
Engineering Software Development
in Java

Lecture Notes for ENCE 688R,
Civil Information Systems

Spring Semester, 2019

Mark Austin,
Department of Civil and Enviromental Engineering,

University of Maryland,
College Park,

Maryland 20742, U.S.A.

Copyright c©2012-2019 Mark A. Austin. All rights reserved. These notes may not be reproduced
without expressed written permission of Mark Austin.

2 Engineering Software Development in Java

Contents

11 Java Collections Framework 1
11.1 Pathway from Objects to Groups of Objects 1
11.2 Introduction to Java Collections Framework 4

General Purpose Operations 6
General Purpose Implementation 8

11.3 The Core Collection Interfaces 11
The Collection Interface 11
The List Interface 12
The Set Interface 13
The Map Interface 15
The Queue Interface 17

11.4 Working with Array Lists and Linked Lists 18
11.5 Example 1. Arraylist of Shapes 20
11.6 Example 2. Create and Sort an Arraylist Folded Boxes 22
11.7 Working with Maps 27

Example 1. Create a Simple HashMap of Strings 28
Example 2. Use HashMap and TreeMap to Count Frequency of Words in Document 32
Example 3. Use a Comparator to Order a TreeMap of Employees 34
Example 4: Create HashMap for Point(x,y)-Value Pairs 40
Example 5: Demonstrate DeepCopy for a HashMap 43

11.8 Working with Sets 48
Example 1. Create a HashSet of Strings 48
Example 2. Create Sets of Enumerated Data Types 51

11.9 Modeling Association Relationships 53
Uni-Directional Association 53
Bi-Directional Association 56
One-to-Many Associations 60
Many-to-Many Associations 65

11.10Working with Java Generics 73
Introduction to Programming with Generics 73
Use of Generics in Java 74
Example 1. Use of Generics in a LinkedList 74
Example 2: Avoiding Run-Time Failure of an ArrayList 75

0

Table of Contents 1

Working with Parameterized Types 77
Implementing Generic Types 77
Working with Generic Methods 78
Working with Wildcards 78

11.11Exercises 80

References 86

Index 87

Chapter 11

Java Collections Framework

11.1 Pathway from Objects to Groups of Objects

Now that we know how to create objects, the next subject of importance is ...

... how to organize collections of objects so that they are easy to store, easy to find, and
easy to modify.

We address this problem in two-step procedure:

1. Choose an appropriate mathematical formalism.

2. Develop software to support each formalism.

As a starting point, Figure 11.1 shows how groups of objects can be organized intosetsandmaps.

Part I. Sets

A set is nothing more than ...

... a group of objects containingno duplicates.

The left-hand schematic in Figure 11.1 shows three sets X, Y,and Z. Some real-world examples of set
include the following:

1. The set of lowercase letters “a” through “z.”

2. The set of digits “0” through “9.”

3. Sets of people – friends, relatives, co-workers.

Sets have the following properties:

1. They can contain only one instance of an item.

2. They may be finite or infinite.

3. They can define abstract concepts (e.g., family relatives).

1

2 Engineering Software Development in Java

Sets Maps

1

2

3

4

X

Y

Z

Figure 11.1.Organizing groups of objects into sets and maps.

tail

Arrays Linked List

QueuesHash Map

Trees Graphs

head

Figure 11.2.Schematics for array, list, queue, hashtable, tree and graph data structures.

Chapter 11 3

Sets are fundamental to logic. As such, things get interesting when we want to evaluate the relationship
among sets; for example, compute the intersection, union ordifference of sets.

Part II. Maps

A map defines ...

... a set of pairs, each pair representing aone-directional mappingfrom one element
to another.

Examples of maps include:

1. The map of IP addresses to domain names (DNS).

2. A dictionary of words mapped to their meanings.

3. A Celsius to Fahrenheit temperature conversion (this is an infinite map).

4. A telephone directory connecting names to phone numbers.

5. Source and destination maps for edges in a graph.

6. Parent and child relationships connecting dependencies among cells in a spreadsheeet.

In geographic information systems,map relationships connect spatial coordinates to features(i.e., what
features are at this location?) and vice versa.

Data Structures and Algorithms

Long before the advent of computers, mathematicians realized the benefits in casting problems
as sets and maps. More recently, computer scientists have developed techniques for dealing with these
concerns ...

... through the study of data structures and algorithms.

Simply put, a data structure is ...

... a particular way of storing and organizing datain a computer so that it can be used
efficiently.

Data structures means to manage large amounts of data efficiently and, as such, they are used in almost
every program or software system. The study of data structures and algorithms is interesting because ...

... different kinds of data structures are suited to different kinds of applications.

Usually, efficient data structures are a key to designing efficient algorithms (e.g., for adding/removing
elements). Figure 11.2 shows, for example, schematics for array, list, queue, hashtable, tree and graph
data structures. A few key points:

4 Engineering Software Development in Java

1. An array data structurestores a number ofelements of the same type. These elements are accessed
using an index to indicate which element is required.

2. A linked list data structure consists of a group of nodes which together represent a sequence. In
the simplest implementation, each node is composed of a datum and a link to the next node in the
sequence. More complex implementations provide additional links to allow for traversal in both
directions. Linked lists allow for efficient insertion or removal of elements from any position in
the sequence.

3. A queue is a linked list that only allows insertions at the end/tail and removal of items from the
front/head of the queue.

4. A hash map provides a key-value pair.

5. A tree data structure orders it data items into a hierarchy. The major advantage of trees over other
data structures is that the related sorting and search algorithms, and traversals can be very efficient.

6. A graph data structure consists of a finite set of ordered pairs, called edges or arcs, of certain entities
called nodes or vertices. An edge (x,y) is said to point or go from x to y. The nodes may be part
of the graph structure, or as illustrated in Figure 11.2 lower-level graphs.

In applications where the data requirements are known at compile time, the data structures can be of a
fixed size throughout the program operation. A programmer might choose a data structure that provides
very fast access to data. Increasingly, however, software programs are required to operate on streams of
data of unknown length. In these cases, a programmer might choose a data structure for its flexibility –
that is, ease of adding and removing elements.

11.2 Introduction to Java Collections Framework

A collection is an object that groups multiple elements into a unit (in mathematical terms it is
equivalent to a set) that can be treated as a single entity. Typically, collections represent items of data
that form a natural group:

1. A poker hand (a collection of cards),

2. A mail folder (a collection of letters), or a

3. Telephone directory (a mapping of names to phone numbers).

A collection that requires all of its elements to be of the same type is called homogeneous. Heteroge-
neous collections allow for elements to be of different types – for example, a collection of fruit might
contain apples, oranges and bananas.

The collections framework is a ...

... unified architecture for representing and manipulatingcollections.

Chapter 11 5

Collections are used to store, retrieve, manipulate, and communicate aggregate data. This includes:

1. Sets.

A set is a collection that cannot contain duplicate elements.

2. Lists.

An ordered collection (sometimes called a sequence). Listscan contain duplicate elements.

3. Queues.

Queues typically order elements in a FIFO (first-in-first-out) manner.

4. Maps.

An object that maps keys to values.

5. SortedSet.

A Set that maintains its elements in ascending order. Sortedsets are used for naturally ordered
sets, such as word lists and membership rolls.

5. SortedMap.

Sorted maps are used for naturally ordered collections of key/value pairs, such as dictionaries and
telephone directories.

A few points to note:

1. Some collections allow duplicate elements and others do not.

Some are ordered and others unordered.

2. Lists, queues and maps are examples of linear collections. Elements are arranged in a sequence such
that all elements except the first have a unique predecessor,and all except the last have a unique
successor.

3. As illustrated in Figure 11.2, trees are hierarchical collections. The elements of the tree are called
nodes. A non-trivial tree (i.e., one that is not empty) has a special node called the root. The root
node has no predecessors (called parents) and zero or more successors (called children). Tree
elements called leaves have one parent and no children.

4. Graph collections are similar to trees (more precisely, trees are a subset of graphs), but unlike trees,
graph collections permit cyclic relationships. The elements of a graph are called vertices. Vertices
are connected by edges. The graph shown in the bottom right-hand corner of Figure 11.2 is an
example of a directed graph – each edge has a clearly defined predecessor (head) and successor
(tail).

6 Engineering Software Development in Java

Benefits.The collections framework offers the following benefits:

1. Reduces programming effort,

2. Increase programming speed and quality,

3. Provide a standard way of accessing collections,

4. Allow for effective reuse of code.

General Purpose Operations

In any implementation of a collection (details specified below), we need a well defined set of
operations that will be supported, even across collection types that serve different purposes. The basic
operations include support for:

1. Adding an Element

We need to be able to add elements to a collection. The detailsfor how this will happen are
collection dependent. For example, collections that are position dependent may allow for insertion
at a specific position (e.g., at the front or rear of the collection). Other collections will insert new
elements in a position that maintains order in the value of elements. Some collections such as
arraylists allow for duplicates; set collections do not allow duplicates.

2. Removing an Element

We also need to be able to remove elements from a collection. Sometimes we will remove an ele-
ment based on its position – for example, removing an elementfrom the top of a stack. Elements
can also be removed from collections based on their target values – for example, remove items
from a collection having a specific value.

3. Replacing an Element

Given a position or target element, this operation replacesan element with a different element.

4. Finding and retrieving and Element

Given a position or target element, this operation finds and retrieves a specific element from the
collection.

5. Determining if an Element is contained in a Collection

This operation will determine if an eleent is contained in a collection. The operation will return a
boolean value of true if it exists. Otherwise, it will returnfalse.

Chapter 11 7

6. Computing the Size of a Collection

The operation computes and returns the number of elements inthe collection.

7. Testing to see if a Collection is Empty

This operation will test to see if a collection is empty. The operation will return a boolean value
of true if it is empty. Otherwise, it will return false.

8. Traversing a Collection

Traversal is a strategy for systematically visiting the elements of a collection, one element at a
time. We will see that iterators provide a uniform frameworkfor collection traversal.

More advanced operations include:

9. Equality

This boolean operation determines if two collections are equal, that is, the collections contain the
same number of elements, for each element in the first collections, their is an equal element in
the second collection. Collections that are ordered will also require that the positions of the equal
elements also match.

10. Cloning

The cloning operation produces a copy of the collection.

A shallow copyduplicates the structure of the original collection, but not the elements contained
in the collection (i.e., in other words, a shallow copy replicates the structure and referenes to
objects). As such, in a shallow copy, both the original collection and its copy will share access to
the original elements.

In adeep copy, both the elements and the element structure will be replicated.

11. Serialization

Serialization is the ability to write and save the data in a collection to disk.

8 Engineering Software Development in Java

General Purpose Implementation

From an implementation standpoint, the Java Collections framework is ...

... a set of utility classes, interfaces (located in the java.util package), and algorithms
for working with collections of objects.

In a bit more detail:

1. Interfaces

These are abstract data types that represent collections. Interfaces allow collections to be manip-
ulated independently of the details of their representation.

2. Implementations

These are the concrete implementations of the collection interfaces. In essence, they are reusable
data structures.

3. Algorithms

These are the methods that perform useful computations, such as searching and sorting, on objects
that implement collection interfaces.

Relationship between Interfaces and Implementations

Table 11.1 provides a simplified view of data structure implementations for each of the Set,
List and Map interfaces.

Interfaces
Hash Resizable Balanced Linked
Table Array Tree List

Set HashSet TreeSet
List ArrayList LinkedList
Map HashMap TreeMap

Table 11.1.Matrix of collection interfaces mapped to data structure implementations.

And Figure 11.3 shows the organization of interfaces, abstract classes, and concrete classes in the Java
Collections Framework.

Key points to note:

1. There are only three container components – Map, List and Set, and as shown above only 2 or 3
implementations of each one.

Chapter 11 9

Figure 11.3. Organization of interfaces, abstract classes, and concrete classes in the Java Collections
Framework.

10 Engineering Software Development in Java

2. The dotted boxes represent interfaces, the dashed boxes represent abstract classes, and the solid
boxes are regular (concrete) classes.

3. The dotted-line arrows indicate that a particular class is implementing an interface (or in the case of
an abstract class, partially implementing that interface).

4. The solid arrows show that a class can produce objects of the class the arrow is pointing to. For
example, any Collection can produce an Iterator and a List can produce a ListIterator (as well as
an ordinary Iterator, since List is inherited from Collection).

Iterators provide a way for ...

... collections to be traversed in a uniform way.

For a good overview, see Chapter 22 of Liang [2].

Chapter 11 11

11.3 The Core Collection Interfaces

As illustrated in Figure 11.4 below, collections come in four basic flavors, Lists, Sets, Maps and Queues.

Figure 11.4.Hierarchy of interfaces in the Java Collections Framework.

A Collection holds single elements, and a Map holds associated pairs. Collection and Map are two top
level interfaces.

The Collection Interface

The following fragment of code shows the Collection interface.

public interface Collection<E> extends Iterable<E> {

// Basic operations
int size();
boolean isEmpty();
boolean contains(Object element);
boolean add(E element);
boolean remove(Object element);
Iterator<E> iterator();

// Bulk operations
boolean containsAll(Collection<?> c);
boolean addAll(Collection<? extends E> c);
boolean removeAll(Collection<?> c);
boolean retainAll(Collection<?> c);
void clear();

// Array operations
Object[] toArray();
<T> T[] toArray(T[] a);

}

This is the root interface in the collections hierarchy. Theinterface has methods to tell you:

• How many elements are in the collection (size, isEmpty),

• To check whether a given object is in the collection (contains),

12 Engineering Software Development in Java

• To add and remove an element from the collection (add, remove), and

• To provide an iterator over the collection (iterator).

All of the general-purpose Collection implementation classes typically implement Collection indirectly
through one of its subinterfaces. The collections interface specifies that implementations provide two
”standard” constructors:

1. A void (no arguments) constructor, which creates an empty collection, and

2. A constructor with a single argument of type Collection, which creates a new collection with the
same elements as its argument.

The latter constructor allows the user to copy any collection, producing an equivalent collection of the
desired implementation type. There is no way to enforce thisconvention (as interfaces cannot contain
constructors) but all of the general-purpose Collection implementations in the Java platform libraries
comply.

The List Interface

The list interface is an extention of the collections interface, i.e.,

public interface List<E> extends Collection<E> {

// Positional access
E get(int index);
E set(int index, E element);
boolean add(E element);
void add(int index, E element);
E remove(int index);
boolean addAll(int index, Collection<? extends E> c);

// Search
int indexOf(Object o);
int lastIndexOf(Object o);

// Iteration
ListIterator<E> listIterator();
ListIterator<E> listIterator(int index);

// Range-view
List<E> subList(int from, int to);

}

and defines methods for ...

... creating and working with an ordered collection (also known as a sequence) that
allows duplicates.

Chapter 11 13

Users of this interface have precise control over where in the list each element is inserted. Users can
access elements by their integer index (position in the list), and search for elements in the list. Unlike
sets, lists usually allow dupilicate elements.

Implementations of the List Interface

The Java Collections Framework provides three implementations of List interface:

1. ArrayList

An ArrayList is an array which grows dynamically and provides an ordered collection (by index),
but not sorted. Array lists give you fast iteration and fast random access.

2. Vector

A Vector (legacy class) is basically the same as an ArrayList, but Vector methods are synchronized
for thread safety (i.e., programs that have multiple processes).

3. LinkedList

A LinkedList is ordered by index position, like ArrayList, except that the elements are doubly-
linked to one another. This linkage gives you new methods (beyond what you get from the List
interface) for adding and removing from the beginning or end, which makes it an easy choice for
implementing a stack or queue.

Keep in mind that a LinkedList may iterate more slowly than anArrayList, but it’s a good choice when
you need fast insertion and deletion. Moreover, as of Java 5,the LinkedList class has been enhanced to
implement thejava.util.Queue interface. As such, it now supports the common queue methods:
peek(), poll(), and offer().

The Set Interface

The set interface builds upon methods declared in the collections interface, i.e.,

public interface Set<E> extends Collection<E> {

// Basic operations
int size();
boolean isEmpty();
boolean contains(Object element);
boolean add(E element);
boolean remove(Object element);
Iterator<E> iterator();

// Bulk operations
boolean containsAll(Collection<?> c);
boolean addAll(Collection<? extends E> c);
boolean removeAll(Collection<?> c);
boolean retainAll(Collection<?> c);

14 Engineering Software Development in Java

void clear();

// Array Operations
Object[] toArray();
<T> T[] toArray(T[] a);

}

and defines methods for ...

... creating and working with a collection that contains no duplicate elements.

Implementations of the Set Interface

The Java Collections Framework provides three implementations of Set interface:

1. HashSet

A HashSet is an unsorted, unordered Set. It uses the hashcodeof the object being inserted, so the
more efficient your hashCode() implementation the better access performance you’ll get.

Use this class when you want a collection with no duplicates and you don’t care about order when
you iterate through it.

2. LinkedHashSet

A LinkedHashSet is an ordered version of HashSet that maintains a doubly-linked List across all
elements.

Use this class instead of HashSet when you care about the iteration order. When you iterate
through a HashSet the order is unpredictable, while a LinkedHashSet lets you iterate through the
elements in the order in which they were inserted.

2. TreeSet

The TreeSet is one of two sorted collections (the other beingTreeMap). It uses a Red-Black tree
structure to guarantee that the elements will be in ascending order, according to natural order.

Optionally, you can construct a TreeSet with a constructor that lets you give the collection your
own rules for what the order should be (rather than relying onthe ordering defined by the ele-
ments’ class) by using a Comparable or Comparator.

As of Java 6, TreeSet implements NavigableSet.

Chapter 11 15

The Map Interface

The Map interface, i.e.,

public interface Map<K,V> {

// Basic operations
V put(K key, V value);
V get(Object key);
V remove(Object key);
boolean containsKey(Object key);
boolean containsValue(Object value);
int size();
boolean isEmpty();

// Bulk operations
void putAll(Map<? extends K, ? extends V> m);
void clear();

// Collection Views
public Set<K> keySet();
public Collection<V> values();
public Set<Map.Entry<K,V>> entrySet();

// Interface for entrySet elements
public interface Entry {

K getKey();
V getValue();
V setValue(V value);

}
}

is an object that maps keys to values (i.e., key/value or name/value pairs). A map cannot contain dupli-
cate keys; each key can map to at most one value.

The Map interface provides three collection views, which allow a map’s contents to be viewed as ...

... a set of keys, collection of values, or set of key-value mappings.

Implementations of the Map Interface

Implementations of the Map interface let you do things like:

• Search for a value based on the key,

• Ask for a collection of just the values, or

• Ask for a collection of just the keys.

The order of a map is defined as the order in which the iteratorson the map’s collection views return
their elements. Some map implementations, like the TreeMapclass, make specific guarantees as to their
order; others, like the HashMap class, do not.

The Java Collections Framework provides three implementations of Map interface:

16 Engineering Software Development in Java

1. HashMap

The HashMap gives you an unsorted, unordered Map.

When you need a Map and you don’t care about the order (when youiterate through it), then
HashMap is the way to go.

HashMap allows one null key and multiple null values in a collection.

2. Hashtable

Like Vector, Hashtable has existed from prehistoric Java times.

Hashtable is the synchronized counterpart to HashMap.

Note, however, that unlike HashMap, Hashtable doesn’t let you have anything that’s null.

3. LinkedHashMap

Like its Set counterpart, LinkedHashSet, the LinkedHashMap collection maintains insertion order
(or, optionally, access order). Although it will be somewhat slower than HashMap for adding and
removing elements, you can expect faster iteration with a LinkedHashMap.

4. TreeMap

You can probably guess by now that a TreeMap is a sorted Map. And you already know that by
default, this means ”sorted by the natural order of the elements.”

Like TreeMap lets you define a custom sort order (via a Comparable or Comparator) when you
construct a TreeMap, that specifies how the elements should be compared to one another when
they’re being ordered.

As of Java 6, TreeMap implements NavigableMap.

Like Sets, Maps rely on the equals() method to determine whether two keys are the same or different.

Chapter 11 17

The Queue Interface

A Queue is a collection for holding elements prior to processing in some way. Queues are
typically thought of as ...

... FIFO (first-in, first-out), but other orders are possible.

Besides basic Collection operations, queues provide additional insertion, removal, and inspection
operations. The Queue interface is as follows;

public interface Queue<E> extends Collection<E> {
E element();
boolean offer(E e);
E peek();
E poll();
E remove();

}

The collections framework provides a priority queue implementation:

1. PriorityQueue

The PriorityQueue class was introduced with the release of Java 5.

Since the LinkedList class has been enhanced to implement the Queue interface, basic queues can
be handled with a LinkedList.

The purpose of a PriorityQueue is to create ...

... a ”priority-in, priority out” queue as opposed to a typic al FIFO queue.

A PriorityQueue’s elements are ordered either by natural ordering (in which case the elements that
are sorted first will be accessed first) or according to a Comparator. In either case, the elements’
ordering represents their relative priority.

18 Engineering Software Development in Java

11.4 Working with Array Lists and Linked Lists

An arraylist is an object that provides ...

... a resizable-array implementation of the List interface.

Arraylists haveone major constraint:

... they can only store references to objects, not primitives.

So, for example, an array list can store a collection of String objects, but cannot store a list of (primitive)
floats or ints.

Otherwise, arraylists are straightforward. The fragment of code:

ArrayList grocery = new ArrayList();

creates an empty arraylist object. To add an object to the arraylist, we call the add() method, passing a
reference to the objects we want to store. Let’s add a few items to our grocery list,

grocery.add ("Bread");
grocery.add ("Milk");
grocery.add ("Cheese");

The arraylist gives each element an index number. Like regular arrays, the first element has index
number 0, the next is 1, and so forth. We can retrieve and printthe individual grocery items with:

System.out.println ("Item 1: " + grocery.get(0));
System.out.println ("Item 2: " + grocery.get(1));
System.out.println ("Item 3: " + grocery.get(2));

Thesize() method (e.g., grocery.size()) returns the number of elements in the arraylist.

Now let’s repeat the grocery list assembly, but define separate String objects first. For example,

String item1 = "Bread";
String item2 = "Milk";
String item3 = "Cheese";

ArrayList grocery = new ArrayList();
grocery.add (item1);
grocery.add (item2);
grocery.add (item3);

The variables item1, item2, and item3 are references to the respective String objects. When we call the
add() method, we pass a reference to the String objects. Arraylist does not make a copy of the object
– instead there is only one copy of each String object, and thearray list only stores a reference to that
object. This results in the layout memory shown in Figure 11.5.

Chapter 11 19

String Objects

item1

item2

item3

"Bread"

"Milk"

"Cheese"

grocery
0 1 2

ArrayList Object

Figure 11.5.Layout of memory for arraylist of grocery items.

y

1 2 3 4 5 6

1

2

3

4

x

Figure 11.6.Spatial layout of circle, rectangle and triangle shapes.

20 Engineering Software Development in Java

11.5 Example 1. Arraylist of Shapes

In Chapter?? we we used the fragment of code,

Shape s[] = new Shape [3];

s[0] = new Rectangle(3.0, 3.0, 2.0, 2.0);
s[1] = new Circle(1.0, 2.0, 2.0);
s[2] = new Rectangle(2.5, 2.5, 2.0, 2.0);

to create an array of abstract shapes implemented as combinations of circles and rectangles.

The following program builds upon this idea, and uses an arraylist to store a grid of rectangle,
circle and triangle shapes as shown in Figure 11.6. The smalland large rectangles have sidelength
0.25 and 0.5 respectively. The small and large circles have radius 0.5 and 1.0 respectively. Circle and
rectangle shapes are positioned at their center points. Triangles are defined by the position of the three
nodal/corner points.

Here is the source code:

/*
* ==

* ShapeGrid.java: Use an array list to store items in a grid of

* spatially arranged shapes.

*
* Written By: Mark Austin December 2009

* ==

*/

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

public class ShapeGrid {
public static void main (String args[]) {

// Create and initialize a grid of ten shapes

List shapes = new ArrayList();

Shape s0 = new Rectangle(0.25, 0.25, 1.0, 2.0);
Shape s1 = new Rectangle(0.25, 0.25, 2.0, 1.0);
Shape s2 = new Rectangle(0.25, 0.25, 3.0, 0.0);
Shape s3 = new Circle (0.5, 3.0, 2.0);
Shape s4 = new Circle (1.0, 4.0, 3.0);
Shape s5 = new Triangle ("t1", 2.0, 3.0, 3.0, 4.0, 2.0, 4.0);
Shape s6 = new Triangle ("t2", 4.0, 1.0, 5.0, 1.0, 5.0, 2.0);
Shape s7 = new Rectangle(0.5, 0.5, 4.0, 5.0);
Shape s8 = new Rectangle(0.5, 0.5, 5.0, 4.0);
Shape s9 = new Rectangle(0.5, 0.5, 6.0, 3.0);

// Add shapes to the array list

Chapter 11 21

shapes.add(s0); shapes.add(s1);
shapes.add(s2); shapes.add(s3);
shapes.add(s4); shapes.add(s5);
shapes.add(s6); shapes.add(s7);
shapes.add(s8); shapes.add(s9);

// Print details of individual shapes in the grid

System.out.println("Grid of spatially arranged shapes");
System.out.println("---------------------------------");

for (int ii = 1; ii <= shapes.size(); ii = ii + 1)
System.out.println (shapes.get(ii-1).toString());

System.out.println("---------------------------------");

// Compute and print total shape area

double dArea = 0.0;
for (int ii = 1; ii <= shapes.size(); ii = ii + 1) {

Shape s = (Shape) shapes.get(ii-1);
dArea = dArea + s.area();

}

System.out.println("");
System.out.printf("Total Area = %10.2f\n", dArea);
System.out.println("---------------------------------");

}
}

The abbreviated output is as follows:

prompt >>
prompt >> java ShapeGrid
Grid of spatially arranged shapes

Rectangle : Side1 = 0.25 Side2 = 0.25
Rectangle : Side1 = 0.25 Side2 = 0.25
Rectangle : Side1 = 0.25 Side2 = 0.25
Circle : Radius = 0.5 [x,y] = [3.0,2.0]
Circle : Radius = 1.0 [x,y] = [4.0,3.0]

... details of triangle and rectangle output removed

Total Area = 5.86

Key points to note are as follows:

1. We can combine the tasks of shape creation and addition to thearraylist into a single statement. For
example,

shapes.add(new Rectangle(0.25, 0.25, 1.0, 2.0));

22 Engineering Software Development in Java

2. The looping construct:

for (int ii = 1; ii <= shapes.size(); ii = ii + 1) {
Shape s = (Shape) shapes.get(ii-1);
dArea = dArea + s.area();

}

walks along the array list, retrieves the (ii-1)th item, then computes the required operation. While
this approach is very straightforward, it is slow primarilybecause the operation

shapes.get(ii-1)

has to start at the list and walk to the (ii-1) item.

A faster approach is to use Iterators. The corresponding implementation looks like:

Iterator iterator1 = shapes.iterator();
while (iterator1.hasNext() != false) {

Shape s = (Shape) iterator1.next();
dArea = dArea + s.area();

}

Now the iterator simply walks along the list once and computes the required operation.

11.6 Example 2. Create and Sort an Arraylist Folded Boxes

In the following script of code we create an arraylist of folded box objects (see the classes and
objects chapter for details),

Folded Box: Name Length (in) Width (in) Height (in)

Match 2.0 1.0 0.5
Shoe 12.0 8.0 7.0

Packing 36.0 36.0 36.0
Gift 12.0 12.0 5.0

Dumpster 72.0 48.0 48.0

and then use inner classes implemented with acomparator interface to sort and print the collection
ranked according to surface area and volume.

The source code is as follows:

Chapter 11 23

/*
* ===

* FoldedBoxArray.java: Create and sort an arraylist of folded box objects.

*
* Written By: Mark Austin May 2007

* ===

*/

import java.util.*;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

public class FoldedBoxArray {
ArrayList boxes = new ArrayList();

// Sort boxes by surface area

public void sortBySurfaceArea() {
Collections.sort(boxes, new areaCompare());

}

class areaCompare implements Comparator {
public int compare(Object o1, Object o2) {

FoldedBox b1 = (FoldedBox) o1;
FoldedBox b2 = (FoldedBox) o2;
if (b1.surfaceArea() == b2.surfaceArea())

return 0;
else if (b1.surfaceArea() > b2.surfaceArea())

return 1;
else

return -1;
}

}

// Sort boxes by volume

public void sortByVolume() {
Collections.sort(boxes, new volumeCompare());

}

class volumeCompare implements Comparator {
public int compare(Object o1, Object o2) {

FoldedBox b1 = (FoldedBox) o1;
FoldedBox b2 = (FoldedBox) o2;
if (b1.volume() == b2.volume())

return 0;
else if (b1.volume() > b2.volume())

return 1;
else

return -1;
}

}

// ===

24 Engineering Software Development in Java

// Create an array list of folded box objects
// ===

public static void main (String args []) {

// Create an object of type folded box array

FoldedBoxArray fba = new FoldedBoxArray();

// Create and initialize folded box objects

FoldedBox fbMatch = new FoldedBox ("Match", 2.0, 1.0, 0.5);
FoldedBox fbShoe = new FoldedBox ("Shoe", 12.0, 8.0, 7.0);
FoldedBox fbPacking = new FoldedBox("Packing", 36.0, 36.0, 36.0);
FoldedBox fbGift = new FoldedBox("Gift", 12.0, 12.0, 5.0);
FoldedBox fbDumpster = new FoldedBox("Dumpster", 72.0, 48.0, 48.0);

// Add boxes to the array list

fba.boxes.add(fbMatch);
fba.boxes.add(fbShoe);
fba.boxes.add(fbPacking);
fba.boxes.add(fbGift);
fba.boxes.add(fbDumpster);

// Walk along unsorted list and print details

System.out.println("Open folded boxes ");
System.out.println("=============================");

for (int i = 0; i < fba.boxes.size(); i = i + 1) {
FoldedBox fp = (FoldedBox) fba.boxes.get(i);
System.out.println(fp.toString());

}

// Sort and print list by volume...

fba.sortByVolume();

System.out.println("Folded boxes sorted by volume ");
System.out.println("============================= ");

for (int i = 0; i < fba.boxes.size(); i = i + 1) {
FoldedBox fp = (FoldedBox) fba.boxes.get(i);
System.out.println(fp.toString());

}

// Sort and print list by surface area...

fba.sortBySurfaceArea();

System.out.println("Folded boxes sorted by surface area ");
System.out.println("=================================== ");

for (int i = 0; i < fba.boxes.size(); i = i + 1) {

Chapter 11 25

FoldedBox fp = (FoldedBox) fba.boxes.get(i);
System.out.println(fp.toString());

}
}

}

The abbreviated input and output is as follows:

prompt >> java FoldedBoxArray
Open folded boxes
=============================
FoldedBox: Match
Volume = 1.0
Surface Area = 5.0

.... output removed ...

FoldedBox: Dumpster
Volume = 165888.0
Surface Area = 14976.0

Folded boxes sorted by volume
=============================
FoldedBox: Match
Volume = 1.0
Surface Area = 5.0

FoldedBox: Shoe
Volume = 672.0
Surface Area = 376.0

.... output removed ...

FoldedBox: Dumpster
Volume = 165888.0
Surface Area = 14976.0

Folded boxes sorted by surface area
===================================
FoldedBox: Match
Volume = 1.0
Surface Area = 5.0

.... Output is as for sort by surface area ...

prompt >>
prompt >> exit

Points to note:

1. This program uses the FoldedBox class provided in Chapter 8.areaCompare and volumeCompare
are inner classes. Hence, the files before and after compilation are as follows:

26 Engineering Software Development in Java

Before Compilation After Compilation
===
FoldedBox.java FoldedBox.class
FoldedBoxArray.java FoldedBox.java

FoldedBoxArray$areaCompare.class
FoldedBoxArray$volumeCompare.class
FoldedBoxArray.class
FoldedBoxArray.java

===

2. The first thing that main() does is create an object of type FoldedBoxArray.

3. FoldedBoxArray creates objects of type FoldedBox(), the same code as in Section??.

4. The methods sortByVolume() and sortBySurfaceArea() take care of the arraylist sorting. However,
since an object of type FoldedBoxArray exits, the method calls need to be:

fba.sortByVolume();
fba.sortBySurfaceArea();

areaCompare andvolumeCompare are inner classses that implement theComparator
interface specification. Each class provides details for a method compare that sysematically com-
pares the surface area and volume properties of two folded box objects.

5. An example of sorting with Collections can be found on the class web page, in Family.java, which
creates an arraylist of person objects for the Simpsons.

Chapter 11 27

11.7 Working with Maps

Maps are objects that ...

... map keys onto values.

Keys cannot be duplicated. Maps have three collection views, a set of keys, a collection of values, and
a set of key-value mappings. Some maps have a guaranteed order, but not all do.

HashMaps.HashMaps provide ...

... a hashtable-backed implementation of the Map interface.

Under ideal circumstances (no collisions), HashMap offersO(1) performance. Worst case performance
(very unlikely) is O(n) – this occurs when all keys map to the same hash code.

HashMap is part of the JDK Collections API. It differs from Hashtable (now deprecated/out-
of-date) in that it accepts the null key and null values, and it does not support Enumeration views. Also,
it is not synchronized. If you plan to use it in multiple threads, consider using:

Map m = Collections.synchronizedMap(new HashMap(...));

TreeMaps. The treemap algorithms are adopted from Cormen, Leiserson,and Rivest’sIntroduction to
Algorithms text [1] and provide:

... a red-black tree implementation of the SortedMap interface.

Elements in the Map will be sorted by either a user-provided Comparator object, or by the natural
ordering of the keys.

A redblack tree is a type of self-balancing (or reasonably balanced) binary search tree, typically
to implement associative arrays. As illustrated in Figure 11.7, the following requirements apply to
redblack trees:

1. A node is either red or black.

2. The root is black.

3. All leaves are the same color as the root.

4. Both children of every red node are black.

5. Every simple path from a given node to any of its descendant leaves contains the same number of
black nodes.

28 Engineering Software Development in Java

Figure 11.7.Schematic for a small red-black tree.

These constraints work together to ensure that the path fromthe root to the furthest leaf is no more than
twice as long as the path from the root to the nearest leaf. Theresult is that the tree is roughly balanced.
Since operations such as inserting, deleting, and finding values require worst-case time proportional to
the height of the tree, this theoretical upper bound on the height allows redblack trees to be efficient,
even in the worst-case.

Figure 11.8 illustrates the assembly and incremental balancing of a larger red-black tree. The
complexity of implementation is justified by good worst-case running time for its operations and overall
efficiency in practice. It can search, insert, and delete items in O(log N) time, where N is the total
number of elements in the tree. It is important to keep in mind, however, that there is a large constant
in front of ”log n” (overhead involved in keeping the tree balanced). As a result, TreeMap may not
be the best choice for small collections. If something is already sorted, you may want to just use a
LinkedHashMap to maintain the order while providing O(1) access.

TreeMap is a part of the JDK Collections API. Null keys are allowed only if a Comparator is
used which can deal with them; natural ordering cannot cope with null. Null values are always allowed.
Note that the ordering must beconsistent with equals to correctly implement the Map interface. If this
condition is violated, the map is still well-behaved, but you may have suprising results when comparing
it to other maps.

And like HashMap, the implementation of TreeMap is not synchronized. If you need to share
this between multiple threads, do something like:

SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));

Example 1. Create a Simple HashMap of Strings

In this example we create ...

... a hashmap between the social security number for an employee, represented in a
string format, and a reference to the employee object.

Chapter 11 29

Figure 11.8.Schematic for assembly and incremental balancing of a red-black tree.

30 Engineering Software Development in Java

This program demonstrates most of the useful map operations: (1) adding new relationships to the map,
(2) printing the contents of the map, (3) removing an entry, (4) replacing an entry, (5) finding an entry,
and (6) iterating through all of the entries in the map.

A stripped-down version of the Employees class is as follows:

source code

/**
* ==

* Employee.java. A minimalist employee class for testing purposes.

* ==

*/

public class Employee {
private String name;
private double salary;

public Employee(String n) {
name = n;
salary = 0;

}

public String toString() {
return "[name=" + name + ", salary=" + salary + "]";

}
}

And the source code for assembling and testing the hashmap is:

source code

/**
* ==

* TestHashMap.java. This program demonstrates the use of a map with

* key type String and value type Employee.

*
* Author: Cay Horstmann.

* Modified by: Mark Austin

* ==

*/

import java.util.*;

public class TestHashMap {
public static void main(String[] args) {

// Create and populate the hash map

Map<String, Employee> staff = new HashMap<String, Employee>();

staff.put("144-25-5464", new Employee("Amy Lee"));
staff.put("567-24-2546", new Employee("Harry Hacker"));

Chapter 11 31

staff.put("157-62-7935", new Employee("Gary Cooper"));
staff.put("456-62-5527", new Employee("Francesca Cruz"));

// Print all entries

System.out.println("Print all entries in the HashMap as a set");
System.out.println("===");

System.out.println(staff);

// Remove an entry

System.out.println("Remove entry with id = 567-24-2546");
staff.remove("567-24-2546");

// Replace an entry

System.out.println("Replace entry with id = 456-62-5527");
staff.put("456-62-5527", new Employee("Francesca Miller"));

// Look up a value

System.out.println("Find employee with id 157-62-7935");
System.out.println("=================================");

System.out.println(staff.get("157-62-7935"));

// Iterate through all entries

System.out.println("Iterate over the Hashmap Entries ");
System.out.println("=================================");

for (Map.Entry<String, Employee> entry : staff.entrySet()) {
String key = entry.getKey();
Employee value = entry.getValue();
System.out.println("key = " + key + ", value = " + value);

}

System.out.println("=================================");
}

}

And here is the program output (slightly reformatted):

Print all entries in the HashMap as a set
===
{ 157-62-7935=[name=Gary Cooper, salary=0.0],

567-24-2546=[name=Harry Hacker, salary=0.0],
144-25-5464=[name=Amy Lee, salary=0.0],
456-62-5527=[name=Francesca Cruz, salary=0.0] }

Remove entry with id = 567-24-2546
Replace entry with id = 456-62-5527

32 Engineering Software Development in Java

Find employee with id 157-62-7935
=================================
[name=Gary Cooper, salary=0.0]

Iterate over the Hashmap Entries
=================================
key = 157-62-7935, value = [name=Gary Cooper, salary=0.0]
key = 144-25-5464, value = [name=Amy Lee, salary=0.0]
key = 456-62-5527, value = [name=Francesca Miller, salary=0.0]
=================================

Points to note are as follows:

1. The statement:

Map<String, Employee> staff = new HashMap<String, Employee>();

creates an empty hashmap. The use of Java Generics prevents relationships from being added to
the map that are not a String, Employee pair.

2. Hashmaps have their own toString() method. Hence, the statement:

System.out.println(staff);

creates and prints a string representation of the entries inthe hashmap.

Example 2. Use HashMap and TreeMap to Count Frequency of Words in Document

The following program reads a stream of words from the keyboard. We use a hashmap to store
words and their frequency of usage. Then, we use a treemap to order the mapping.

The source code is follows:

source code

/*
* ==

* CountWordFrequency: Count frequency of words in text read from keyboard.

* ==

*/

import java.util.*;

public class CountWordFrequency {
public static void main(String args[]) {

Map map = new HashMap();
Integer ONE = new Integer(1);

// Read stream of input from keyboard ..

Chapter 11 33

for (int i=0, n=args.length; i<n; i++) {
String key = args[i];
Integer frequency = (Integer)map.get(key);
if (frequency == null) {

frequency = ONE;
} else {

int value = frequency.intValue();
frequency = new Integer(value + 1);

}
map.put(key, frequency);

}

// Print (unordered) contents of map ..

System.out.println("HashMap of [word, frequency] usage");
System.out.println("====================================");

System.out.println(map);

// Create and print an ordered treemap...

System.out.println("TreeMap of [word, frequency] usage");
System.out.println("====================================");

Map sortedMap = new TreeMap(map);
System.out.println(sortedMap);

System.out.println("====================================");
}

}

For the stream of text:

This is the test file. Here is a short sentence in the English
language that contains all twenty six letters. The quick brown fox
jumps over the lazy dog.

the (edited) program output is as follows:

prompt >>
prompt >> java CountWordFrequency This is the test file. Here is the ... etc.

HashMap of [word, frequency] usage
====================================
{ short=1, fox=1, test=1, letters.=1, quick=1, sentence=1, contains=1, a=1,

dog.=1, This=1, six=1, The=1, over=1, Here=1, all=1, file.=1, is=2, jumps=1,
the=3, in=1, English=1, that=1, twenty=1, brown=1, language=1, lazy=1}

TreeMap of [word, frequency] usage
====================================
{ English=1, Here=1, The=1, This=1, a=1, all=1, brown=1, contains=1, dog.=1, file.=1,

34 Engineering Software Development in Java

Integer objects

1

2

4the

jumps

dog

fox

is

Map: key, value pairs

Figure 11.9. Schematic of key,value pairs and connection to word frequency modeled as references to
integer objects.

fox=1, in=1, is=2, jumps=1, language=1, lazy=1, letters.=1, over=1,
quick=1, sentence=1, shortest=1, six=1, test=1, that=1, the=4, twenty=1}

====================================

Notice that the hashmap contents are printed according to the [key, value] pairs, where key is the word
being stored and value is a reference to an object of type Integer storing the word frequency. Figure
11.9 is a partially complete schematic for the map contents.Generally speaking, a user will not need to
know these details.

The treemap constructor takes the hashmap as an argument – this is an example of a treemap
being created from another collection – and creates and ordered mapping. A more sophisticated imple-
mentation would remove the punctuation symbols (e.g., dog.) from the words.

Example 3. Use a Comparator to Order a TreeMap of Employees

In this example we use customized comparators to affect the ordering of items in a treemap of
university employees. The source code is divided into threefiles:

1. Employees.java – a simple definition for an employee,

2. EmployeeCoparator.java – an implementation of the Comparator interface to order employees, and

3. TestUniversity.java – source code to assemble the employees and systematically build the treeset
according to three strategies.

Employee.java.The details of Employee.java are as follows:

Chapter 11 35

source code

/*
* ===

* Employee.java: Create objects for company employees...

* ===

*/

import java.util.Comparator;

public class Employee implements Comparable {
String department, name;

public Employee(String department, String name) {
this.department = department;
this.name = name;

}

public String getDepartment() {
return department;

}

public String getName() {
return name;

}

public String toString() {
return "\n [dept = " + department + ", name = " + name + "]";

}

public int compareTo(Object obj) {
Employee emp = (Employee) obj;
int deptComp = department.compareTo(emp.getDepartment());

return ((deptComp == 0) ? name.compareTo(emp.getName()) : deptComp);
}

public boolean equals(Object obj) {
if (!(obj instanceof Employee)) {

return false;
}
Employee emp = (Employee) obj;
return department.equals(emp.getDepartment())

&& name.equals(emp.getName());
}

public int hashCode() {
return 31 * department.hashCode() + name.hashCode();

}
}

The statement:

int deptComp = department.compareTo(emp.getDepartment());

36 Engineering Software Development in Java

evaluates to zero when both employees belong to the same department. Then, the syntax:

((deptComp == 0) ? name.compareTo(emp.getName()) : deptComp);

is equivalent to:

if (deeptComp == 0)
return name.compareTo(emp.getName();

else
return deptComp;

A summary of the strategy is as follows: first, the compareTo() method compares employees based
on the department to which they belong. For those cases wheretwo employees belong to the same
department, employees are ordered alphabetically by name.

EmployeeComparator.java. The following class compares the names of company employees. When
two employees have the same name, then they are ranked according to department.

source code

/*
* ===

* EmployeeComparator.java: Class for comparing the names of company

* employees. If two employees have the same name, then they are

* ranked according to department.

* ===

*/

import java.util.Comparator;

public class EmployeeComparator implements Comparator {

public int compare(Object obj1, Object obj2) {
Employee emp1 = (Employee) obj1;
Employee emp2 = (Employee) obj2;

int nameComp = emp1.getName().compareTo(emp2.getName());

return ((nameComp == 0) ? emp1.getDepartment().compareTo(
emp2.getDepartment()) : nameComp);

}
}

TestUniversity.java. And finally, the details of TestUniversity.java are as follows:

source code

/*
* ==

* TestUniversity.java: Assemble university employees into a variety of

Chapter 11 37

* treeset organizations.

* ==

*/
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;

public class TestUniversity {
public static void main(String args[]) {

// Define employees at the University of Maryland ...

Employee e01 = new Employee("ISR/Finance", "Strahan, Jason");
Employee e02 = new Employee("ISR", "Sutton, Steve");
Employee e03 = new Employee("ISR", "Coriale, Jeff");
Employee e04 = new Employee("ISR", "Austin, Mark");
Employee e05 = new Employee("CEE", "Austin, Mark");
Employee e06 = new Employee("ISR", "Lovell, David");
Employee e07 = new Employee("CEE", "Lovell, David");
Employee e08 = new Employee("ISR", "Ghodssi, Reza");
Employee e09 = new Employee("ECE", "Ghodssi, Reza");
Employee e10 = new Employee("CEE", "Baecher, Greg");
Employee e11 = new Employee("CEE", "Haghani, Ali");
Employee e12 = new Employee("CEE", "Gabriel, Steve");

// Define arry of reference to employees

Employee emps[] = { e01, e02, e03, e04, e05, e06,
e07, e08, e09, e10, e11, e12 };

// Part 1. Assemble treeset from array of objects.

System.out.println("Part 01: Create Treeset based on array of employees");
System.out.println("===");

Set set01 = new TreeSet(Arrays.asList(emps));
System.out.println(set01);

// Part 2. Now use Collection.reverseOrder() method to reverse treeset
// assembly.

System.out.println("\nPart 02: Reverse order assembly of items in TreeSet ");
System.out.println("===");

Set set02 = new TreeSet(Collections.reverseOrder());
set02.addAll(Arrays.asList(emps));
System.out.println(set02);

// Part 3. Use EmployeeComparator to order items in Treeset.

System.out.println("\nPart 03: Use EmployeeComparator to Order TreeSet items");
System.out.println("==");

38 Engineering Software Development in Java

Set set03 = new TreeSet(new EmployeeComparator());
for (int i = 0, n = emps.length; i < n; i++) {

set03.add(emps[i]);
}
System.out.println(set03);

System.out.println("==");
}

}

The program output is as follows:

Part 01: Create Treeset based on array of employees
===
[
[dept = CEE, name = Austin, Mark],
[dept = CEE, name = Baecher, Greg],
[dept = CEE, name = Gabriel, Steve],
[dept = CEE, name = Haghani, Ali],
[dept = CEE, name = Lovell, David],
[dept = ECE, name = Ghodssi, Reza],
[dept = ISR, name = Austin, Mark],
[dept = ISR, name = Coriale, Jeff],
[dept = ISR, name = Ghodssi, Reza],
[dept = ISR, name = Lovell, David],
[dept = ISR, name = Sutton, Steve],
[dept = ISR/Finance, name = Strahan, Jason]]

Part 02: Reverse order assembly of items in TreeSet
===
[
[dept = ISR/Finance, name = Strahan, Jason],
[dept = ISR, name = Sutton, Steve],
[dept = ISR, name = Lovell, David],
[dept = ISR, name = Ghodssi, Reza],
[dept = ISR, name = Coriale, Jeff],
[dept = ISR, name = Austin, Mark],
[dept = ECE, name = Ghodssi, Reza],
[dept = CEE, name = Lovell, David],
[dept = CEE, name = Haghani, Ali],
[dept = CEE, name = Gabriel, Steve],
[dept = CEE, name = Baecher, Greg],
[dept = CEE, name = Austin, Mark]]

Part 03: Use EmployeeComparator to Order TreeSet items
==
[
[dept = CEE, name = Austin, Mark],
[dept = ISR, name = Austin, Mark],
[dept = CEE, name = Baecher, Greg],
[dept = ISR, name = Coriale, Jeff],
[dept = CEE, name = Gabriel, Steve],
[dept = ECE, name = Ghodssi, Reza],

Chapter 11 39

[dept = ISR, name = Ghodssi, Reza],
[dept = CEE, name = Haghani, Ali],
[dept = CEE, name = Lovell, David],
[dept = ISR, name = Lovell, David],
[dept = ISR/Finance, name = Strahan, Jason],
[dept = ISR, name = Sutton, Steve]]

==

Key points to note:

1. The pair of statements:

Set set01 = new TreeSet(Arrays.asList(emps));
System.out.println(set01);

in Part 1 employ the comparable interface, i.e.,

public interface Comparable {
public int compareTo(Object o)

}

and the methodcompareTo() to impose a total ordering of Employee objects. This ordering is
referred to as the class’s natural ordering, and the class’scompareTo method is referred to as its
natural comparison method. As previously explained, employees are first ordered by name of the
department to which they belong (e.g., CEE, ISR, ECE) and then by their name. The statement

System.out.println(set01);

is equivalent to:

System.out.println(set01.toString());

2. Part 2 uses the Collection.reverseOrder() method to reverse default ordering in the treeset. The
TreeSet class has access to Collections methods because it implements the Set interface, which in
turn, subclasses the Collections interface.

3. Part 3 uses the custom EmployeeComparator() to order items in treeset. In contrast to Part 1,
employees are first ordered by name, then by the departments to which they belong.

40 Engineering Software Development in Java

Example 4: Create HashMap for Point(x,y)-Value Pairs

This section demonstrates how hashmaps can store mappings from (x,y) coordinates to values.
In a sparse matrix or spreadsheet application, the values x and y would correspond to the row and column
numbers. In a geography application, (x,y) values might correspond to latitude and longitude and the
value might represent a physical quantity associated with that location – elevation, measured rainfall,
and so forth.

Figure 11.10 shows the mapping of four coordinate pairs to four values.

3

1.0

3.0

4.0

2.0

Y

X1 2 3 4

1

2

Figure 11.10.Hashmap for storing point(x,y) - double value pairs.

The source code to setup and print the mapping relationship is as follows:

source code

/*
* ===

* TestHashMapPoint.java: Create and print (x,y) coordinate point to double

* value map.

*
* Written By: Mark Austin March, 2013

* ===

*/

import java.awt.Point;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;

public class TestHashMapPoint {

// Print details of (x,y) coordinate point-to-double mapping ...

private static void printHashMap(Map<Point, Double> map, final String message) {

Chapter 11 41

System.out.println("Begin: " + message);
System.out.println("---");

final Iterator iterator = map.keySet().iterator();
while (iterator.hasNext()) {

final Point key = (Point) iterator.next();
final Double value = map.get(key);

System.out.println(key + " " + value.toString());
}

System.out.println("---");
System.out.println("End: " + message);

}

// Exercise methods in (x,y) coordinate point-to-double mapping ...

public static void main(String[] args) {

// Part 01: Create point-to-double hashmap ...

System.out.println("Part 01: Build simple hashmap<Point,Double>");
Map<Point, Double> map = new HashMap<Point, Double>();

// Add data to the hashmap

Point key01 = new Point(1, 1);
Double val01 = new Double(1.0);
Point key02 = new Point(1, 3);
Double val02 = new Double(2.0);
Point key03 = new Point(4, 2);
Double val03 = new Double(3.0);
Point key04 = new Point(3, 1);
Double val04 = new Double(4.0);

map.put(key01, val01);
map.put(key02, val02);
map.put(key03, val03);
map.put(key04, val04);

// Print details of hashmap ...

printHashMap(map, "Map (x,y) coordinate --> double value");

// Part 02: Create point-to-double hashmap ...

System.out.println("");
System.out.println("Part 02: Demonstrate that points must be unique .. ");

// Modify mappings for (1,1) and (1,3)

map.put(new Point(1, 1), new Double(5.0));
map.put(new Point(1, 3), new Double(6.0));

// Print details of hashmap ...

42 Engineering Software Development in Java

printHashMap(map, "Map (x,y) coordinate --> double value");

}
}

The program output is as follows:

prompt >>
Part 01: Build simple hashmap<Point,Double>
Begin: Map (x,y) coordinate --> double value

java.awt.Point[x=4,y=2] 3.0
java.awt.Point[x=1,y=1] 1.0
java.awt.Point[x=1,y=3] 2.0
java.awt.Point[x=3,y=1] 4.0

End: Map (x,y) coordinate --> double value

Part 02: Demonstrate that points must be unique ..
Begin: Map (x,y) coordinate --> double value

java.awt.Point[x=4,y=2] 3.0
java.awt.Point[x=1,y=1] 5.0
java.awt.Point[x=1,y=3] 6.0
java.awt.Point[x=3,y=1] 4.0

End: Map (x,y) coordinate --> double value
prompt >>

Key points to note:

1. The statement:

Map<Point, Double> map = new HashMap<Point, Double>();

creates a hashmap that will map keys of typejava.awt.Point to values of typeDouble.
The use ofjava.awt.Point is simply a convenience – you could just as well define a class
Coordinate of the type:

public class Coordinate {
double dX, dY;

.... etc
}

and use

Chapter 11 43

Map<Coordinate, Double> map = new HashMap<Coordinate, Double>();

instead.

2. Within the methodprintHashMap(...) the line:

System.out.println(key + " " + value.toString());

systematically assembles a character string to be assembled. When the method argument is tra-
versed from left to right, the argument key (of type java.awt.Point) is automatically converted to
an entity of type String (i.e., key.toString()) and then concatenated to the second argument. The
elementvalue.toString() explicitly defines that a string will be generated for the value.

3. HashMap key-value relationships need to be unique. The principal purpose of Part 2 is to test
that this requirement is maintained. We systematically attempt to give the keyPoint(1,1)
the value 5.0 while maintaining the original value, 1.0. This fails. A similar story applies to the
statement:

map.put(new Point(1, 3), new Double(6.0));

Example 5: Demonstrate DeepCopy for a HashMap

This example demonstrates the difference between shallow-and deep- copies of a java collec-
tion. As previously noted:

1. A shallow copyduplicates the structure of the original collection, but not the elements contained in
the collection. In other words, a shallow copy replicates the structure and referenes to objects.

As such, in a shallow copy, both the original collection and its copy will share access to the
original elements.

2. In adeep copy, both the elements and the element structure will be replicated.

Creating a deep copy of a java collection is often a lot easiersaid than done, since this requires a copy
of the basic organizing mechanism (e.g., a map structure or an arraylist structure) plus copies of all of
the items that are referenced from the collection.

The following program illustrates the basic difference between a shallow copy and a deep copy,
and the consequences of these mechanims when items are added/removed from a collection.

source code

/*
* ==

* DeepCopyTest.java: Illustrate the difference between shallow copy

* and a deep copy of a HashMap.

*

44 Engineering Software Development in Java

* Written by: Mark Austin March, 2013

* ==

*/

import java.util.HashMap;
import java.util.Iterator;

public class DeepCopyTest {
public static void main(final String[] args) {

testReference();
testDeepCopy();

}

// Deep Copy Test

private static void testDeepCopy() {

System.out.println("");
System.out.println("Deep Copy Test");
System.out.println("========================");

HashMap<Integer, String> data1 = new HashMap<Integer, String>();
data1.put(new Integer("1"), "thing one");
data1.put(new Integer("2"), "thing two");
data1.put(new Integer("3"), "thing three");

HashMap<Integer, String> data2 = new HashMap<Integer, String>(data1);

printHashMap(data1, "data1");
printHashMap(data2, "data2");

System.out.println("Remove data in data2");

data1.remove(new Integer(2));
data1.put(new Integer("2"), "thing two (version2)");

printHashMap(data1, "data1");
printHashMap(data2, "data2");

System.out.println("========================");
}

// A HashMap is referenced by two variables, data1 and data2....

private static void testReference() {

System.out.println("");
System.out.println("Simple Copy Test");
System.out.println("========================");

HashMap<Integer, String> data1 = new HashMap<Integer, String>();
data1.put(new Integer("1"), "one");
data1.put(new Integer("2"), "two");

HashMap<Integer, String> data2 = data1;

Chapter 11 45

printHashMap(data1, "data1");
printHashMap(data2, "data2");

System.out.println("Remove data in data2");

data1.remove(new Integer(2));
printHashMap(data1, "data1");
printHashMap(data2, "data2");

System.out.println("========================");
}

private static void printHashMap(HashMap<Integer, String> map, String message) {
System.out.println("---- " + message + " Begin ----");

final Iterator iterator = map.keySet().iterator();
while (iterator.hasNext()) {

final Integer key = (Integer)iterator.next();
final String value = map.get(key);

System.out.println(key + " " + value);
}

System.out.println("---- " + message + " End ----");
}

}

The program output is as follows:

Simple Copy Test
========================
---- data1 Begin ----
1 one
2 two
---- data1 End ----
---- data2 Begin ----
1 one
2 two
---- data2 End ----
Remove data in data2
---- data1 Begin ----
1 one
---- data1 End ----
---- data2 Begin ----
1 one
---- data2 End ----
========================

Deep Copy Test
========================
---- data1 Begin ----
1 thing one
2 thing two

46 Engineering Software Development in Java

3 thing three
---- data1 End ----
---- data2 Begin ----
1 thing one
2 thing two
3 thing three
---- data2 End ----
Remove data in data2
---- data1 Begin ----
1 thing one
2 thing two (version2)
3 thing three
---- data1 End ----
---- data2 Begin ----
1 thing one
2 thing two
3 thing three
---- data2 End ----
========================

Key points to note:

1. Figure 11.11 shows the layout of memory for the shallow copy of the hashmap referenced by
data1.

data1

"1" "2""one" "two"

data2

Shallow Copy

Figure 11.11.Shallow copy of a hashmap and its contents.

In a shallow copy, a copy of the reference structure is made, but not the(key,value) items
themselves, i.e.,

HashMap<Integer, String> data2 = data1;

Chapter 11 47

"thing three"

"1"

data2

data1

Deep Copy

"2""thing one" "thing two" "thing three""3"

"1" "thing one" "2" "3""thing two"

Figure 11.12.Deep copy of a hashmap and its contents.

Hence, in the methodtestReference(), when the reference to"2" and"two" is removed
from one structure, the items are also removed from the second.

2. Figure 11.12 shows the layout of memory for the deep copy of the hashmap referenced bydata1.
The statement:

HashMap<Integer, String> data2 = new HashMap<Integer, String>(data1);

will make a deep copy ofHashMap data1 if and only if all of the elements indata1 have
clone methods. Objects of type Integer and String both come with clone methods. This tiny
observation is the key to cloning more complicated data structures such as composite hierarchy
design patterns.

48 Engineering Software Development in Java

11.8 Working with Sets

Sets provide ...

... a collection of things containing no duplicates.

The Set interface provides methods for adding individual items to a set (i.e., with the method add (Object
o)), a complete collection to a set (i.e., with the method addAll(Collection c)), removing an object from
the set (i.e., with remove (Object o)), and tests to see if a set contains a specific object (i.e., with contains
(Object o)). The method toArray() converts the contents of aset into an array format.

HashSets.HashSets provide ...

...a hashmap-backed implementation of the Set interface.

Most operations are O(1), assuming no hash collisions. In the worst case (where all hashes collide),
operations are O(n). Setting the initial capacity too low will force many resizing operations, but setting
the initial capacity too high (or loadfactor too low) leads to wasted memory and slower iteration.

HashSet accepts the null key and null values. It is not synchronized, so if you need multi-
threaded access, consider using:

Set s = Collections.synchronizedSet(new HashSet(...));

TreeSets.TreeSets provide ...

... a TreeMap-backed implementation of the SortedSet interface.

The elements will be sorted according to theirnatural order, or according to the provided Comparator.

Most operations are O(log n), but there is so much overhead that this makes small sets expen-
sive. Note that the ordering must beconsistent with equals to correctly implement the Set interface. If
this condition is violated, the set is still well-behaved, but you may have suprising results when compar-
ing it to other sets.

TreeMap implementations are not synchronized. If you need to share this between multiple
threads, do something like:

SortedSet s = Collections.synchronizedSortedSet(new TreeSet(...));

Example 1. Create a HashSet of Strings

In this example we use a hashset to store unique words in a stream of text read from the
keyboard (or standard input). The program then prints up to first 20 distinct words.

The source code is as follows:

source code

Chapter 11 49

/**
* ==

* TestHashSet.javat: Use a HashSet to print all unique words in System.in.

*
* Author: Cay Horstmann

* ==

*/

import java.util.*;

public class TestHashSet {
public static void main(String[] args) {

Set<String> words = new HashSet<String>(); // HashSet implements Set
long totalTime = 0;

// Use a Scanner to read words from standard input.
// Keep track of the time, measured in milliseconds.

Scanner in = new Scanner(System.in);
while (in.hasNext()) {

String word = in.next();
long callTime = System.currentTimeMillis();
words.add(word);
callTime = System.currentTimeMillis() - callTime;
totalTime += callTime;

}

// Print up to the first 20 words

System.out.println("Print up to the first 20 distinct words ");
System.out.println("======================================= ");

Iterator<String> iter = words.iterator();
for (int i = 1; i <= 20 && iter.hasNext(); i++)

System.out.println(iter.next());

// Print number of distinct words ...

System.out.println("======================================= ");
System.out.println(words.size() + " distinct words. " + totalTime + " milliseconds.");
System.out.println("======================================= ");

}
}

For the input stream (for convenience we put the text in a file called input),

Here is the shortest sentence in the english language
that contains all twenty six letters.

The quick brown fox jumps over the lazy dog.

And now for a few more words just to increase the
number of distinct words. dog. dog. dog. dog. dog.

50 Engineering Software Development in Java

the program input and output is as follows:

prompt >>
prompt >> java TestHashSet < input
Print up to the first 20 distinct words
=======================================
to
shortest
fox
for
letters.
quick
sentence
words.
contains
dog.
distinct
six
of
The
over
more
words
Here
all
just
=======================================
36 distinct words. 0 milliseconds.
=======================================
prompt >>

Points to note are as follows:

1. Let us assume that the script of text is stored in a file called input.txt. A simple way of executing the
program from a command prompt in the terminal window is:

prompt >> java TestHashSet < input.txt

Here, the unix redirection symbol (<) tells the scanner to read input from input.txt instead of the
console.

2. The command:

Set<String> words = new HashSet<String>();

creates a hashset object to store the words that appear in input.txt. Notice, that we simply record
the word and not the number of times it appears in the tezt file.

Chapter 11 51

Example 2. Create Sets of Enumerated Data Types

An enumerated data type is a type whose fields consist of a fixedset of constants. Common
examples include compass directions (e.g., North, South, East, and West), days of the week, months
of the year, sexes of organisms, letter grades in a course, and so forth. A key benefit in the use of
enumerated data type include enhanced readability of code –typical uses include assignment statements,
comparison expressions, iteration, selection with switchstatements, and in java collections such as maps
and sets.

In this example we create sets of enumerated data types representing various days of the week.
The source code for days of the week is as follows:

source code

/*
* ===

* Day.java: Enumerated data type for days of the week.

* ===

*/

public enum Day {
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday;

}

Now we can sets of enumerated data types for “days I go into work” and “days I don’t go into work,”
i.e.,

source code

/*
* ===

* TestDaysSet.java: Create sets for days of the week.

* ===

*/

import java.util.EnumSet;
import java.util.Iterator;

public class TestDaysSet {
public static void main(String[] args) {

EnumSet weekDays = EnumSet.of(Day.Monday, Day.Tuesday, Day.Wednesday,
Day.Thursday, Day.Friday);

EnumSet weekEnd = EnumSet.of(Day.Saturday, Day.Sunday);

System.out.println("I go into work during the week!");
System.out.println("===============================");

for(Iterator it = weekDays.iterator(); it.hasNext();) {
Day day = (Day) it.next();
System.out.println(day);

}

52 Engineering Software Development in Java

System.out.println("");
System.out.println("And stay home on the weekend!");
System.out.println("===============================");

for(Iterator it = weekEnd.iterator(); it.hasNext();) {
Day day = (Day) it.next();
System.out.println(day);

}

System.out.println("===============================");
}

}

The program output is as follows:

prompt >> java TestDaysSet
I go into work during the week!
===============================
Monday
Tuesday
Wednesday
Thursday
Friday

And stay home on the weekend!
===============================
Sunday
Saturday
===============================
prompt >>
prompt >>

Points to note:

1. An EnumSet is a specialized Set implementation for use with enum types. All of the elements in an
enum set must come from a single enum type that is specified (e.g., Day), explicitly or implicitly,
when the set is created. An iterator traverses the set elements in their natural order.

2. Enum sets are represented internally as bit vectors. This representation is extremely compact and
efficient. The space and time performance of this class should be good enough to allow its use as
a high-quality, typesafe alternative to traditional int-based ”bit flags.” Even bulk operations (such
as containsAll and retainAll) should run very quickly if thespecified collection is also an enum
set.

Chapter 11 53

11.9 Modeling Association Relationships

When we model a system, certain concepts will be related to one another, and these relationships need
to be modeled. An association represents the ...

... static relationship shared among the objects of two classes.

Binary associations (with two ends) are normally represented as a line. An association defines the
multiplicity between two objects, e.g., one-to-one, one-to-many, many-to-one, and many-to-many. As-
sociations can be named, and the ends of an association can beadorned with role names, ownership
indicators, multiplicity, visibility, and other properties.

Uni-Directional Association

Definition. In a uni-directional association, two classes are related,but only one class knows that the
relationship exists.

Example. In this example, we model the uni-directional association between a customer and a book.
The customer owns a book, but the book is not aware of the customer, i.e.,

Customer Bookowns

Figure 11.13.Uni-directional relationship between a customer and book.

Here we say that the customer owns a book, but do not say that a book is owned by a customer. Hence,
only the owning side of the relationship (i.e., the customer) determines the updates between a customer
and book.

The details of Book.java and Customer.java are as follows:

source code

/*
* ==

* Book.java: A simple book object ...

* ==

*/

public class Book {
// Data attributes

private String name;
private String author;

// Constructor

public Book () {}

54 Engineering Software Development in Java

// String representations ...

public String toString() {
String s = "Book name: " + getName() + "\n" +

" author: " + getAuthor() + "\n";

return s;
}

// Set and access attributes

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String getAuthor() {
return author;

}

public void setAuthor(String author) {
this.author = author;

}
}

and

source code

/*
* ==

* Customer.java: A customer object has an association with a book.

* ==

*/

public class Customer {
// Data attributes

private String name;

// String representations ...

public String toString() {
String s = "Customer: " + getName() + "\n";
return s;

}

// Association attributes

public Book book;

Chapter 11 55

// Attribute accessors

public String getName() {
return name;

}
public void setName(String name) {

this.name = name;
}

// Association accessors

public Book getBook() {
return book;

}

public void setBook(Book book) {
this.book = book;

}
}

The file TestRelationship.java assembles Customer and Bookobjects and assembles the uni-directional
association relationship, i.e.,

source code

/*
* ==

* TestRelationship: Create a undirectional relationship between a customer

* and a book object.

*
* Written by: Mark Austin December 2009

* ==

*/

public class TestRelationship {
public static void main (String args []) {

// Create book and customer objects.

Book book = new Book();
book.setName("The Cat in the Hat");
book.setAuthor("Dr Seuss");

Customer customer = new Customer();
customer.setName("Angela Austin");

// Create unidirectional customer-book relationship.

customer.setBook(book);

// Retrieve and print customer-book relationship.

56 Engineering Software Development in Java

System.out.println (customer.toString());
System.out.println (customer.getBook().toString());

}
}

The test program input/output is as follows:

prompt >> java TestRelationship
Customer: Angela Austin

Book name: The Cat in the Hat
author: Dr Seuss

prompt >>

The important point with this model is that ...

... the customer refers to a book, but a book does refer to a customer.

Bi-Directional Association

Definition. By default, associations are assumed to be bi-directional.This means that ...

... both classes are aware of each other and their relationship.

Example. Let’s recode the customer-book association so that the customer owns a book and the book
is owned by a customer, i.e.,

Customer Bookowns
owned by

Figure 11.14.Bi-directional relationship between a customer and book.

The modified details of Book.java and Customer.java are as follows:

source code

/*
* ===

* Book.java: Create a book object with an association to a customer

* ===

*/

public class Book {
// Data attributes

Chapter 11 57

private String name;
private String author;

// Set relationship

private Customer owner;

// Constructor

public Book () {
this.owner = null;

}

// String representations ...

public String toString() {
String s = "Book name: " + getName() + "\n" +

" author: " + getAuthor() + "\n";

if (this.owner != null)
s += " owned by: " + owner.getName() + "\n";

return s;
}

// Set and access attributes

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String getAuthor() {
return author;

}

public void setAuthor(String author) {
this.author = author;

}

// Association accessor methods ...

public Customer getCustomer() {
return owner;

}

public void setCustomer(Customer owner) {
if (owner != null)

this.owner = owner;
}

}

58 Engineering Software Development in Java

and

source code

/*
* ==

* Customer.java: Create a Customer object with an association to a book.

* ==

*/

public class Customer {
private String name; // Data attributes
public Book book; // Association attributes

// Constructors

public Customer () {
this.book = null;

}

// String representation ...

public String toString() {
String s = "";

if (this.book != null)
s += "Customer: " + getName() + " owns " + book.getName() + "\n";

else
s += "Customer: " + getName() + " doesn’t own a book \n";

return s;
}

// Attribute accessors

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

// Association accessors

public Book getBook() {
return book;

}

public void setBook(Book book) {
if (book != null)

this.book = book;
}

Chapter 11 59

}

The file TestRelationship.java assembles Customer and Bookobjects and assembles the bi-directional
association relationship. Details of the association relationship are then printed from the customer and
book perspectives.

source code

/*
* ===

* TestRelationship: Create a bi-directional relationship between a customer

* and a book object.

*
* Written by: Mark Austin December 2011

* ===

*/

public class TestRelationship {
public static void main (String args []) {

// Create book and customer objects.

Book book = new Book();
book.setName("The Cat in the Hat");
book.setAuthor("Dr Seuss");

Customer owner = new Customer();
owner.setName("Angela Austin");

// Create a bidirectional customer-book association.

owner.setBook(book);
book.setCustomer(owner);

// Retrieve and print owner-book relationship.

System.out.println ("Retrieve and print owner-book relationship");
System.out.println ("==");

System.out.println (owner.toString());

// Retrieve and print book-owner relationship.

System.out.println ("Retrieve and print book-owner relationship");
System.out.println ("==");

System.out.println (book.toString());
}

}

60 Engineering Software Development in Java

The test program input/output is as follows:

prompt >> java TestRelationship
Retrieve and print owner-book relationship
==
Customer: Angela Austin owns The Cat in the Hat

Retrieve and print book-owner relationship
==
Book name: The Cat in the Hat

author: Dr Seuss
owned by: Angela Austin

prompt >>

One-to-Many Associations

Definition. In a one-to-many relationship, ...

... a single object can be related to many relating objects.

In a one-to-many relationship between classes A and B, each object of type A is linked to 0, 1 or many
instances of object B. For example, if A and B represent company and employees, generally speaking,
a specific company will have many employees.

Example. In this example we assemble a one-to-many association relationship between an academic
department (CEE) and five students enrolled in the department.

Zach

Department Students

CEE Joe

Jill

Naomi

Alexi

Figure 11.15.One-to-many relationship between an academic department and students.

The source code is organized into three files: Student.java,Department.java and Main.java. The details
of Student.java are as follows:

Chapter 11 61

source code

/*
* ===

* Student.java: Create student objects ...

* ===

*/

public class Student {
private int id;
private String name;

private Department department;

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public Department getDepartment() {
return department;

}

public void setDepartment(Department department) {
this.department = department;

}

public String toString() {
String s = "Student: " + getName() + " id: " + getId() + "\n";
if (getDepartment() != null)

s = s + "Department: " + getDepartment() + "\n";

return s;
}

}

Notice that each student will be associated with one, and only one department. Set() and get() methods
are provided to manage the student-department relationship.

A department is modeled with a name, id and a Map to a collection of students, i.e.,

source code

62 Engineering Software Development in Java

/*
* ===

* Department.java: Create academic department objects ...

* ===

*/

import java.util.Map;
import java.util.HashMap;

public class Department {
private int id;
private String name;

private Map<String, Student> students;

public Department() {
students = new HashMap<String, Student>();

}

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String deptName) {
this.name = deptName;

}

public void addStudent(Student student) {
if (!getStudents().containsKey(student.getName())) {

getStudents().put(student.getName(), student);
if (student.getDepartment() != null) {

student.getDepartment().getStudents().remove(student.getName());
}
student.setDepartment(this);

}
}

public Map<String,Student> getStudents() {
return students;

}

public String toString() {
return "Department id: " + getId() + ", name: " + getName();

}
}

Chapter 11 63

In Main.java we systematically assemble the one-to-many relationship graph illustrated in Figure 11.15,
i.e.,

source code

/*
* ===

* Main.java: Systematically assemble a one-to-many relationship graph

* between an academic department and students.

* ===

*/

import java.util.Map;
import java.util.HashMap;
import java.util.TreeMap;

public class Main {
public static void main(String[] args) {

// Create student objects ...

Student student01 = new Student();
student01.setName("Joe");
student01.setId(001);
Student student02 = new Student();
student02.setName("Jill");
student02.setId(002);
Student student03 = new Student();
student03.setName("Naomi");
student03.setId(003);
Student student04 = new Student();
student04.setName("Alexi");
student04.setId(004);
Student student05 = new Student();
student05.setName("Zack");
student05.setId(005);

// Print details of individual students (not yet enrolled in a department) ...

System.out.println("List of students (not yet enrolled)");
System.out.println("===================================");

System.out.println (student01);
System.out.println (student02);
System.out.println (student03);
System.out.println (student04);
System.out.println (student05);

// Create department object ...

Department dept = new Department();
dept.setName("CEE");
dept.setId(004);

// Add students to department ...

64 Engineering Software Development in Java

dept.addStudent(student01);
dept.addStudent(student02);
dept.addStudent(student03);
dept.addStudent(student04);
dept.addStudent(student05);

System.out.println("List of students enrolled in CEE ");
System.out.println("===================================");

Map students = dept.getStudents();
System.out.println (students);

// Organize students into a tree map ...

System.out.println("Ordered list of students enrolled in CEE ");
System.out.println("===");

Map organizedStudents = new TreeMap(students);
System.out.println (organizedStudents);

}
}

The (slightly edited) program input/output is:

prompt >> java Main
List of students (not yet enrolled)
===================================
Student: Joe id: 1
Student: Jill id: 2
Student: Naomi id: 3
Student: Alexi id: 4
Student: Zack id: 5

List of students enrolled in CEE
===================================
{ Naomi=Student: Naomi id: 3 Department: Department id: 4, name: CEE,

Zack=Student: Zack id: 5 Department: Department id: 4, name: CEE,
Alexi=Student: Alexi id: 4 Department: Department id: 4, name: CEE,
Jill=Student: Jill id: 2 Department: Department id: 4, name: CEE,
Joe=Student: Joe id: 1 Department: Department id: 4, name: CEE

}
Ordered list of students enrolled in CEE
===
{ Alexi=Student: Alexi id: 4 Department: Department id: 4, name: CEE,

Jill=Student: Jill id: 2 Department: Department id: 4, name: CEE,
Joe=Student: Joe id: 1 Department: Department id: 4, name: CEE,
Naomi=Student: Naomi id: 3 Department: Department id: 4, name: CEE,
Zack=Student: Zack id: 5 Department: Department id: 4, name: CEE

}
prompt >>

Chapter 11 65

Many-to-Many Associations

Definition. The many-to-many relationship between classes A and B exists when ...

... multiple objects of type A associated with multiple objects of type B, and vise versa.

Here are a few examples:

1. In most schools each teacher teaches multiple students and each student can be taught by multiple
teachers.

2. An author can write several books, and a book can be written byseveral authors.

Example. We now extend the one-to-many example, and assume that students may be enrolled in
multiple departments.

CEE

Students

Joe

Jill

David

Scott

Departments

ECE

Figure 11.16.Many-to-many association relationships among academic departments and students.

The following scripts of code assemble the many-to-many relationship between students and depart-
ments illustrated in Figure 11.16. The source code is organized into three files: Student.java, Depart-
ment.java, and SimSchool.java.

The details of Student.java are as follows:

source code

/*
* ===

* Student.java; Create student objects ...

* ===

*/

import java.util.Collection;
import java.util.ArrayList;
import java.util.Iterator;

66 Engineering Software Development in Java

public class Student {
private int id;
private String name;

// Collection of departments in which the student enrols.

private Collection<Department> departments;

// Constuctor method ...

public Student() {
departments = new ArrayList<Department>();

}

// Setup student Ids ...

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

// Set student name ...

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

// Student enrols in a department ...

public void addDepartment(Department department) {

// Add new department to students resume ..

if (getDepartments().contains(department) == false) {
getDepartments().add(department);

}

// Synchronize with list of students enrolled in the department ..

if (department.getStudents().contains(this) == false) {
department.getStudents().add(this);

}
}

// Student drops-out of a department ...

public void removeDepartment(Department department) {

Chapter 11 67

// Remove department from students resume ..

if (getDepartments().contains(department) == true) {
getDepartments().remove(department);

}

// Synchronize with list of students enrolled in the department ..

if (department.getStudents().contains(this) == true) {
department.getStudents().remove(this);

}
}

// Return collection of departments ...

public Collection<Department> getDepartments() {
return departments;

}

public void setDepartment(Collection <Department> departments) {
this.departments = departments;

}

// Create String representation of student object ...

public String toString() {
String s = "Student: " + name + "\n";

s = s + "Departments: ";
if (departments.size() == 0)

s = s + " none \n";
else {

Iterator iterator1 = departments.iterator();
while (iterator1.hasNext() != false) {

Department dept = (Department) iterator1.next();
s = s + dept.getName() + " ";

}
s = s + "\n";

}

return s;
}

}

The details of Department.java are as follows:

source code

/*
* ===

* Department.java; Create simple model of an academic department.

* ===

68 Engineering Software Development in Java

*/

import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;

public class Department {
private int id;
private String name;

// Setup collection of students ...

private Collection<Student> students;

// Constructor method

public Department(){
students = new ArrayList<Student>();

}

// Set/get the department Id.

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

// Methods to deal with the department name ...

public String getName() {
return name;

}

public void setName(String deptName) {
this.name = deptName;

}

// Add a student to department

public void addStudent(Student student) {

if (getStudents().contains(student) == false) {
getStudents().add(student);

}

// Synchronize with departments on the student side

if (student.getDepartments().contains(this) == false) {
student.getDepartments().add(this);

}
}

Chapter 11 69

public Collection<Student> getStudents() {
return students;

}

public void setStudent(Collection<Student> students) {
this.students = students;

}

// Create a String representation for the department ...

public String toString() {
String s = "Department: " + name + "\n";

s = s + "Students: ";
if (students.size() == 0)

s = s + " none \n";
else {

Iterator iterator1 = students.iterator();
while (iterator1.hasNext() != false) {

Student student = (Student) iterator1.next();
s = s + student.getName() + " ";

}
s = s + "\n";

}

return s;
}

}

The graph of many-to-many relationships is assembled in SimSchool.java, i.e.,

source code

/*
* ==

* SimSchool.java: Simulate many-to-many relationships between students

* and the departments in which they enroll.

* ==

*/

import java.util.List;

public class SimSchool {
public static void main(String[] args) {

// Create student objects ...

Student student01 = new Student();
student01.setName("Joe");

Student student02 = new Student();
student02.setName("Jill");

70 Engineering Software Development in Java

Student student03 = new Student();
student03.setName("David");

Student student04 = new Student();
student04.setName("Scott");

// Add students to civil and environmental engineering ...

Department civil = new Department();
civil.setName("CEE");
civil.addStudent(student01);
civil.addStudent(student02);

// Add students to electrical and computer engineering ...

Department eecs = new Department();
eecs.setName("ECE");
eecs.addStudent(student01);
eecs.addStudent(student03);
eecs.addStudent(student04);

// Print details of student-department assocations ...

System.out.println("Part 1: Summary of Student-Department Associations");
System.out.println("==");

System.out.println(student01);
System.out.println(student02);
System.out.println(student03);
System.out.println(student04);

// Print details of department-student assocations ...

System.out.println("Part 2: Summary of Department-Student Associations");
System.out.println("==");

System.out.println(civil);
System.out.println(eecs);

// David drops out of ECE to concentrate on CEE ...

System.out.println("Part 3: David switches from ECE to CEE");
System.out.println("===");

student03.removeDepartment(eecs);
student03.addDepartment(civil);

// Validate David’s enrollment in CEE and ECE ...

System.out.println(student03);
System.out.println(civil);
System.out.println(eecs);

}
}

Chapter 11 71

The (slightly edited) program input/output is:

prompt >> java SimSchool
Part 1: Summary of Student-Department Associations
==
Student: Joe
Departments: CEE ECE

Student: Jill
Departments: CEE

Student: David
Departments: ECE

Student: Scott
Departments: ECE

Part 2: Summary of Department-Student Associations
==
Department: CEE
Students: Joe Jill

Department: ECE
Students: Joe David Scott

Part 3: David switches from ECE to CEE
===
Student: David
Departments: CEE

Department: CEE
Students: Joe Jill David

Department: ECE
Students: Joe Scott

prompt >>

A few key points:

1. Figure 11.17 shows the relationship among classes needed tosupport the modeling of many-to-many
relationships.

Both the Student and Depatment classes employ Arraylists for the storage of their counterpart
associations. On the student side we have:

private Collection<Department> departments;

public Student() {
departments = new ArrayList<Department>();

}

72 Engineering Software Development in Java

Arraylist<Students>

Departments

Students

Synchronize

Arraylist<Departments>

Figure 11.17.Relationship among classes in modeling of many-to-many association relationships.

And on the department side we have:

private Collection<Student> students;

public Department(){
students = new ArrayList<Student>();

}

HashMaps of the form:

private Collection<String,Department>
departments = new HashMap<String,Department>();

private Collection<String,Student>
students = new HashMap<String,Student>();

would also work as well. The interesting part of the code is inthe methodsaddStudent(),
removeStudent(),addDepartment(), andremoveDepartment()where code is writ-
ten to synchronize association relationships from both thedepartment and student viewpoints.

2. SimSchool assembles the graph of Students and Depatmental associations shown in Figure 11.15.
The simulation presents summaries of student-department and department-student associations.

Then, student David switches from department ECE to department CEE. This action is handled
by the pair of method calls:

student03.removeDepartment(eecs);
student03.addDepartment(civil);

Of course, a department might also decide to terminate a students enrollment, in which case the
method call would be something like:

civil.removeStudent(student03);

Chapter 11 73

11.10 Working with Java Generics

As we have seen, a Java collection is a flexible data structurethat can hold heterogeneous
objects where the elements may have any reference type. It is...

... your responsibility, however, to keep track of what types of objects your collections
contain.

Consider, for example, the task of adding a double to a collection.

• Since you cannot have collections of primitive data types, you must convert the double to the corre-
sponding reference type (i.e., Double) before storing it inthe collection.

• Then when the element is extracted from the collection, an Object is returned that must be cast to an
Double in order to ensure type safety.

• If the programmer accidentally makes an error (e.g., casts the returned value to a String), then a
run-time error will occur.

The manual overhead in ensuring type safety makes ...

... this aspect of Java programming more difficult than it needs to be.

To address this problem, J2SE 5.0 has added a new core language feature known as generics (also known
as parameterized types), that provides ...

... compile-time type safety for collections and eliminatethe drudgery of casting.

Introduction to Programming with Generics

Broadly speaking generic programming is ...

... a style of computer programming in which algorithms are written in terms of to-be-
specified-later types that are then instantiated when needed for specific types provided
as parameters.

Generic programming techniques date back the the early 1980s, and the development of Ada. From a
software development standpoint, having an ability to ...

... write common functions or types that differ only in the set of types on which they
operate when used,

reduces the need for duplication.

Software entities created using generic programming are known as:

1. Tenerics in Ada, Eiffel, Java, C#, and Visual Basic .NET.,

2. Templates in C++. and,

3. Parameterized types in the influential 1994 book Design Patterns.

74 Engineering Software Development in Java

Use of Generics in Java

Support for the generics, or containers-of-type-T, subsetof generic programming were ...

... added to the Java programming language in 2004 as part of J2SE 5.0.

In Java, generics are checked at compile time for type correctness. The generic type information is then
removed via a process called type erasure, and is unavailable at runtime.

For example, a List<String> is converted to the raw type List. The compiler inserts type casts to convert
the elements to the String type when they are retrieved from the list.

Using generics, a collection is no longer treated as a list ofObject references, but you would be able
to differentiate between a collection of references to Integers and collection of references to Bytes. A
collection with a generic type has a type parameter that specifies the element type to be stored in the
collection.

Example 1. Use of Generics in a LinkedList

Consider the following segment of code that creates a linkedlist and adds an element to the list
(source: http://www.oracle.com/technetwork/articles/javase/generics-136597.html):

LinkedList list = new LinkedList();
list.add(new Integer(1));
Integer num = (Integer) list.get(0);

When an element is extracted from the list it must be cast. Thecasting is safe as it will be checked at
runtime, but if you cast to a type that is different from, and not a supertype of, the extracted type then a
runtime exception, ClassCastException will be thrown.

Using generic types, the previous segment of code can be written as follows:

LinkedList<Integer> list = new LinkedList<Integer>();
list.add(new Integer(1));
Integer num = list.get(0);

Here we say that LinkedList is a generic class that takes a type parameter, Integer in this case.

The benefit in using generics is that you no longer need to castto an Integer since the get() method
would return a reference to an object of a specific type (Integer in this case). If you attempt to assign an
extracted element to a different type, then ...

... the error would be at compile-time instead of run-time.

This early static checking increases the type safety of the Java language.

To reduce the clutter, the above example can be rewritten as follows...using autoboxing:

LinkedList<Integer> list = new LinkedList<Integer>();
list.add(1);
int num = list.get(0);

Chapter 11 75

Example 2: Avoiding Run-Time Failure of an ArrayList

Consider the following class, Ex1, which creates a collection of two Strings and one Integer,
and then attempts to print out the collection:

source code

/*
* ===

* Ex1.java

* ===

*/

import java.util.*;

public class Ex1 {

private void testCollection() {
List list = new ArrayList();
list.add(new String("Hello world!"));
list.add(new String("Good bye!"));
list.add(new Integer(95));
printCollection(list);

}

private void printCollection(Collection c) {
Iterator i = c.iterator();
while(i.hasNext()) {

String item = (String) i.next();
System.out.println("Item: "+item);

}
}

public static void main(String argv[]) {
Ex1 e = new Ex1();
e.testCollection();

}
}

Notice that an explicit cast is required in the printCollection method. This class compiles fine, but
throws a CLassCastException at runtime as it attempts to cast an Integer to a String, i.e.,

Item: Hello world!
Item: Good bye!
Exception in thread "main" java.lang.ClassCastException: java.lang.Integer

at Ex1.printCollection(Ex1.java:16)
at Ex1.testCollection(Ex1.java:10)
at Ex1.main(Ex1.java:23)

Now let’s fix the problem by adding generics to the array list.

source code

76 Engineering Software Development in Java

/*
* ===

* Ex2.java

* ===

*/

import java.util.*;

public class Ex2 {

private void testCollection() {
List<String> list = new ArrayList<String>();
list.add(new String("Hello world!"));
list.add(new String("Good bye!"));
list.add(new Integer(95));
printCollection(list);

}

private void printCollection(Collection c) {
Iterator<String> i = c.iterator();
while(i.hasNext()) {

System.out.println("Item: "+i.next());
}

}

public static void main(String argv[]) {
Ex2 e = new Ex2();
e.testCollection();

}
}

Now, if you try to compile this code, ...

... a compile-time error will be produced informing you that you cannot add an Integer
to a collection of Strings.

So we see that use of generics enables more compile-time typechecking, thereby reducing the likelihood
of having to deal with run-time errors.

You may have already noticed the new syntax used to create an instance of ArrayList,i.e.,

List<String> list = new ArrayList<String>();

ArrayList is now a parameterized type.

Chapter 11 77

Working with Parameterized Types

A parameterized type consists of a class or interface name E and a parameter section

<T1, T2, ..., Tn>,

which must match the number of declared parameters of E, and each actual parameter must be a subtype
of the formal parameter’s bound types. The following segment of code shows parts of the new class
definition for ArrayList:

public class ArrayList<E> extends AbstractList<E> implements List<E>,
RandomAccess, Cloneable, Serializable {
// ...

}

Here E is a type variable, which is an unqualified identifier. It simply acts as a placeholder for a type to
be defined when the list is used.

Implementing Generic Types

In addition to using generic types, you can implement your own. A generic type has one or
more type parameters. Here is an example with only one type parameter called E. A parameterized type
must be a reference type, and therefore primitive types are not allowed to be parameterized types.

interface List<E> {
void add(E x);
Iterator<E> iterator();

}

interface Iterator<E> {
E next();
boolean hasNext();

}

public class LinkedList<E> implements List<E> {
// implementation

}

Here, E represents the type of elements contained in the collection. Think of E as a placeholder that will
be replaced by a concrete type. For example, if you write ...

LinkedList<String>

then E will be replaced by String.

In some of your code you may need to invoke methods of the element type, such as Object’s hashCode()
and equals(). Here is an example that takes two type parameters:

78 Engineering Software Development in Java

class HashMap<K, V> extends AbstractMap<K, V> implements Map<K, V> {

// ...

public V get(Object k) {
...
int hash = k.hashCode();
...

}
// ...

}

The important thing to note is that you are required to replace the type variables K and V by concrete
types that are subtypes of Object.

Working with Generic Methods

Genericity is not limited to classes and interfaces, you candefine generic methods. Static
methods, nonstatic methods, and constructors can all be parameterized in almost the same way as for
classes and interfaces, but the syntax is a bit different. Generic methods are also invoked in the same
way as non-generic methods.

Before we see an example of a generics method, consider the following segment of code that
prints out all the elements in a collection:

public void printCollection(Collection c) {
Iterator i = c.iterator();
for(int k = 0;k<c.size();k++) {

System.out.println(i.next());
}

}

Using generics, this can be re-written as follows. Note thatthe Collection<?> is the collection of an
unknown type.

void printCollection(Collection<?> c) {
for(Object o:c) {

System.out.println(o);
}

}

This example uses a feature of generics known as wildcards.

Working with Wildcards

There are three types of wildcards:

1. ”? extends Type”: Denotes a family of subtypes of type Type. This is the most useful wildcard

2. ”? super Type”: Denotes a family of supertypes of type Type

Chapter 11 79

3. ”?”: Denotes the set of all types or any

As an example of using wildcards, consider adraw() method that should be capable of drawing any
shape such as circle, rectangle, and triangle. The implementation may look something like this. Here
Shape is an abstract class with three subclasses: Circle, Rectangle, and Triangle.

public void draw(List<Shape> shape) {
for(Shape s: shape) {

s.draw(this);
}

}

It is worth noting that the draw() method can only be called onlists of Shape and cannot be called on a
list of Circle, Rectangle, and Triangle for example.

In order to have the method accept any kind of shape, it shouldbe written as follows:

public void draw(List<? extends Shape> shape) {
// rest of the code is the same

}

Here is another example of a generics method that uses wildcards to sort a list into ascending order.
Basically, all elements in the list must implement the Comparable interface.

public static <T extends Comparable<? super T>> void sort(List<T> list) {
Object a[] = list.toArray();
Arrays.sort(a);
ListIterator<T> i = list.listIterator();
for(int j=0; j<a.length; j++) {

i.index();
i.set((T)a[j]);

}
}

80 Engineering Software Development in Java

11.11 Exercises

11.1 The left-hand side of Figure 11.18 shows the essential details of a domain familiar to many chil-
dren. One by one, rectangular blocks are stacked as high as possible until they come tumbling
down – the goal, afterall, is to create a spectacular crash!!

*

y

x
Tower of Blocks

BlockTower Block

Rectangle

Classes in "Tower of Blocks" Program

1

Figure 11.18.Schematic and classes for “Tower of Blocks”

Suppose that we wanted to model this process and use engineering principles to predict incipient
instability of the block tower. Consider the following observations:

1. Rather than start from scratch, it would make sense to createa Block class that inherits the
properties of Rectangle, and adds details relevant to engineering analysis (e.g., the density
of the block).

2. Then we could develop a BlockTower class that systematically assembles the tower, starting
at the base and working upwards. At each step of the tower assembly, analysis procedures
should make sure that the tower is still stable.

The right-hand side of Figure 11.18 shows the relatioship among the classes. One BlockTower
program (1) will employ many blocks, as indicated by the asterik (*).

Develop a Java program that builds upon the Rectangle class written in the previous ques-
tions. The class Block should store the density of the block (this will be important in determining
its weight) and methods to compute the weight and centroid ofeach block. The BlockTower class
will use block objects to build the tower. A straight forwardway of modeling the block tower is
with an ArrayList. After each block is added, the program should conduct a stability check. If the
system is still stable, then add another block should be added. The simulation should cease when
the tower of blocks eventually becomes unstable.

Note. To simplify the analysis, assume that adjacent blocks are firmly connected.

Chapter 11 81

Stability Considerations. If the blocks are stacked perfectly on top of each other,
then from a mathematical standpoint the tower will never become unstable. In practice, this never
happens. There is always a small offset and, eventually, it’s the accumulation of offsets that leads
to spectacular disaster.

For the purposes of this question, assume that blocks are fiveunits wide and one unit
high. When a new block is added, the block offset should be oneunit. To make the question
interesting, assume that four blocks are stacked with an offset to the right, then three blocks are
added with an offset to the left, then four to the right, threeto the left, and so forth. This sequence
can be accomplished with the looping construct:

offset = (int) (Math.floor ((BlockNo - 1)/5.0) + (BlockNo-1)%5);
if ((BlockNo-1)%5 == 4) offset = offset - 2;

The tower will become unstable when the center of gravity of blocks above a particular level falls
outside the edge of the supporting block.

11.2 This problem will give you practice at using abstract classes to and array lists simplify the imple-
mentation of engineering property (e.g., position of the centroid, moments of inertia, orientation
of the principal axes) computations for element cross sections. The computation of these proper-
ties can be complicated by irregular section shapes and/or cross section shapes that change as a
function of loading (e.g., crack patterns in a concrete beam).

Engineering Property Formulae. If the total number of shapes is denoted by N, then the total
area of the grid, A, is given by

A =

N
∑

i=1

Ai (11.1)

The (x,y) coordinates of the grid centroid are defined by:

Ax̄ =

N
∑

i=1

xi ·Ai and Aȳ =

N
∑

i=1

yi ·Ai (11.2)

The area moments of inertia about the x- and y-axes are given by:

Ixx =

N
∑

i=1

y2i ·Ai and Iyy =

N
∑

i=1

x2i · Ai (11.3)

respectively. Similarly the cross moment of inertia is given by

Ixy =

N
∑

i=1

xi · yi · Ai (11.4)

82 Engineering Software Development in Java

The corresponding moments of inertia about the centroid aregiven by the parallel axes theorem.
Finally, the orientation of the principle axes are given by

tan(2θ) =

[

2Ixy
Ixx − Iyy

]

(11.5)

Things to do.

The computation of engineering properties for this spatiallayout can be simplified if the basic
algorithms for area, centroid, and inertia calculations are specified in terms of shapes. Java will
take care of the details of calling the appropriate methods within each specific shape object.

1. Download, compile and run the abstract shape example (e.g.,Shape.java, Location.java,
TestShape.java) from the java examples page. Then download, compile and run the Triangle
code from the java examples web page.

2. The computation of engineering properties depends on quantities such as the cross section
area and centroid (i.e., (x,y) location). An algorithm willneed to retrieve this information
from each of the object types.

Extend the abstract shape class so that methods for retrieving the x and y coordinates are
included. I suggest that you simply add the method declarations:

public abstract double getX();
public abstract double getY();

to Shape.java and then add concrete implementations of of the methodsgetX() andgetY()
to Circle.java, Rectangle.java and Triangle.java.

3. Modify the Triangle code so that it extends Shape, i.e.,

public class Triangle extends Shape {

Triangles are defined by the (x,y) coordinates of the three corner points. The center point of
a triangle should be defined as the average of the three respective coordinate values, i.e.,

c.x =

[

x1 + x2 + x3

3

]

and c.y =

[

y1 + y2 + y3

3

]

. (11.6)

4. Write a Java program that will initialize and position circle, rectangle and triangle shapes
as shown on Figure 11.6, and then compute and print the grid area, x and y coordinates of
the grid centroid, moments of inertiaIxx, Iyy, andIxy computed about the axes/origin and,
finally, the grid centroid. For details, see equations 11.1 through 11.4.

Hint. Notice that the layout of shapes in Figure 11.6 is symmetric about the line y = x + 1. Hence,
you should expect that: (1) the centroid will lie along this line, and (2) the principal axes will be
oriented along this line.

Chapter 11 83

11.3 A footprint model simply defines the area that will be covered by an object. Footprint models of
buildings are commonly used in the earliest stages of designand in high-level models of urban
areas.

Figure 11.19 shows, for example, the AV Williams building footprint.

abstraction

f

e

d
cb

a

Polygon Model of Bulding Footprint Triangle Model of Building Footprint

simplifying

Figure 11.19.Polygon and triangle models for a building footPrint.

Modeling Footprints. Because the footprint area is defined by its perimeter, naturally, a general-
purpose polygon model is the first approach that comes to mind. It turns out, however, that
polygon operations (e.g., computing the area) can quickly become very complicated. Suppose
that a building has an internal courtyard (i.e., the footprint contains a hole). What would you do
then?

Many potentially difficult computational problems can be avoided by modeling the footprint as a
collection of simple triangular regions, as shown on the right-hand side of Figure 11.19.

Coordinates of A.V. Williams Building Footprint. Let us assume that the AV Williams Build-
ing footprint can be modeled with six trianglar alements having geometry as shown in Figure
11.20. And Figure 11.21 shows the relationship among classes that would be used in a software
implementation.

Simply put, Figure 11.21 says that one Footprint object willbe composed of many Triangle ob-
jects. In turn, triangles will be defined in terms of Node and Edge objects. Nodes are an extension
of Vector.

Properties of the building footprint (e.g., area, center ofmass) will be computed and summed
across the ensemble of triangles.

Things to do.

1. Download, compile and execute the Triangle source code fromthe class website.

2. Write a class calledFootprint to setup the simplified footprint model for the AV. Williams
building, e.g.,

Footprint avw = new Footprint();
avw.setName("AV. Williams Buiklding");

84 Engineering Software Development in Java

5
f

e

d
cb

a

1 3 75 9

1

3

Figure 11.20.Geometric details of the footprint for AV Williams Building

Footprint Triangle
1 *

Node Edge

Vector

extends

3 3

1
1

Figure 11.21.Class diagram for building footprint model.

Chapter 11 85

Your program should create the six triangles defining the footprint, and then add them to an
arraylist.

3. Write a methodtoString() to create a string representation of the building footprint.

4. Within Footprint , write a method calledarea() that will compute the building area by
walking along the arraylist and summing the triangle areas.

5. Finally, write methods getCentroidX() and getCentroidY()to compute the x- and y- coordi-
nates of the building centroid.

Note. For parts 4 and 5, most of what you need is already defined in Triangle.java.

11.4 A polyline defines a set of one or more connected straightline segments. Polyline abstractions
can be found in many areas of Civil Engineering (e.g., road trajectories in transportation, the
orange line on the DC Metro, rebar trajectories in structural engineering). As illustrated by these
examples, polyline elements typically define open shapes.

Road Contour from Points A to F.
A

B C

D E

F

Bounding BoxNode 1

Node 2

Node 3

Node 5Node 4

Node 6

Engineering Abstraction Modeling Abstraction

Figure 11.22.Real world and modeling abstractions for polylines

Polyline objects can be created by specifying the endpointsof each segment.

Insert problem description and UML figure soon ...

public class Polyline { ... }

public class LineSegment { ... }

11.5 A path is a continuous line composed of one or more line segments and/or curve segments.

public class Path { ... }

public class LineSegment { ... }
public class Curve { ... }

Bibliography

[1] Cormen T.H., Leiserson C.E., Rivest R.L.Introduction to Algorithms. The MIT Press, 1992.

[2] Liang Y.D. Introduction to Java Programming (Comprehensive Version) (8th Edition). Prentice-
Hall, 2011.

86

Index

associations
bi-directional, 56–60
many-to-many, 65–72
one-to-many, 60–64
uni-directional, 53–56

avoiding run-time failures, 75

bi-directional associations, 56–60

cloning, 7
deep copy, 7, 43
shallow copy, 7, 43

collections
adding an element, 6
cloning, 7
empty, 7
equality, 7
finding an element, 6
heterogeneous, 4
homogeneous, 4
removing an element, 6
replacing an element, 6
serialization, 7
traversal, 7

Comparator interface, 26
composite hierarchy design pattern, 47

data structures and algorithms, 3–4
deep copy, 7, 43

generic methods, 78
generic types, 77

inner classes, 26
interfaces, 8

Java Collection interface, 11
Java Collections Framework, 4–6
Java Generics, 73–79

avoiding run-time failures, 75
definition, 73
parameterized types, 77
purpose, 73
working with generic methods, 78

working with generic types, 77
working with wildcards, 78

List interface, 12–13

many-to-many associations, 65–72
Map interface, 15–16
mathematical abstraction

maps, 3
sets, 1–3

one-to-many associations, 60–64

parameterized types, 77

Queue interface, 17

serialization, 7
Set interface, 13–14
shallow copy, 7, 43

uni-directional associations, 53–56

wildcards, 78

87

