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Graph Problems: Hard Problems

A cynical view of graph algorithms is that “everything we want to do is hard.”
Indeed, no polynomial-time algorithms are known for any of the problems in
this section. All of them are provably NP-complete with the exception of graph
isomorphism—whose complexity status remains an open question.

The theory of NP-completeness demonstrates that all NP-complete problems
must have polynomial-time algorithms if any one of them does. This prospect is
sufficiently preposterous that an NP-completeness reduction suffices as de facto
proof that no efficient algorithm exists to solve the given problem.

Still, do not abandon hope if your problem resides in this chapter. We provide a
recommended line of attack for each problem, be it combinatorial search, heuristics,
approximation algorithms, or algorithms for restricted instances. Hard problems
require a different methodology to work with than polynomial-time problems, but
with care they can usually be dealt with successfully.

The following books will help you deal with NP-complete problems:

• Garey and Johnson [GJ79] – This is the classic reference on the theory of
NP-completeness. Most notably, it contains a concise catalog of over 400
NP-complete problems, with associated references and comments. Browse
through the catalog as soon as you question the existence of an efficient
algorithm for your problem. Indeed, this is the single book in my library that
I reach for most often.

• Crescenzi and Kann [ACG+03] – This book serves as the “Garey and
Johnson” for the world of approximation algorithms. Its reference section,
The Compendium of NP Optimization Problems, is maintained online at
www.nada.kth.se/∼viggo/problemlist/ and should be the first place to look
for a provably good heuristic for any given problem.

S.S. Skiena, The Algorithm Design Manual, 2nd ed., DOI: 10.1007/978-1-84800-070-4 16,
c© Springer-Verlag London Limited 2008
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• Vazirani [Vaz04] – A complete treatment of the theory of approximation
algorithms by a highly regarded researcher in the field.

• Hochbaum [Hoc96] – This nice book was the first survey of approximation
algorithms for NP-complete problems, but rapid developments have left it
somewhat dated.

• Gonzalez [Gon07] – This Handbook of Approximation Algorithms and Meta-
heuristics contains current surveys on a variety of techniques for dealing with
hard problems, both applied and theoretical.
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INPUT OUTPUT

16.1 Clique

Input description: A graph G = (V,E).

Problem description: What is the largest S ⊂ V such that for all x, y ∈ S,
(x, y) ∈ E?

Discussion: In high school, everybody complained about the “clique,”—a group
of friends who all hung around together and seemed to dominate everything social.
Consider a graph representing the school’s social network. Vertices correspond to
people, with edges between any pair of people who are friends. Thus, the high
school clique defines a (complete subgraph) clique in this friendship graph.

Identifying “clusters” of related objects often reduces to finding large cliques in
graphs. An interesting example arose in a program the Internal Revenue Service
(IRS) developed to detect organized tax fraud. In this scam, large groups of phony
tax returns are submitted in the hopes of getting undeserved refunds. But generat-
ing large numbers of different phony tax returns is hard work. The IRS constructs
graphs with vertices corresponding to submitted tax forms and edges between any
two forms that appear suspiciously similar. Any large clique in this graph points
to fraud.

Since any edge in a graph represents a clique of two vertices, the challenge lies
not in finding a clique, but in finding a large clique. And it is indeed a challenge, for
finding a maximum clique is NP-complete. To make matters worse, it is provably
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hard to approximate even to within a factor of n1/2−ε. Theoretically, clique is about
as hard as a problem in this book can get. So what can we hope to do about it?

• Will a maximal clique suffice? – A maximal clique is a clique that cannot be
enlarged by adding any additional vertex. This doesn’t mean that it has to
be large relative to the largest possible clique, but it might be. To find a nice
maximal (and hopefully large) clique, sort the vertices from highest degree
to lowest degree, put the first vertex in the clique, and then test each of the
other vertices to see whether it is adjacent to all the clique vertices added
thus far. If so, add it; if not, continue down the list. By using a bit vector to
mark which vertices are currently in the clique, this can be made to run in
O(n+m) time. An alternative approach might incorporate some randomness
into the vertex ordering, and accept the largest maximal clique you find after
a certain number of trials.

• What if I will settle for a large, dense subgraph? – Insisting on cliques to define
clusters in a graph can be risky, since a single missing edge will eliminate a
vertex from consideration. Instead, we should seek large dense subgraphs—
i.e. , subsets of vertices that contain a large number of edges between them.
Cliques are, by definition, the densest subgraphs possible.

The largest set of vertices whose induced (defined) subgraph has minimum
vertex degree ≥ k can be found with a simple linear-time algorithm. Begin
by deleting all the vertices whose degree is less than k. This may reduce the
degree of other vertices below k, if they were adjacent to sufficiently deleted
low-degree vertices. Repeating this process until all remaining vertices have
degree ≥ k constructs the largest high-degree subgraph. This algorithm can
be implemented in O(n + m) time by using adjacency lists and the constant-
width priority queue of Section 12.2 (page 373). If we continue to delete the
lowest-degree vertices, we eventually end up with a clique or set of cliques, –
but they may be as small as two vertices.

• What if the graph is planar? – Planar graphs cannot have cliques of a size
larger than four, or else they cease to be planar. Since each edge defines
a clique of size 2, the only interesting cases are cliques of three and four
vertices. Efficient algorithms to find such small cliques consider the vertices
from lowest to highest degree. Any planar graph must contain a vertex of at
most 5 degrees (see Section 15.12 (page 520)), so there is only a constant-sized
neighborhood to check exhaustively for a clique containing it. We then delete
this vertex to leave a smaller planar graph, containing another low-degree
vertex. Repeat this check and delete processes until the graph is empty.

If you really need to find the largest clique in a graph, an exhaustive search via
backtracking provides the only real solution. We search through all k-subsets of the
vertices, pruning a subset as soon as it contains a vertex that is not adjacent to all
the rest. A simple upper bound on the maximum clique in G is the highest vertex
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degree plus 1. A better upper bound comes from sorting the vertices in order of
decreasing degree. Let j be the largest index such that degree of the jth vertex is
at least j − 1. The largest clique in the graph contains no more than j vertices,
since no vertex of degree < (j − 1) can appear in a clique of size j. To speed our
search, we should delete all such useless vertices from G.

Heuristics for finding large cliques based on randomized techniques such as
simulated annealing are likely to work reasonably well.

Implementations: Cliquer is a set of C routines for finding cliques in arbitrary
weighted graphs by Patric Östergard. It uses an exact branch-and-bound algorithm,
and is available at http://users.tkk.fi/∼pat/cliquer.html.

Programs for finding cliques and independent sets were sought for the Second
DIMACS Implementation Challenge [JT96]. Programs and data from the challenge
are available by anonymous FTP from dimacs.rutgers.edu. Source codes are avail-
able under pub/challenge/graph and test data under pub/djs. dfmax.c implements
a simple-minded branch-and-bound algorithm similar to [CP90]. dmclique.c uses a
“semi-exhaustive greedy” scheme for finding large independent sets from [JAMS91].

Kreher and Stinson [KS99] provide branch-and-bound programs in C for
finding the maximum clique using a variety of lower-bounds, available at
http://www.math.mtu.edu/∼kreher/cages/Src.html.

GOBLIN (http://www.math.uni-augsburg.de/∼fremuth/goblin.html) impleme-
nts branch-and-bound algorithms for finding large cliques. They claim to be able
to work with graphs as large as 150 to 200 vertices.

Notes: Bomze, et al. [BBPP99] give the most comprehensive survey on the problem of
finding maximum cliques. Particularly interesting is the work from the operations research
community on branch-and-bound algorithms for finding cliques effectively. More recent
experimental results are reported in [JS01].

The proof that clique is NP-complete is due to Karp [Kar72]. His reduction (given in
Section 9.3.3 (page 327)) established that clique, vertex cover, and independent set are
very closely related problems, so heuristics and programs that solve one of them should
also produce reasonable solutions for the other two.

The densest subgraph problem seeks the subset of vertices whose induced subgraph has
the highest average vertex degree. A clique of k vertices is clearly the densest subgraph
of its size, but larger, noncomplete subgraphs may achieve higher average degree. The
problem is NP-complete, but simple heuristics based on repeatedly deleting the lowest-
degree vertex achieve reasonable approximation ratios [AITT00]. See [GKT05] for an
interesting application of densest subgraph, namely detecting link spam on the Web.

That clique cannot be approximated to within a factor of n1/2−ε unless P = NP (and

n1−ε under weaker assumptions) is shown in [Has82].

Related Problems: Independent set (see page 528), vertex cover (see page 530).
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INPUT OUTPUT

16.2 Independent Set

Input description: A graph G = (V,E).

Problem description: What is the largest subset S of vertices of V such that for
each edge (x, y) ∈ E, either x �∈ E or y �∈ E?

Discussion: The need to find large independent sets arises in facility dispersion
problems, where we seek a set of mutually separated locations. It is important
that no two locations of our new “McAlgorithm” franchise service be placed close
enough to compete with each other. We can construct a graph where the vertices
are the set of possible locations, and then add edges between any two locations
deemed close enough to interfere. The maximum independent set gives the largest
number of franchises we can sell without cannibalizing sales.

Independent sets (also known as stable sets) avoid conflicts between elements,
and hence arise often in coding theory and scheduling problems. Define a graph
whose vertices represent the set of possible code words, and add edges between
any two code words sufficiently similar to be confused due to noise. The maxi-
mum independent set of this graph defines the highest capacity code for the given
communication channel.

Independent set is closely related to two other NP-complete problems:

• Clique – Watch what you say, for a clique is what you get if you give an
independent set a complement. The complement of G = (V,E) is a graph
G′ = (V,E′) where (i, j) ∈ E′ iff (i, j) is not in E. In other words, we replace
each edge by a non-edge and vice versa. The maximum independent set in G
is exactly the maximum clique in G′, so the two problems are algorithmically
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identical. Thus, the algorithms and implementations in Section 16.1 (page
525) can easily be used for independent set.

• Vertex coloring – The vertex coloring of a graph G = (V,E) is a partition of
V into a small number of sets (colors), where no two vertices of the same color
can have an edge between them. Each color class defines an independent set.
Many scheduling applications of independent set are really coloring problems,
since all tasks eventually must be completed.
Indeed, one heuristic to find a large independent set is to use any vertex col-
oring algorithm/heuristic, and take the largest color class. One consequence
of this observation is that all graphs with small chromatic numbers (such as
planar and bipartite graphs) have large independent sets.

The simplest reasonable heuristic is to find the lowest-degree vertex, add it to
the independent set, and then delete it and all vertices adjacent to it. Repeating
this process until the graph is empty gives a maximal independent set, in that it
can’t be made larger by just adding vertices. Using randomization or perhaps some
degree of exhaustive search might result in somewhat larger independent sets.

The independent set problem is in some sense dual to the graph-matching prob-
lem. The former asks for a large set of vertices with no edge in common, while the
latter asks for a large set of edges with no vertex in common. This suggests trying
to rephrase your problem as an efficiently-computable matching problem instead
of maximum independent set problem, which is NP-complete.

The maximum independent set of a tree can be found in linear time by (1)
stripping off the leaf nodes, (2) adding them to the independent set, (3) deleting
all adjacent nodes, and then (4) repeating from the first step on the resulting trees
until it is empty.

Implementations: Any program for computing the maximum clique in a graph
can find maximum independent sets by just complementing the input graph. There-
fore, we refer the reader to the clique-finding programs of Section 16.1 (page 525).

GOBLIN (http://www.math.uni-augsburg.de/∼fremuth/goblin.html) impleme-
nts a branch-and-bound algorithm for finding independent sets (called stable sets
in the manual).

Greedy randomized adaptive search (GRASP) heuristics for independent set
set have been implemented by Resende, et al. [RFS98] as Algorithm 787 of the
Collected Algorithms of the ACM (see Section 19.1.6 (page 659)). These Fortran
codes are also available from http://www.research.att.com/∼mgcr/src/.

Notes: The proof that independent set is NP-complete is due to Karp [Kar72]. It remains

NP-complete for planar cubic graphs [GJ79]. Independent set can be solved efficiently for

bipartite graphs [Law76]. This is not trivial—indeed the larger of the “part” of a bipartite

graph is not necessarily its maximum independent set.

Related Problems: Clique (see page 525), vertex coloring (see page 544), vertex
cover (see page 530).
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INPUT OUTPUT

16.3 Vertex Cover

Input description: A graph G = (V,E).

Problem description: What is the smallest subset of S ⊂ V such that each edge
(x, y) ∈ E contains at least one vertex of S?

Discussion: Vertex cover is a special case of the more general set cover problem,
which takes as input an arbitrary collection of subsets S = (S1, . . . , Sn) of the
universal set U = {1, . . . , m}. We seek the smallest subset of subsets from S whose
union is U . Set cover arises in many applications associated with buying things
sold in fixed lots or assortments. See Section 18.1 (page 621) for a discussion of set
cover.

To turn vertex cover into a set cover problem, let universal set U represent the
set E of edges from G, and define Si to be the set of edges incident on vertex i. A
set of vertices defines a vertex cover in graph G iff the corresponding subsets define
a set cover in this particular instance. However, since each edge can be in only
two different subsets, vertex cover instances are simpler than general set cover.
Vertex cover is a relative lightweight among NP-complete problems, and can be
more effectively solved than general set cover.

Vertex cover and independent set are very closely related graph problems. Since
every edge in E is (by definition) incident on a vertex in any cover S, there can be
no edge both endpoints are in V − S. Thus, V − S must be an independent set.
Since minimizing S is the same as maximizing V −S, the problems are equivalent.
This means that any independent set solver can be applied to vertex cover as well.
Having two ways of looking at your problem is helpful, since one may appear easier
in a given context.
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The simplest heuristic for vertex cover selects the vertex with highest degree,
adds it to the cover, deletes all adjacent edges, and then repeats until the graph is
empty. With the right data structures, this can be done in linear time, and should
“usually” produce a “pretty good” cover. However, this cover might be lg n times
worse than the optimal cover for certain input graphs.

Fortunately, we can always find a vertex cover whose size is at most twice as
large as optimal. Find a maximal matching M in the graph—i.e. , a set of edges no
two of which share a vertex in common and which cannot be enlarged by adding
additional edges. Such a maximal matching can be constructed incrementally, by
picking an arbitrary edge e in the graph, deleting any edge sharing a vertex with e,
and repeating until the graph is out of edges. Taking both of the vertices for each
edge in a maximal matching gives us a vertex cover. Why? Because any vertex
cover must contain at least one of the two vertices in each matching edge just to
cover the edges of M , this cover is at most twice as large as the minimum cover.

This heuristic can be tweaked to perform somewhat better in practice, if not
in theory. We can select the matching edges to “kill off” as many other edges as
possible, which should reduce the size of the maximal matching and hence the
number of pairs of vertices in the vertex cover. Also, some of the vertices from M
may in fact not be necessary, since all of their incident edges might also have been
covered using other selected vertices. We can identify and delete these losers by
making a second pass through our cover.

The vertex cover problem seeks to cover all edges using few vertices. Two other
important problems have similar sounding objectives:

• Cover all vertices using few vertices – The dominating set problem seeks the
smallest set of vertices D such that every vertex in V − D is adjacent to at
least one vertex in the dominating set D. Every vertex cover of a nontrivial
connected graph is also a dominating set, but dominating sets can be much
smaller. Any single vertex represents the minimum dominating set of com-
plete graph Kn, while n−1 vertices are needed for a vertex cover. Dominating
sets tend to arise in communications problems, since they represent the hubs
or broadcast centers sufficient to communicate with all sites/users.

Dominating set problems can be easily expressed as instances of set cover (see
Section 18.1 (page 621)). Each vertex vi defines a subset of vertices consisting
of itself plus all the vertices it is adjacent to. The greedy set cover heuris-
tic running on this instance yields a Θ(lg n) approximation to the optimal
dominating set.

• Cover all vertices using few edges – The edge cover problem seeks the smallest
set of edges such that each vertex is included in one of the edges. In fact, edge
cover can be solved efficiently by finding a maximum cardinality matching
(see Section 15.6 (page 498)) and then selecting arbitrary edges to account
for the unmatched vertices.
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Implementations: Any program for computing the maximum clique in a graph
can be applied to vertex cover by complementing the input graph and selecting the
vertices which do not appear in the clique. Therefore, we refer the reader to check
out the clique-finding programs of Section 16.1 (page 525).

COVER [RHG07] is a very effective vertex cover solver based on a stochastic local
search algorithm. It is available at http://www.nicta.com.au/people/richters/.

JGraphT (http://jgrapht.sourceforge.net/) is a Java graph library that contains
greedy and 2-approximate heuristics for vertex cover.

Notes: Karp [Kar72] first proved that vertex-cover is NP-complete. Several different
heuristics yield 2-approximation algorithms for vertex cover, including randomized round-
ing. Good expositions on these 2-approximation algorithms include [CLRS01, Hoc96,
Pas97, Vaz04]. The example that the greedy algorithm can be as bad as lg n times op-
timal is due to [Joh74] and presented in [PS98]. Experimental studies of vertex cover
heuristics include [GMPV06, GW97, RHG07].

Whether there exists a better than 2-factor approximation for vertex cover is one of
the major open problems in approximation algorithms. Hastad [Has97] proved there does
not exist a better than 1.1666-factor approximation algorithm for vertex cover.

The primary reference on dominating sets is the monograph of Haynes et al. [HHS98].
Heuristics for the connected dominating set problem are presented in [GK98]. Dominating
set cannot be approximated to better than the Ω(lg n) factor [ACG+03] of set cover.

Related Problems: Independent set (see page 528), set cover (see page 621).
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INPUT OUTPUT

16.4 Traveling Salesman Problem

Input description: A weighted graph G.

Problem description: Find the cycle of minimum cost, visiting each vertex of G
exactly once.

Discussion: The traveling salesman problem is the most notorious NP-complete
problem. This is a function both of its general usefulness and the ease with which
it can be explained to the public at large. Imagine a traveling salesman planning a
car trip to visit a set of cities. What is the shortest route that will enable him to
do so and return home, thus minimizing his total driving?

The traveling salesman problem arises in many transportation and routing prob-
lems. Other important applications involve optimizing tool paths for manufacturing
equipment. For example, consider a robot arm assigned to solder all the connec-
tions on a printed circuit board. The shortest tour that visits each solder point
exactly once defines the most efficient route for the robot.

Several issues arise in solving TSPs:

• Is the graph unweighted? – If the graph is unweighted, or all the edges have
one of two possible cost values, the problem reduces to finding a Hamiltonian
cycle. See Section 16.5 (page 538) for a discussion of this problem.

• Does your input satisfy the triangle inequality? – Our sense of how proper
distance measures behave is captured by the triangle inequality. This prop-
erty states that d(i, j) ≤ d(i, k)+d(k, j) for all vertices i, j, k ∈ V . Geometric



534 16 . GRAPH PROBLEMS: HARD PROBLEMS

distances all satisfy the triangle inequality because the shortest distance be-
tween two points is as the crow flies. Commercial air fares do not satisfy the
triangle inequality, which is why it is so hard to find the cheapest airfare be-
tween two points. TSP heuristics work much better on sensible graphs that
do obey the triangle inequality.

• Are you given n points as input or a weighted graph? – Geometric instances
are often easier to work with than a graph representation. Since pair of points
define a complete graph, there is never an issue of finding a feasible tour. We
can save space by computing these distances on demand, thus eliminating
the need to store an n × n distance matrix. Geometric instances inherently
satisfy the triangle inequality, so they can exploit performance guarantees
from certain heuristics. Finally, one can take advantage of geometric data
structures like kd-trees to quickly identify close unvisited sites.

• Can you visit a vertex more than once? – The restriction that the tour not
revisit any vertex is irrelevant in many applications. In air travel, the cheapest
way to visit all vertices might involve repeatedly visiting an airport hub. Note
that this issue does not arise when the input observes the triangle inequality.

TSP with repeated vertices is easily solved by using any conventional TSP
code on a new cost matrix D, where D(i, j) is the shortest path distance from
i to j. This matrix can be constructed by solving an all-pairs shortest path
(see Section 15.4 (page 489)) and satisfies the triangle inequality.

• Is your distance function symmetric? – A distance function is asymmetric
when there exists x, y such that d(x, y) �= d(y, x). The asymmetric traveling
salesman problem (ATSP) is much harder to solve in practice than symmet-
ric (STSP) instances. Try to avoid such pathological distance functions. Be
aware that there is a reduction converting ATSP instances to symmetric in-
stances containing twice as many vertices [GP07], that may be useful because
symmetric solvers are so much better.

• How important is it to find the optimal tour? – Usually heuristic solutions
will suffice for applications. There are two different approaches if you insist
on solving your TSP to optimality, however. Cutting plane methods model the
problem as an integer program, then solve the linear programming relaxation
of it. Additional constraints designed to force integrality are added if the
optimal solution is not at an integer point. Branch-and-bound algorithms
perform a combinatorial search while maintaining careful upper and lower
bounds on the cost of a tour. In the hands of professionals, problems with
thousands of vertices can be solved. Maybe you can too, if you use the best
solver available.

Almost any flavor of TSP is going to be NP-complete, so the right way to pro-
ceed is with heuristics. These typically come within a few percent of the optimal
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solution, which is close enough for engineering work. Unfortunately, literally dozens
of heuristics have been proposed for TSP, so the situation can be confusing. Empir-
ical results in the literature are sometime contradictory. However, we recommend
choosing from among the following heuristics:

• Minimum spanning trees – This heuristic starts by finding the minimum
spanning tree (MST) of the sites, and then does a depth-first search of the
resulting tree. In the course of DFS, we walk over each of the n − 1 edges
exactly twice: once going down to discover a new vertex, and once going up
when we backtrack. Now define a tour by ordering the vertices by when they
were discovered. If the graph obeys the triangle inequality, the resulting tour
is at most twice the length of the optimal TSP tour. In practice, it is usually
better, typically 15% to 20% over optimal. Furthermore, the running time is
bounded by that of computing the MST, which is only O(n lg n) in the case
of points in the plane (see Section 15.3 (page 484)).

• Incremental insertion methods – A different class of heuristics starts from a
single vertex, and then inserts new points into this partial tour one at a time
until the tour is complete. The version of this heuristic that seems to work
best is furthest point insertion: of all remaining points, insert the point v into
a partial tour T such that

max
v∈V

|T |
min
i=1

(d(v, vi) + d(v, vi+1))

The “min” ensures that we insert the vertex in the position that adds the
smallest amount of distance to the tour, while the “max” ensures that we
pick the worst such vertex first. This seems to work well because it “roughs
out” a partial tour first before filling in details. Such tours are typically only
5% to 10% longer than optimal.

• K-optimal tours – Substantially more powerful are the Kernighan-Lin, or k-
opt, class of heuristics. The method applies local refinements to an initially
arbitrary tour in the hopes of improving it. In particular, subsets of k edges
are deleted from the tour and the k remaining subchains rewired to form
a different tour with hopefully a better cost. A tour is k-optimal when no
subset of k edges can be deleted and rewired to reduce the cost of the tour.
Two-opting a tour is a fast and effective way to improve any other heuristic.
Extensive experiments suggest that 3-optimal tours are usually within a few
percent of the cost of optimal tours. For k > 3, the computation time increases
considerably faster than the solution quality. Simulated annealing provides
an alternate mechanism to employ edge flips to improve heuristic tours.

Implementations: Concorde is a program for the symmetric traveling salesman
problem and related network optimization problems, written in ANSI C. This
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world record-setting program by Applegate, Bixby, Chvatal, and Cook [ABCC07]
has obtained the optimal solutions to 106 of TSPLIB’s 110 instances; the largest
of which has 15,112 cities. Concorde is available for academic research use from
http://www.tsp.gatech.edu/concorde. It is the clear choice among available TSP
codes. Their http://www.tsp.gatech.edu/ website features very interesting material
on the history and applications of TSP.

Lodi and Punnen [LP07] put together an excellent survey of available soft-
ware for solving TSP. Current links to all programs mentioned are maintained at
http://www.or.deis.unibo.it/research pages/tspsoft.html.

TSPLIB [Rei91] provides the standard collection of hard instances of TSPs
that arise in practice. The best-supported version of TSPLIB is available from
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/, although
the instances are also available from Netlib (see Section 19.1.5 (page 659)).

Tsp solve is a C++ code by Chad Hurwitz and Robert Craig that provides
both heuristic and optimal solutions. Geometric problems of size up to 100 points
are manageable. It is available from http://www.cs.sunysb.edu/∼algorith or by
e-mailing Chad Hurrwitz at churritz@cts.com. GOBLIN (http://www.math.uni-
augsburg.de/∼fremuth/goblin.html) implements branch-and-bound algorithms for
both symmetric and asymmetric TSP, as well as a variety of heuristics.

Algorithm 608 [Wes83] of the Collected Algorithms of the ACM is a Fortran
implementation of a heuristic for the quadratic assignment problem—a more gen-
eral problem that includes the traveling salesman as a special case. Algorithm 750
[CDT95] is a Fortran code for the exact solution of asymmetric TSP instances.
See Section 19.1.5 (page 659) for details.

Notes: The book by Applegate, Bixby, Chvatal, and Cook [ABCC07] documents the
techniques they used in their record-setting TSP solvers, as well as the theory and history
behind the problem. Gutin and Punnen [GP07] now offer the best reference on all aspects
and variations of the traveling salesman problem, displacing an older but much beloved
book by Lawler et al. [LLKS85].

Experimental results on heuristic methods for solving large TSPs include [Ben92a,
GBDS80, Rei94]. Typically, it is possible to get within a few percent of optimal with such
methods.

The Christofides heuristic [Chr76] is an improvement over the minimum-spanning
tree heuristic and guarantees a tour whose cost is at most 3/2 times optimal on Eu-
clidean graphs. It runs in O(n3), where the bottleneck is the time it takes to find a
minimum-weight perfect matching (see Section 15.6 (page 498)). The minimum spanning
tree heuristic is due to [RSL77].

Polynomial-time approximation schemes for Euclidean TSP have been developed by
Arora [Aro98] and Mitchell [Mit99], which offer 1 + ε factor approximations in polyno-
mial time for any ε > 0. They are of great theoretical interest, although any practical
consequences remain to be determined.

The history of progress on optimal TSP solutions is inspiring. In 1954, Dantzig, Fulk-
erson, and Johnson solved a symmetric TSP instance of 42 United States cities [DFJ54].
In 1980, Padberg and Hong solved an instance on 318 vertices [PH80]. Applegate et al.
[ABCC07] have recently solved problems that are twenty times larger than this. Some of
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this increase is due to improved hardware, but most is due to better algorithms. The rate
of growth demonstrates that exact solutions to NP-complete problems can be obtained for
large instances if the stakes are high enough. Fortunately or unfortunately, they seldom
are.

Size is not the only criterion for hard instances. One can easily construct an enormous
graph consisting of one cheap cycle, for which it would be easy to find the optimal solution.
For sets of points in convex position in the plane, the minimum TSP tour is described by
its convex hull (see Section 17.2 (page 568)), which can be computed in O(n lg n) time.
Other easy special cases are known.

Related Problems: Hamiltonian cycle (see page 538), minimum spanning tree
(see page 484), convex hull (see page 568).
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INPUT OUTPUT

16.5 Hamiltonian Cycle

Input description: A graph G = (V,E).

Problem description: Find a tour of the vertices using only edges from G, such
that each vertex is visited exactly once.

Discussion: Finding a Hamiltonian cycle or path in a graph G is a special case of
the traveling salesman problem G′—one where each edge in G has distance 1 in ′G.
Non-edge vertex pairs are separated by a greater distance, say 2. Such a weighted
graph has TSP tour of cost n in G′ iff G is Hamiltonian.

Closely related is the problem of finding the longest path or cycle in a graph.
This arises often in pattern recognition problems. Let the vertices in the graph
correspond to possible symbols, with edges linking pairs of symbols that might
occur next to each other. The longest path through this graph is a good candidate
for the proper interpretation.

The problems of finding longest cycles and paths are both NP-complete, even
on very restrictive classes of unweighted graphs. There are several possible lines of
attack, however:

• Is there a serious penalty for visiting vertices more than once? – Reformulat-
ing the Hamiltonian cycle problem instead of minimizing the total number
of vertices visited on a complete tour turns it into an optimization problem.
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This allows possibilities for heuristics and approximation algorithms. Finding
a spanning tree of the graph and doing a depth-first search, as discussed in
Section 16.4 (page 533), yields a tour with at most 2n vertices. Using random-
ization or simulated annealing might bring the size of this down considerably.

• Am I seeking the longest path in a directed acyclic graph (DAG)? – The prob-
lem of finding the longest path in a DAG can be solved in linear time using
dynamic programming. Conveniently, the algorithm for finding the shortest
path in a DAG (presented in Section 15.4 (page 489)) does the job if we
replace min with max. DAGs are the most interesting case of longest path
for which efficient algorithms exist.

• Is my graph dense? – Sufficiently dense graphs always contain Hamiltonian
cycles. Further, the cycles implied by such sufficiency conditions can be effi-
ciently constructed. In particular, any graph where all vertices have degree
≥ n/2 must be Hamiltonian. Stronger sufficient conditions also hold; see the
Notes section.

• Are you visiting all the vertices or all the edges? – Verify that you really have a
vertex-tour problem and not an edge-tour problem. With a little cleverness it
is sometimes possible to reformulate a Hamiltonian cycle problem in terms of
Eulerian cycles, which instead visit every edge of a graph. Perhaps the most
famous such instance is the problem of constructing de Bruijn sequences,
discussed in Section 15.7 (page 502). The benefit is that fast algorithms exist
for Eulerian cycles and many related variants, while Hamiltonian cycle is
NP-complete.

If you really must know whether your graph is Hamiltonian, backtracking with
pruning is your only possible solution. Certainly check whether your graph is bi-
connected (see Section 15.8 (page 505)). If not, this means that the graph has
an articulation vertex whose deletion will disconnect the graph and so cannot be
Hamiltonian.

Implementations: The construction described above (weight 1 for an edge and
2 for a non-edge) reduces Hamiltonian cycles to a symmetric TSP problem that
obeys the triangle inequality. Thus we refer the reader to the TSP solvers dis-
cussed in Section 16.4 (page 533). Foremost among them is Concorde, a program
for the symmetric traveling salesman problem and related network optimization
problems, written in ANSI C. Concorde is available for academic research use from
http://www.tsp.gatech.edu/concorde. It is the clear choice among available TSP
codes.

An effective program for solving Hamiltonian cycle problems resulted from the
masters thesis of Vandegriend [Van98]. Both the code and the thesis are available
from http://web.cs.ualberta.ca/∼joe/Theses/vandegriend.html.
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Lodi and Punnen [LP07] put together an excellent survey of available TSP soft-
ware, including the special case of Hamiltonian cycle. Current links to all programs
are maintained at http://www.or.deis.unibo.it/research pages/tspsoft.html.

The football program of the Stanford GraphBase (see Section 19.1.8 (page 660))
uses a stratified greedy algorithm to solve the asymmetric longest-path problem.
The goal is to derive a chain of football scores to establish the superiority of one
football team over another. After all, if Virginia beat Illinois by 30 points, and
Illinois beat Stony Brook by 14 points, then by transitivity Virginia would beat
Stony Brook by 44 points if they played, right? We seek the longest simple path
in a graph where the weight of edge (x, y) denotes the number of points by which
x beat y.

Nijenhuis and Wilf [NW78] provide an efficient routine to enumerate all Hamil-
tonian cycles of a graph by backtracking. See Section 19.1.10 (page 661). Algorithm
595 [Mar83] of the Collected Algorithms of the ACM is a similar Fortran code that
can be used as either an exact procedure or a heuristic by controlling the amount
of backtracking. See Section 19.1.5 (page 659).

Notes: Hamiltonian cycles apparently first arose in Euler’s study of the knight’s tour
problem, although they were popularized by Hamilton’s “Around the World” game in
1839. See [ABCC07, GP07, LLKS85] for comprehensive references on the traveling sales-
man problem, including discussions on Hamiltonian cycle.

Most good texts in graph theory review sufficiency conditions for graphs to be Hamil-
tonian. My favorite is West [Wes00].

Techniques for solving optimization problems in the laboratory using biological pro-

cesses have attracted considerable attention. In the original application of these “bio-

computing” techniques, Adleman [Adl94] solved a seven-vertex instance of the directed

Hamiltonian path problem. Unfortunately, this approach requires an exponential number

of molecules, and Avogadro’s number implies that such experiments are inconceivable for

graphs beyond n ≈ 70.

Related Problems: Eulerian cycle (see page 502), traveling salesman (see page
533).
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INPUT OUTPUT

16.6 Graph Partition

Input description: A (weighted) graph G = (V,E) and integers k and m.

Problem description: Partition the vertices into m roughly equal-sized subsets
such that the total edge cost spanning the subsets is at most k.

Discussion: Graph partitioning arises in many divide-and-conquer algorithms,
which gain their efficiency by breaking problems into equal-sized pieces such that
the respective solutions can easily be reassembled. Minimizing the number of edges
cut in the partition usually simplifies the task of merging.

Graph partition also arises when we need to cluster the vertices into logical
components. If edges link “similar” pairs of objects, the clusters remaining after
partition should reflect coherent groupings. Large graphs are often partitioned into
reasonable-sized pieces to improve data locality or make less cluttered drawings.

Finally, graph partition is a critical step in many parallel algorithms. Consider
the finite element method, which is used to compute the physical properties (such
as stress and heat transfer) of geometric models. Parallelizing such calculations
requires partitioning the models into equal-sized pieces whose interface is small.
This is a graph-partitioning problem, since the topology of a geometric model is
usually represented using a graph.

Several different flavors of graph partitioning arise depending on the desired
objective function:
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Figure 16.1: The maximum cut of a graph

• Minimum cut set – The smallest set of edges to cut that will disconnect a
graph can be efficiently found using network flow or randomized algorithms.
See Section 15.8 (page 505) for more on connectivity algorithms. The smallest
cutset might split off only a single vertex, so the resulting partition could be
very unbalanced.

• Graph partition – A better partition criterion seeks a small cut that parti-
tions the vertices into roughly equal-sized pieces. Unfortunately, this problem
is NP-complete. Fortunately, the heuristics discussed below work well in prac-
tice.

Certain special graphs always have small separators, that partition the ver-
tices into balanced pieces. For any tree, there always exists a single vertex
whose deletion partitions the tree so that no component contains more than
n/2 of the original n vertices. These components need not always be con-
nected; consider the separating vertex of a star-shaped tree. This separating
vertex can be found in linear time using depth first-search. Every planar
graph has a set of O(

√
n) vertices whose deletion leaves no component with

more than 2n/3 vertices. These separators provide a useful way to decompose
geometric models, which are often defined by planar graphs.

• Maximum cut – Given an electronic circuit specified by a graph, the maximum
cut defines the largest amount of data communication that can simultaneously
occur in the circuit. The highest-speed communications channel should thus
span the vertex partition defined by the maximum edge cut. Finding the
maximum cut in a graph is NP-complete [Kar72], however heuristics similar
to those of graph partitioning work well.

The basic approach for dealing with graph partitioning or max-cut problems
is to construct an initial partition of the vertices (either randomly or according
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to some problem-specific strategy) and then sweep through the vertices, deciding
whether the size of the cut would improve if we moved this vertex over to the other
side. The decision to move vertex v can be made in time proportional to its degree,
by identifying which side of the partition contains more of v’s neighbors. Of course,
the desirable side for v may change after its neighbors jump, so several iterations
are likely to be needed before the process converges on a local optimum. Even so,
such a local optimum can be arbitrarily far away from the global max-cut.

There are many variations of this basic procedure, by changing the order we
test the vertices in or moving clusters of vertices simultaneously. Using some form
of randomization, particularly simulated annealing, is almost certain to be a good
idea. When more than two components are desired, the partitioning heuristic should
be applied recursively.

Spectral partitioning methods use sophisticated linear algebra techniques to
obtain a good partitioning. The spectral bisection method uses the second-lowest
eigenvector of the Laplacian matrix of the graph to partition it into two pieces.
Spectral methods tend to do a good job of identifying the general area to partition,
but the results can be improved by cleaning up with a local optimization method.

Implementations: Chaco is a widely-used graph partitioning code designed to
partition graphs for parallel computing applications. It employs several differ-
ent partitioning algorithms, including both Kernighan-Lin and spectral methods.
Chaco is available at http://www.cs.sandia.gov/∼bahendr/chaco.html.

METIS (http://glaros.dtc.umn.edu/gkhome/views/metis) is another well-
regarded code for graph partitioning. It has successfully partitioned graphs with
over 1,000,000 vertices. Available versions include one variant designed to run
on parallel machines and another suitable for partitioning hypergraphs. Other
respected codes include Scotch (http://www.labri.fr/perso/pelegrin/scotch/) and
JOSTLE (http://staffweb.cms.gre.ac.uk/∼wc06/jostle/).

Notes: The fundamental local improvement heuristics for graph partitioning are due to
Kernighan-Lin [KL70] and Fiduccia-Mattheyses [FM82]. Spectral methods for graph par-
tition are discussed in [Chu97, PSL90]. Empirical results on graph partitioning heuristics
include [BG95, LR93].

The planar separator theorem and an efficient algorithm for finding such a separator
are due to Lipton and Tarjan [LT79, LT80]. For experiences in implementing planar
separator algorithms, see [ADGM04, HPS+05].

Any random vertex partition will expect to cut half of the edges in the graph, since the

probability that the two vertices defining an edge end up on different sides of the partition

is 1/2. Goemans and Williamson [GW95] gave an 0.878-factor approximation algorithm

for maximum-cut, based on semi-definite programming techniques. Tighter analysis of

this algorithm was followed by Karloff [Kar96].

Related Problems: Edge/vertex connectivity (see page 505), network flow (see
page 509).
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INPUT OUTPUT

16.7 Vertex Coloring

Input description: A graph G = (V,E).

Problem description: Color the vertices of V using the minimum number of
colors such that i and j have different colors for all (i, j) ∈ E.

Discussion: Vertex coloring arises in many scheduling and clustering applications.
Register allocation in compiler optimization is a canonical application of coloring.
Each variable in a given program fragment has a range of times during which its
value must be kept intact, in particular after it is initialized and before its final
use. Any two variables whose life spans intersect cannot be placed in the same
register. Construct a graph where each vertex corresponds to a variable, with an
edge between any two vertices whose variable life spans intersect. Since none of
the variables assigned the same color clash, they all can be assigned to the same
register.

No conflicts will occur if each vertex is colored using a distinct color. But
computers have a limited number of registers, so we seek a coloring using the
fewest colors. The smallest number of colors sufficient to vertex-color a graph is its
chromatic number.

Several special cases of interest arise in practice:

• Can I color the graph using only two colors? – An important special case is
testing whether a graph is bipartite, meaning it can be colored using only
two different colors. Bipartite graphs arise naturally in such applications as
mapping workers to possible jobs. Fast, simple algorithms exist for problems



16 .7 VERTEX COLORING 545

such as matching (see Section 15.6 (page 498)) when restricted to bipartite
graphs.

Testing whether a graph is bipartite is easy. Color the first vertex blue, and
then do a depth-first search of the graph. Whenever we discover a new, uncol-
ored vertex, color it opposite of its parent, since the same color would cause
a clash. The graph cannot be bipartite if we ever find an edge (x, y) where
both x and y have been colored identically. Otherwise, the final coloring will
be a 2-coloring, constructed in O(n + m) time. An implementation of this
algorithm is given in Section 5.7.2 (page 167).

• Is the graph planar, or are all vertices of low degree? – The famous four-
color theorem states that every planar graph can be vertex colored using at
most four distinct colors. Efficient algorithms for finding a four-coloring on
planar graphs are known, although it is NP-complete to decide whether a
given planar graph is three-colorable.

There is a very simple algorithm to find a vertex coloring of a planar graph
using at most six colors. In any planar graph, there exists a vertex of at most
five degree. Delete this vertex and recursively color the graph. This vertex
has at most five neighbors, which means that it can always be colored using
one of the six colors that does not appear as a neighbor. This works because
deleting a vertex from a planar graph leaves a planar graph, meaning that it
must also have a low-degree vertex to delete. The same idea can be used to
color any graph of maximum degree Δ using ≤ Δ + 1 colors in O(nΔ) time.

• Is this an edge-coloring problem? – Certain vertex coloring problems can be
modeled as edge coloring, where we seek to color the edges of a graph G such
that no two edges are colored the same if they have a vertex in common.
The payoff is that there is an efficient algorithm that always returns a near-
optimal edge coloring. Algorithms for edge coloring are the focus of Section
16.8 (page 548).

Computing the chromatic number of a graph is NP-complete, so if you need an
exact solution you must resort to backtracking, which can be surprisingly effective
in coloring certain random graphs. It remains hard to compute a good approxima-
tion to the optimal coloring, so expect no guarantees.

Incremental methods are the heuristic of choice for vertex coloring. As in the
previously-mentioned algorithm for planar graphs, vertices are colored sequentially,
with the colors chosen in response to colors already assigned in the vertex’s neigh-
borhood. These methods vary in how the next vertex is selected and how it is
assigned a color. Experience suggests inserting the vertices in nonincreasing order
of degree, since high-degree vertices have more color constraints and so are most
likely to require an additional color if inserted late. Brèlaz’s heuristic [Brè79] dy-
namically selected the uncolored vertex of highest color degree (i.e. , adjacent to
the most different colors), and colors it with the lowest-numbered unused color.
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Incremental methods can be further improved by using color interchange. Tak-
ing a properly colored graph and exchanging two of the colors (painting the red
vertices blue and the blue vertices red) leaves a proper vertex coloring. Now sup-
pose we take a properly colored graph and delete all but the red and blue vertices.
We can repaint one or more of the resulting connected components, again leaving a
proper coloring. After such a recoloring, some vertex v previously adjacent to both
red and blue vertices might now be only adjacent to blue vertices, thus freeing v
to be colored red.

Color interchange is a win in terms of producing better colorings, at a cost
of increased time and implementation complexity. Implementations are described
next. Simulated annealing algorithms that incorporate color interchange to move
from state to state are likely to be even more effective.

Implementations: Graph coloring has been blessed with two useful Web re-
sources.Culberson’s graph coloringpage,http://web.cs.ualberta.ca/∼joe/Coloring/,
provides an extensive bibliography and programs to generate and solve hard graph
coloring instances. Trick’s page, http://mat.gsia.cmu.edu/COLOR/color.html, pro-
vides a nice overview of graph coloring applications, an annotated bibliography,
and a collection of over 70 graph-coloring instances arising in applications such as
register allocation and printed circuit board testing. Both contain a C language
implementationoftheDSATURcoloringalgorithm.

Programs for the closely related problems of finding cliques and vertex col-
oring graphs were sought for at the Second DIMACS Implementation Challenge
[JT96], held in October 1993. Programs and data from the challenge are avail-
able by anonymous FTP from dimacs.rutgers.edu. Source codes are available un-
der pub/challenge/graph and test data under pub/djs, including a simple “semi-
exhaustive greedy” scheme used in the graph-coloring algorithm XRLF [JAMS91].

GraphCol (http://code.google.com/p/graphcol/) contains tabu search and sim-
ulated annealing heuristics for constructing colorings in C.

The C++ Boost Graph Library [SLL02] (http://www.boost.org/libs/graph/doc)
contains an implementation of greedy incremental vertex coloring heuristics.
GOBLIN (http://www.math.uni-augsburg.de/∼fremuth/goblin.html) implements a
branch-and-bound algorithm for vertex coloring.

Pascal implementations of backtracking algorithms for vertex coloring and sev-
eral heuristics, including largest-first and smallest-last incremental orderings and
color interchange, appear in [SDK83]. See Section 19.1.10 (page 662).

Nijenhuis and Wilf [NW78] provide an efficient Fortran implementation of chro-
matic polynomials and vertex coloring by backtracking. See Section 19.1.10 (page
661).

Combinatorica [PS03] provides Mathematica implementations of bipartite
graph testing, heuristic colorings, chromatic polynomials, and vertex coloring by
backtracking. See Section 19.1.9 (page 661).
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Notes: An old but excellent source on vertex coloring heuristics is Syslo, Deo, and Kowa-
lik [SDK83], which includes experimental results. Classical heuristics for vertex coloring
include [Brè79, MMI72, Tur88]; see [GH06, HDD03] for more recent results.

Wilf [Wil84] proved that backtracking to test whether a random graph has chromatic
number k runs in constant time, dependent on k but independent of n. This is not as
interesting as it sounds, because only a vanishingly small fraction of such graphs are
indeed k-colorable. A number of provably efficient (but still exponential) algorithms for
vertex coloring are known. See [Woe03] for a survey.

Paschos [Pas03] reviews what is known about provably good approximation algorithms
for vertex coloring. On one hand, it is provably hard to approximate within a polynomial
factor [BGS95]. On the other hand, there are heuristics that offer some nontrivial guaran-
tees in terms of various parameters, such as Wigderson’s [Wig83] factor of n1−1/(χ(G)−1)

approximation algorithm, where χ(G) is the chromatic number of G.
Brook’s theorem states that the chromatic number χ(G) ≤ Δ(G) + 1, where Δ(G) is

the maximum degree of a vertex of G. Equality holds only for odd-length cycles (which
have chromatic number 3) and complete graphs.

The most famous problem in the history of graph theory is the four-color problem,

first posed in 1852 and finally settled in 1976 by Appel and Haken using a proof involving

extensive computation. Any planar graph can be five-colored using a variation of the color

interchange heuristic. Despite the four-color theorem, it is NP-complete to test whether a

particular planar graph requires four colors or if three suffice. See [SK86] for an exposition

on the history of the four-color problem and the proof. An efficient algorithm to four-color

a graph is presented in [RSST96].

Related Problems: Independent set (see page 528), edge coloring (see page 548).



548 16 . GRAPH PROBLEMS: HARD PROBLEMS

1
2

3

3
1

2
3

3

2 3

2 13 2 1

1

2 1 3 1 2

INPUT OUTPUT

16.8 Edge Coloring

Input description: A graph G = (V,E).

Problem description: What is the smallest set of colors needed to color the edges
of G such that no two same-color edges share a common vertex?

Discussion: The edge coloring of graphs arises in scheduling applications, typically
associated with minimizing the number of noninterfering rounds needed to complete
a given set of tasks. For example, consider a situation where we must schedule
a given set of two-person interviews, where each interview takes one hour. All
meetings could be scheduled to occur at distinct times to avoid conflicts, but it
is less wasteful to schedule nonconflicting events simultaneously. We construct a
graph whose vertices are people and whose edges represent the pairs of people who
need to meet. An edge coloring of this graph defines the schedule. The color classes
represent the different time periods in the schedule, with all meetings of the same
color happening simultaneously.

The National Football League solves such an edge-coloring problem each season
to make up its schedule. Each team’s opponents are determined by the records of
the previous season. Assigning the opponents to weeks of the season is an edge-
coloring problem, complicated by extra constraints of spacing out rematches and
making sure that there is a good game every Monday night.
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The minimum number of colors needed to edge color a graph is called its edge-
chromatic number by some and its chromatic index by others. Note that an even-
length cycle can be edge-colored with 2 colors, while odd-length cycles have an
edge-chromatic number of 3.

Edge coloring has a better (if less famous) theorem associated with it than ver-
tex coloring. Vizing’s theorem states that any graph with a maximum vertex degree
of Δ can be edge colored using at most Δ + 1 colors. To put this in perspective,
note that any edge coloring must have at least Δ colors, since all the edges incident
on any vertex must be distinct colors.

The proof of Vizing’s theorem is constructive, meaning it can be turned into
an O(nmΔ) algorithm to find an edge-coloring with Δ + 1 colors. Since deciding
whether we can get away using one less color than this is NP-complete, it hardly
seems worth the effort to worry about it. An implementation of Vizing’s theorem
is described below.

Any edge-coloring problem on G can be converted to the problem of finding a
vertex coloring on the line graph L(G), which has a vertex of L(G) for each edge
of G and an edge of L(G) if and only if the two edges of G share a common vertex.
Line graphs can be constructed in time linear to their size, and any vertex-coloring
code can be employed to color them. That said, it is disappointing to go the vertex
coloring route. Vizing’s theorem is our reward for the extra thought needed to see
that we have an edge-coloring problem.

Implementations: Yan Dong produced an implementation of Vizing’s the-
orem in C++ as a course project for my algorithms course while a stu-
dent at Stony Brook. It can be found on the algorithm repository site at
http://www.cs.sunysb.edu/∼algorith.

GOBLIN (http://www.math.uni-augsburg.de/∼fremuth/goblin.html) impleme-
nts a branch-and-bound algorithm for edge coloring.

See Section 16.7 (page 544) for a larger collection of vertex-coloring codes and
heuristics, which can be applied to the line graph of your target graph. Combinator-
ica [PS03] provides Mathematica implementations of edge coloring in this fashion,
via the line graph transformation and vertex coloring routines. See Section 19.1.9
(page 661) for more information on Combinatorica.

Notes: Graph-theoretic results on edge coloring are surveyed in [FW77, GT94]. Vizing
[Viz64] and Gupta [Gup66] independently proved that any graph can be edge colored
using at most Δ+1 colors. Misra and Gries give a simple constructive proof of this result
[MG92]. Despite these tight bounds, it is NP-complete to compute the edge-chromatic
number [Hol81]. Bipartite graphs can be edge-colored in polynomial time [Sch98].

Whitney, in introducing line graphs [Whi32], showed that with the exception of K3

and K1,3, any two connected graphs with isomorphic line graphs are isomorphic. It is an

interesting exercise to show that the line graph of an Eulerian graph is both Eulerian and

Hamiltonian, while the line graph of a Hamiltonian graph is always Hamiltonian.

Related Problems: Vertex coloring (see page 544), scheduling (see page 468).
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16.9 Graph Isomorphism

Input description: Two graphs, G and H.

Problem description: Find a (or all) mapping f from the vertices of G to the
vertices of H such that G and H are identical; i.e. , (x, y) is an edge of G iff
(f(x), f(y)) is an edge of H.

Discussion: Isomorphism is the problem of testing whether two graphs are really
the same. Suppose we are given a collection of graphs and must perform some
operation on each of them. If we can identify which of the graphs are duplicates,
we can discard copies to avoid redundant work.

Certain pattern recognition problems are readily mapped to graph or subgraph
isomorphism detection. The structure of chemical compounds are naturally de-
scribed by labeled graphs, with each atom represented by a vertex. Identifying all
molecules in a structure database containing a particular functional group is an
instance of subgraph isomorphism testing.

We need some terminology to settle what is meant when we say two graphs
are the same. Two labeled graphs G = (Vg, Eg) and H = (Vh, Eh) are identical
when (x, y) ∈ Eg iff (x, y) ∈ Eh. The isomorphism problem consists of finding a
mapping from the vertices of G to H such that they are identical. Such a mapping
is called an isomorphism; the problem of finding the mapping is sometimes called
graph matching.

Identifying symmetries is another important application of graph isomorphism.
A mapping of a graph to itself is called an automorphism, and the collection of
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automorphisms (the automorphism group) provides a great deal of information
about symmetries in the graph. For example, the complete graph Kn has n! au-
tomorphisms (any mapping will do), while an arbitrary random graph is likely to
have few or perhaps only one, since G is always identical to itself.

Several variations of graph isomorphism arise in practice:

• Is graph G contained in graph H? – Instead of testing equality, we are of-
ten interested in knowing whether a small pattern graph G is a subgraph
of H. Such problems as clique, independent set, and Hamiltonian cycle are
important special cases of subgraph isomorphism.

There are two distinct graph-theoretic notions of “contained in.” Subgraph
isomorphism asks whether there is a subset of edges and vertices of H that is
isomorphic to a smaller graph G. Induced subgraph isomorphism asks whether
there is a subset of vertices of H whose deletion leaves a subgraph isomorphic
to a smaller graph G. For induced subgraph isomorphism, (1) all edges of G
must be present in H, and (2) no non-edges of G can be present in H. Clique
happens to be an instance of both subgraph isomorphism problems, while
Hamiltonian cycle is only an example of vanilla subgraph isomorphism.

Be aware of this distinction in your application. Subgraph isomorphism prob-
lems tend to be harder than graph isomorphism, while induced subgraph
problems tend to be even harder than subgraph isomorphism. Some flavor of
backtracking is your only viable approach.

• Are your graphs labeled or unlabeled? – In many applications, vertices or
edges of the graphs are labeled with some attribute that must be respected in
determining isomorphisms. For example, in comparing two bipartite graphs,
each with “worker” vertices and “job” vertices, any isomorphism that equated
a job with a worker would make no sense.

Labels and related constraints can be factored into any backtracking algo-
rithm. Further, such constraints significantly speed up the search, by creat-
ing many more opportunities for pruning whenever two vertex labels do not
match up.

• Are you testing whether two trees are isomorphic? – Faster algorithms ex-
ist for certain special cases of graph isomorphism, such as trees and planar
graphs. Perhaps the most important case is detecting isomorphisms among
trees, a problem that arises in language pattern matching and parsing appli-
cations. A parse tree is often used to describe the structure of a text; two
parse trees will be isomorphic if the underlying pair of texts have the same
structure.

Efficient algorithms for tree isomorphism begin with the leaves of both trees
and work inward toward the center. Each vertex in one tree is assigned a
label representing the set of vertices in the second tree that might possibly
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be isomorphic to it, based on the constraints of labels and vertex degrees.
For example, all the leaves in tree T1 are initially potentially equivalent to all
leaves of T2. Now, working inward, we can partition the vertices adjacent to
leaves in T1 into classes based on how many leaves and non-leaves they are
adjacent to. By carefully keeping track of the labels of the subtrees, we can
make sure that we have the same distribution of labeled subtrees for T1 and
T2. Any mismatch means T1 �= T2, while completing the process partitions the
vertices into equivalence classes defining all isomorphisms. See the references
below for more details.

• How many graphs do you have? – Many data mining applications involve
searching for all instances of a particular pattern graph in a big database
of graphs. The chemical structure mapping application described above falls
into this family. Such databases typically contain a large number of relatively
small graphs. This puts an onus on indexing the graph database by small
substructures (say five to ten vertex each), and doing expensive isomorphism
tests only against those containing the same substructures as the query graph.

No polynomial-time algorithm is known for graph isomorphism, but neither is
it known to be NP-complete. Along with integer factorization (see Section 13.8
(page 420)), it is one of the few important algorithmic problems whose rough
computational complexity is still not known. The conventional wisdom is that
isomorphism is a problem that lies between P and NP-complete if P �= NP.

Although no worst-case polynomial-time algorithm is known, testing isomor-
phism is usually not very hard in practice. The basic algorithm backtracks through
all n! possible relabelings of the vertices of graph h with the names of vertices
of graph g, and then tests whether the graphs are identical. Of course, we can
prune the search of all permutations with a given prefix as soon as we detect any
mismatch between edges whose vertices are both in the prefix.

However, the real key to efficient isomorphism testing is to preprocess the ver-
tices into “equivalence classes,” partitioning them into sets of vertices so that two
vertices in different sets cannot possibly be mistaken for each other. All vertices
in each equivalence class must share the same value of some invariant that is inde-
pendent of labeling. Possibilities include:

• Vertex degree – This simplest way to partition vertices is based on their
degree—the number of edges incident on the vertex. Two vertices of different
degrees cannot be identical. This simple partition can be a big win, but won’t
do much for regular (equal degree) graphs.

• Shortest path matrix – For each vertex v, the all-pairs shortest path matrix
(see Section 15.4 (page 489)) defines a multiset of n−1 distances representing
the distances between v and each of the other vertices. Any two identical
vertices must define the exact same multiset of distances, so we can partition
the vertices into equivalence classes defining identical distance multisets.
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• Counting length-k paths – Taking the adjacency matrix of G and raising it to
the kth power gives a matrix where Gk[i, j] counts the number of (nonsimple)
paths from i to j. For each vertex and each k, this matrix defines a multiset
of path-counts, which can be used for partitioning as with distances above.
You could try all 1 ≤ k ≤ n or beyond, and use any single deviation as an
excuse to partition.

Using these invariants, you should be able to partition the vertices of most
graphs into a large number of small equivalence classes. Finishing the job off with
backtracking should then be short work. We assign each vertex the name of its
equivalence class as a label, and treat it as a labeled matching problem. It is harder
to detect isomorphisms between highly-symmetric graphs than it is with random
graphs because of the reduced effectiveness of these equivalence-class partitioning
heuristics.

Implementations: The best known isomorphism testing program is nauty (No
AUTomorphisms, Yes?)—a set of very efficient C language procedures for deter-
mining the automorphism group of a vertex-colored graph. Nauty is also able to
produce a canonically-labeled isomorph of the graph, to assist in isomorphism test-
ing. It was the basis of the first program to generate all 11-vertex graphs without
isomorphs, and can test most graphs with fewer than 100 vertices in well under a
second. Nauty has been ported to a variety of operating systems and C compilers.
It is available at http://cs.anu.edu.au/∼bdm/nauty/. The theory behind nauty is
described in [McK81].

The VFLib graph-matching library contains implementations for several dif-
ferent algorithms for both graph and subgraph isomorphism testing. This library
has been widely used and very carefully benchmarked [FSV01]. It is available at
http://amalfi.dis.unina.it/graph/.

GraphGrep [GS02] (http://www.cs.nyu.edu/shasha/papers/graphgrep/) is a rep-
resentative data mining tool for querying large databases of graphs.

Valiente [Val02] has made available the implementations of graph/subgraph
isomorphism algorithms for both trees and graphs in his book [Val02]. These C++
implementations run on top of LEDA (see Section 19.1.1 (page 658)), and are
available at http://www.lsi.upc.edu/∼valiente/algorithm/.

Kreher and Stinson [KS99] compute isomorphisms of graphs in addition to
more general group-theoretic operations. These implementations in C are available
at http://www.math.mtu.edu/∼kreher/cages/Src.html.

Notes: Graph isomorphism is an important problem in complexity theory. Monographs
on isomorphism detection include [Hof82, KST93]. Valiente [Val02] focuses on algorithms
for tree and subgraph isomorphism. Kreher and Stinson [KS99] take a more group-
theoretic approach to isomorphism testing. Graph mining systems and algorithms are
surveyed in [CH06]. See [FSV01] for performance comparisons between different graph
and subgraph isomorphism algorithms.

Polynomial-time algorithms are known for planar graph isomorphism [HW74] and for
graphs where the maximum vertex degree is bounded by a constant [Luk80]. The all-pairs
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shortest path heuristic is due to [SD76], although there exist nonisomorphic graphs that
realize the exact same set of distances [BH90]. A linear-time tree isomorphism algorithm
for both labeled and unlabeled trees is presented in [AHU74].

A problem is said to be isomorphism-complete if it is provably as hard as isomorphism.
Testing the isomorphism of bipartite graphs is isomorphism-complete, since any graph
can be made bipartite by replacing each edge by two edges connected with a new vertex.
Clearly, the original graphs are isomorphic if and only if the transformed graphs are.

Related Problems: Shortest path (see page 489), string matching (see page 628).
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INPUT OUTPUT

16.10 Steiner Tree

Input description: A graph G = (V,E). A subset of vertices T ∈ V .

Problem description: Find the smallest tree connecting all the vertices of T .

Discussion: Steiner trees arise often in network design problems, since the mini-
mum Steiner tree describes how to connect a given set of sites using the smallest
amount of wire. Analogous problems occur when designing networks of water pipes
or heating ducts and in VLSI circuit design. Typical Steiner tree problems in VLSI
are to connect a set of sites to (say) ground under constraints such as material
cost, signal propagation time, or reducing capacitance.

The Steiner tree problem is distinguished from the minimum spanning tree
(MST) problem (see Section 15.3 (page 484)) in that we are permitted to construct
or select intermediate connection points to reduce the cost of the tree. Issues in
Steiner tree construction include:

• How many points do you have to connect? – The Steiner tree of a pair of
vertices is simply the shortest path between them (see Section 15.4 (page
489)). The Steiner tree of all the vertices, when S = V , simply defines the
MST of G. The general minimum Steiner tree problem is NP-hard despite
these special cases, and remains so under a broad range of restrictions.
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• Is the input a set of geometric points or a distance graph? – Geometric ver-
sions of Steiner tree take a set of points as input, typically in the plane, and
seek the smallest tree connecting the points. A complication is that the set
of possible intermediate points is not given as part of the input but must be
deduced from the set of points. These possible Steiner points must satisfy
several geometric properties, which can be used to reduce the set of candi-
dates down to a finite number. For example, every Steiner point will have
a degree of exactly three in a minimum Steiner tree, and the angles formed
between any two of these edges must be exactly 120 degrees.

• Are there constraints on the edges we can use? – Many wiring problems cor-
respond to geometric versions of the problem, where all edges are restricted
to being either horizontal or vertical. This is the so-called rectilinear Steiner
problem. A different set of angular and degree conditions apply for rectilin-
ear Steiner trees than for Euclidean trees. In particular, all angles must be
multiples of 90 degrees, and each vertex is of a degree up to four.

• Do I really need an optimal tree? – Certain Steiner tree applications (e.g., cir-
cuit design and communications networks) justify investing large amounts of
computation to find the best possible Steiner tree. This implies an exhaustive
search technique such as backtracking or branch-and-bound. There are many
opportunities for pruning search based on geometric and graph-theoretic con-
straints.

Still, Steiner tree remains a hard problem. We recommend experimenting
with the implementations described below before attempting your own.

• How can I reconstruct Steiner vertices I never knew about? – A very special
type of Steiner tree arises in classification and evolution. A phylogenic tree
illustrates the relative similarity between different objects or species. Each
object represents (typically) a leaf/terminal vertex of the tree, with inter-
mediate vertices representing branching points between classes of objects.
For example, an evolutionary tree of animal species might have leaf nodes of
human, dog, snake and internal nodes corresponding to taxa (animal, mam-
mal, reptile). A tree rooted at animal with dog and human classified under
mammal implies that humans are closer to dogs than to snakes.

Many different phylogenic tree construction algorithms have been developed
that vary in (1) the data they attempt to model, and (2) the desired optimiza-
tion criterion. Each combination of reconstruction algorithm and distance
measure is likely to give a different answer, so identifying the “right” method
for any given application is somewhat a question of faith. A reasonable pro-
cedure is to acquire a standard package of implementations, discussed below,
and then see what happens to your data under all of them.

Fortunately, there is a good, efficient heuristic for finding Steiner trees that
works well on all versions of the problem. Construct a graph modeling your input,
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setting the weight of edge (i, j) equal to the distance from point i to point j. Find
an MST of this graph. You are guaranteed a provably good approximation for both
Euclidean and rectilinear Steiner trees.

The worst case for a MST approximation of the Euclidean Steiner tree is three
points forming an equilateral triangle. The MST will contain two of the sides (for
a length of 2), whereas the minimum Steiner tree will connect the three points
using an interior point, for a total length of

√
3. This ratio of

√
3/2 ≈ 0.866 is

always achieved, and in practice the easily-computed MST is usually within a few
percent of the optimal Steiner tree. The rectilinear Steiner tree / MST ratio is
always ≥ 2/3 ≈ 0.667.

Such an MST can be refined by inserting a Steiner point whenever the edges
of the minimum spanning tree incident on a vertex form an angle of less than
120 degrees between them. Inserting these points and locally readjusting the tree
edges can move the solution a few more percent towards the optimum. Similar
optimizations are possible for rectilinear spanning trees.

Note that we are only interested in the subtree connecting the terminal vertices.
We may need to trim the MST if we add nonterminal vertices to the input of the
problem. We retain only the tree edges which lie on the (unique) path between
some pair of terminal nodes. The complete set of these can be found in O(n) time
by performing a BFS on the full tree starting from any single terminal node.

An alternative heuristic for graphs is based on shortest path. Start with a tree
consisting of the shortest path between two terminals. For each remaining terminal
t, find the shortest path to a vertex v in the tree and add this path to the tree. The
time complexity and quality of this heuristic depend upon the insertion order of the
terminals and how the shortest-path computations are performed, but something
simple and fairly effective is likely to result.

Implementations: GeoSteiner is a package for solving both Euclidean and rec-
tilinear Steiner tree problems in the plane by Warme, Winter, and Zachariasen
[WWZ00]. It also solves the related problem of MSTs in hypergraphs, and claims
to have solved problems as large as 10,000 points to optimality. It is available
from http://www.diku.dk/geosteiner/. This is almost certainly the best code for
geometric instances of Steiner tree.

FLUTE (http://home.eng.iastate.edu/∼cnchu/flute.html) computes rectilinear
Steiner trees, emphasizing speed. It contains a user-defined parameter to control
the tradeoff between solution quality and run time.

GOBLIN (http://www.math.uni-augsburg.de/∼fremuth/goblin.html) includes
both heuristics and search methods for finding Steiner trees in graphs.

The programs PHYLIP (http://evolution.genetics.washington.edu/phylip.html)
and PAUP (http://paup.csit.fsu.edu/) are widely-used packages for inferring phy-
logenic trees. Both contain over 20 different algorithms for constructing phylogenic
trees from data. Although many of them are designed to work with molecular se-
quence data, several general methods accept arbitrary distance matrices as input.
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Notes: Recent monographs on the Steiner tree problem include Hwang, Richards, and
Winter [HRW92] and Prömel and Steger [PS02]. Du, et al. [DSR00] is a collection of recent
surveys on all aspects of Steiner trees. Older surveys on the problem include [Kuh75].
Empirical results on Steiner tree heuristics include [SFG82, Vos92].

The Euclidean Steiner problem dates back to Fermat, who asked how to find a point p
in the plane minimizing the sum of the distances to three given points. This was solved by
Torricelli before 1640. Steiner was apparently one of several mathematicians who worked
the general problem for n points, and was mistakenly credited with the problem. An
interesting, more detailed history appears in [HRW92].

Gilbert and Pollak [GP68] first conjectured that the ratio of the length of the minimum
Steiner tree over the MST is always ≥

√
3/2 ≈ 0.866. After twenty years of active research,

the Gilbert-Pollak ratio was finally proven by Du and Hwang [DH92]. The Euclidean MST
for n points in the plane can be constructed in O(n lg n) time [PS85].

Arora [Aro98] gave a polynomial-time approximation scheme (PTAS) for Steiner trees
in k-dimensional Euclidian space. A 1.55-factor approximation for Steiner trees on graphs
is due to Robins and Zelikovsky [RZ05].

Expositions on the proof that the Steiner tree problem for graphs is hard [Kar72]
include [Eve79a]. Expositions on exact algorithms for Steiner trees in graphs include
[Law76]. The hardness of Steiner tree for Euclidean and rectilinear metrics was established
in [GGJ77, GJ77]. Euclidean Steiner tree is not known to be in NP, because of numerical
issues in representing distances.

Analogies can be drawn between minimum Steiner trees and minimum energy config-

urations in certain physical systems. The case that such analog systems—including the

behavior of soap films over wire frames—“solve” the Steiner tree problem is discussed in

[Mie58].

Related Problems: Minimum spanning tree (see page 484), shortest path (see
page 489).
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INPUT OUTPUT

16.11 Feedback Edge/Vertex Set

Input description: A (directed) graph G = (V,E).

Problem description: What is the smallest set of edges E′ or vertices V ′ whose
deletion leaves an acyclic graph?

Discussion: Feedback set problems arise because many things are easier to do
on directed acyclic graphs (DAGs) than general digraphs. Consider the problem
of scheduling jobs with precedence constraints (i.e. , job A must come before job
B). When the constraints are all consistent, the resulting graph is a DAG, and
topological sort (see Section 15.2 (page 481)) can be used to order the vertices to
respect them. But how can you design a schedule when there are cyclic constraints,
such as A must be done before B, which must be done before C, which must be
done before A?

By identifying a feedback set, we identify the smallest number of constraints
that must be dropped to permit a valid schedule. In the feedback edge (or arc)
set problem, we drop individual precedence constraints. In the feedback vertex set
problem, we drop entire jobs and all constraints associated with them.

Similar considerations are involved in eliminating race conditions from elec-
tronic circuits. This explains why the problem is called “feedback” set. It is also
known as the maximum acyclic subgraph problem.
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One final application has to do with ranking tournaments. Suppose we want to
rank order the skills of players at some two-player game, such as chess or tennis.
We can construct a directed graph where there is an arc from x to y if x beats y in
a game. The higher-ranked player should be at the lower-ranked player, although
upsets often occur. A natural ranking is the topological sort resulting after deleting
the minimum set of feedback edges (upsets) from the graph.

Issues in feedback set problems include:

• Do any constraints have to be dropped? – No changes are needed if the graph is
already a DAG, which can be determined via topological sort. One way to find
a feedback set modifies the topological sorting algorithm to delete whatever
edge or vertex is causing the trouble whenever a contradiction is found. This
feedback set might be much larger than needed, however, since feedback edge
set and feedback vertex set are NP-complete on directed graphs.

• How can I find a good feedback edge set? – An effective linear-time heuristic
constructs a vertex ordering and then deletes any arc going in the wrong
direction. At least half the arcs must go either left-to-right or right-to-left for
any vertex order, so take the smaller partition as your feedback set.

But what is the right vertex order to start from? One natural order is to
sort the vertices in terms of edge-imbalance, namely in-degree minus out-
degree. Another approach starts by picking an arbitrary vertex v. Any vertex
x defined by an in-going edge (x, v) will be placed to the left of v. Any x
defined by out-going edge (v, x) will analogously be placed to the right of v.
We can now recur on the left and right subsets to complete the vertex order.

• How can I find a good feedback vertex set? – The heuristics above yield vertex
orders defining (hopefully) few back edges. We seek a small set of vertices
that together cover these backedges. This is exactly a vertex cover problem,
the heuristics for which are discussed in Section 16.3 (page 530).

• What if I want to break all cycles in an undirected graph? – The problem of
finding feedback sets in undirected graphs is quite different from digraphs.
Trees are undirected graphs without cycles, and every tree on n vertices
contains exactly n − 1 edges. Thus the smallest feedback edge set of any
undirected graph G is |E| − (n − c), where c is the number of connected
components of G. The back edges encountered during a depth-first search of
G qualified as a minimum feedback edge set.

The feedback vertex set problem remains NP-complete for undirected graphs,
however. A reasonable heuristic uses breadth-first search to identify the short-
est cycle in G. The vertices in this cycle are all deleted from G, and the
shortest remaining cycle identified. This find-and-delete procedure is em-
ployed until the graph is acyclic. The optimal feedback vertex set must con-
tain at least one vertex from each of these vertex-disjoint cycles, so the average
deleted-cycle length determines just how good our approximation is.
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It may pay to refine any of these heuristic solutions using randomization or
simulated annealing. To move between states, we can modify the vertex permu-
tation by swapping pairs in order or insert/delete vertices to/from the candidate
feedback set.

Implementations: Greedy randomized adaptive search (GRASP) heuristics for
both feedback vertex and feedback edge set problems have been implemented
by Festa, et al. [FPR01] as Algorithm 815 of the Collected Algorithms of the
ACM (see Section 19.1.6 (page 659)). These Fortran codes are also available from
http://www.research.att.com/∼mgcr/src/.

GOBLIN (http://www.math.uni-augsburg.de/∼fremuth/goblin.html) includes
an approximation heuristic for minimum feedback arc set.

The econ order program of the Stanford GraphBase (see Section 19.1.8 (page
660)) permutes the rows and columns of a matrix so as to minimize the sum of
the numbers below the main diagonal. Using an adjacency matrix as the input and
deleting all edges below the main diagonal leaves an acyclic graph.

Notes: See [FPR99] for a survey on the feedback set problem. Expositions of the proofs
that feedback minimization is hard [Kar72] include [AHU74, Eve79a]. Both feedback
vertex and edge set remain hard even if no vertex has in-degree or out-degree greater
than two [GJ79].

Bafna, et al. [BBF99] gives a 2-factor approximation for feedback vertex set in undi-
rected graphs. Feedback edge sets in directed graphs can be approximated to within a
factor of O(log n log log n) [ENSS98]. Heuristics for ranking tournaments are discussed in
[CFR06]. Experiments with heuristics are reported in [Koe05].

An interesting application of feedback arc set to economics is presented in [Knu94].

For each pair A, B of sectors of the economy, we are given how much money flows from

A to B. We seek to order the sectors to determine which sectors are primarily producers

to other sectors, and which deliver primarily to consumers.

Related Problems: Bandwidth reduction (see page 398), topological sorting (see
page 481), scheduling (see page 468).
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