert problem description and UML figure soon ...
public class Polyline { ... '}

public class LineSegment { ... }

11.5 A path is a continuous line composed of one or more ligensats and/or curve segments.
public class Path { ... }

public class LineSegrment { ... }
public class Curve { ... }

Bibliography

[1] Cormen T.H., Leiserson C.E., Rivest R.lntroduction to Algorithms. The MIT Press, 1992.

[2] Liang Y.D. Introduction to Java Programming (Comprehensive Version) (8th Edition). Prentice-
Hall, 2011.

86

associations
bi-directional, 56—60
many-to-many, 65-72
one-to-many, 60—-64
uni-directional, 53-56
avoiding run-time failures, 75

bi-directional associations, 56—-60

cloning, 7
deep copy, 7, 43
shallow copy, 7, 43
collections
adding an element, 6
cloning, 7
empty, 7
equality, 7
finding an element, 6
heterogeneous, 4
homogeneous, 4
removing an element, 6
replacing an element, 6
serialization, 7
traversal, 7
Comparator interface, 26

composite hierarchy design pattern, 47

data structures and algorithms, 3—4
deep copy, 7, 43

generic methods, 78
generic types, 77

inner classes, 26
interfaces, 8

Java Collection interface, 11
Java Collections Framework, 4—6
Java Generics, 73—-79
avoiding run-time failures, 75
definition, 73
parameterized types, 77
purpose, 73

working with generic methods, 78

working with generic types, 77
working with wildcards, 78

List interface, 12—-13
many-to-many associations, 65—72
Map interface, 15-16
mathematical abstraction

maps, 3

sets, 1-3
one-to-many associations, 60—-64
parameterized types, 77
Queue interface, 17
serialization, 7
Setinterface, 13-14
shallow copy, 7, 43

uni-directional associations, 53-56

wildcards, 78

Index

87

