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Abstract

Mathematical software and graph-theoretical algorithmic packages to e�ciently model,
analyze and query graphs are crucial in an era where large-scale spatial, societal and
economic network data are abundantly available. One such package is JGraphT, a pro-
gramming library which contains very e�cient and generic graph data-structures along
with a large collection of state-of-the-art algorithms. The library is written in Java with
stability, interoperability and performance in mind. A distinctive feature of this library
is its ability to model vertices and edges as arbitrary objects, thereby permitting natural
representations of many common networks including transportation, social and biologi-
cal networks. Besides classic graph algorithms such as shortest-paths and spanning-tree
algorithms, the library contains numerous advanced algorithms: graph and subgraph iso-
morphism; matching and flow problems; approximation algorithms for NP-hard problems
such as independent set and TSP; and several more exotic algorithms such as Berge graph
detection. Due to its versatility and generic design, JGraphT is currently used in large-
scale commercial products, as well as non-commercial and academic research projects.
In this work we describe in detail the design and underlying structure of the library, and
discuss its most important features and algorithms. A computational study is conducted
to evaluate the performance of JGraphT versus a number of similar libraries. Experiments
on a large number of graphs over a variety of popular algorithms show that JGraphT is
highly competitive with other established libraries such as NetworkX or the BGL.

1 Introduction

Over the last decade, a surge in demand for studying large, complex graphs spurred the
development of new packages for graph analysis. Graphs became ubiquitous in every field
of study due to their natural ability to capture relationships and interactions between dif-
ferent entities. Graph theoretical problems are regularly encountered in such diverse areas
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as network security, computational biology, logistics/planning, psychology, chemistry, and
linguistics. Despite the vast diversity in graph applications across di↵erent fields, their un-
derlying mechanics inevitably rely on the same fundamental mathematical techniques and
solution approaches. In keeping with this observation, libraries which e�ciently model, store,
manipulate and query graphs have become indispensable for engineers and data scientists
alike.

This paper introduces JGraphT, a library which contains very e�cient and generic graph
data-structures along with a sizeable collection of sophisticated algorithms. The library is
written in Java, with stability, performance and interoperability in mind. The first version of
JGraphT, released in 2003, was primarily intended as a scientific package containing graph-
theoretical algorithms. Over the years, JGraphT widened its scope, and added support for
algorithms typically encountered in the context of (path) planning, routing, network analysis,
combinatorial optimization and applications in computational biology. These developments
lead to the adoption of JGraphT into large-scale projects both in academia and industry.
As of today, JGraphT is used1 in a variety of commercial and open-source software pack-
ages, including the Apache Cassandra database, the distributed realtime computation system
Apache Storm, the Graal JVM, the Constraint Programming Solver Choco, and in Cascad-
ing, a software abstraction layer for Apache Hadoop. Similarly, in academia JGraphT has
been successfully deployed across a wide range of research domains, including circuit verifi-
cation [67], malware detection [62], software performance prediction [65], cartography [70],
social networking [4], and navigation of autonomous vehicles [30].

Developing a robust, performance-driven, application-independent graph library is a com-
plex task, involving a large number of conflicting (functional and structural) design choices
and performance trade-o↵s. In this paper, we formally outline the design of JGraphT, and
highlight several of its design considerations. Moreover, we provide an overview of the most
important features and algorithms currently supported by JGraphT. Among others, this
overview covers routing algorithms such as shortest path algorithms or advanced heuristics
for A*; network analysis with clustering coe�cients and centrality metrics; network optimiza-
tion and matching problems; min-cut and max-flow algorithms; graph mining with graph
kernels; and subgraph isomorphism detection. To show JGraphT’s competitiveness, we per-
form a computational comparison with other well-established graph libraries.

The remainder of this paper is structured as follows. Section 2 discusses related work
and alternative graph libraries. Next, Section 3 describes JGraphT, its components and its
internal design in detail. An overview of the various algorithms supported by JGraphT is
provided in Section 4, followed by an overview of graph generators in Section 5. To provide
interoperability between di↵erent mathematical packages, JGraphT natively supports a large
variety of graph formats, summarized in Section 6. An extensive computational study—
covering an external comparison of algorithms from di↵erent libraries, an internal comparison
of alternative algorithms for the same mathematical problems, and a comparison of di↵erent
graph representations—is presented in Section 7. Finally, Section 8 concludes the paper.

2 Related Work

Software solutions for graph theory exist in many forms. On one side of the spectrum, there
are the mathematical ecosystems such as Wolfram Mathematica [58], Sage Math [100] and
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Maple [69] which provide high-level functions to model, analyze and visualize graphs and
networks. On the other side, there are graph theoretical libraries and algorithmic packages
such as JGraphT, which are primarily designed to aid software development. From a scientific
point of view, the two best-known libraries are LEDA [76] and the Boost Graph Library [92]
(BGL), which are both written in C++. LEDA o↵ers a very e�cient graph data-structure,
along with some of the most e�cient implementations of classic graph algorithms. BGL, on
the other hand, follows a generic programming paradigm in order to provide highly optimized
graph algorithms.

Despite the popularity of Java as a programming language in academia and industry,
the number of graph packages written in Java is very limited. Currently, there exist only
two viable alternatives to JGraphT: the Java Universal Network/Graph Framework (JUNG)
library [81] and a graph component in the Google Guava2 library. JUNG provides a graph
data-structure, several basic algorithms such as shortest paths and centrality metrics, and
a graph drawing (layout) component. Google Guava, on the other hand, currently only
contains a number of graph data structures, including ’Graph’, ’ValueGraph’ and ’Network’.
Out of these three, ’Network’ is the most general one and corresponds almost one-to-one
with the JGraphT graph interface. To provide algorithmic support for Guava, JGraphT
contains adapter classes which allow users to invoke all algorithms in JGraphT on Guava
graph data-structures.

Software packages for network analysis can be broadly categorized as: (1) packages for
data structures and storage, including databases for large-scale networks; (2) algorithmic
packages for network analysis, primarily meant to create insights into the network data; and
(3) packages for graph visualizations to generate meaningful, human-interpretable, visual
representations. Of particular interest to us are the packages that fall within the second cate-
gory. The igraph [25] library, written in C, contains several optimized algorithms for network
analysis. igraph is designed to handle large graphs e�ciently and to be easily embeddable
in higher level programming languages such as Python and R. NetworkX [52] is a Python
library designed to study the structure and dynamics of complex networks. It contains data
structures for graphs, digraphs and multigraphs, as well as many standard graph and net-
work analysis algorithms. Moreover, similar to JGraphT, NetworkX is platform independent.
NetworKit [93] is yet another open-source package for large-scale network analysis. It is
written in C++, employing parallelization when appropriate, and provides Python bindings
for ease-of-use. The Stanford Network Analysis Platform (SNAP) [66] is a general-purpose,
high-performance system that provides easy-to-use, high-level operations for analysis and ma-
nipulation of large networks. The library focuses on single big-memory machines and provides
a large collection of graph algorithms including dynamic algorithms. Similarly to the other
libraries, it is written in C++ with Python bindings.

Next to the traditional graph libraries, there exist a number of specialized libraries de-
signed for large-scale, parallel computing applications. These libraries typically implement
frameworks that rely on distributed computing (Parallel Boost Graph Library [49], Dis-
tributed GraphLab [68]), multi-core CPU (Ligra [91], GraphMat [95]), or GPU architec-
tures (GraphBLAST [105], Gunrock [103], nvgraph3) to execute graph operations on massive
graphs in parallel. Several of these frameworks, including GraphMat, GraphBLAS [61]4 and
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GraphBLAST, represent graphs through sparse adjancency matrices, and use matrix algebra
to implement graph operations. These frameworks are, among others, particularly suited for
implementing parallel graph traversal algorithms such as Breadth-First-Search, Pagerank and
single-source shortest paths. Empirical studies and comparisons of a number of these libraries
have been published in [88, 50]. Additionally, a community e↵ort has been launched [73] in
order to implement more graph algorithms using the GraphBLAS API.

Finally, there exist a large number of software packages and libraries that focus on graph
visualization such as Gephi [7], Cytoscape [89], and GraphViz [35]. While it is possible
to couple JGraphT with visualization libraries, the library currently does not o↵er drawing
capabilities by itself.

3 Design

JGraphT is designed with a strong focus on flexibility, versatility and performance. This
section outlines the design of JGraphT and discusses trade-o↵s and considerations encountered
in the design of the library.

3.1 The Graph interface

JGraphT is built around a central Graph<V,E> interface (Figure 1). This interface provides
elementary operations for the construction of a graph, as well as basic operators to access
elements of the graph (Figure 2). All interactions with the graph occur through this interface:
every predefined graph class in the library implements this interface, and all of JGraphT’s
algorithms expect a Graph instance as input.

The interface takes two generic parameters <V> and <E> determining the type of Java
objects that are used respectively as vertices and edges of the graph. JGraphT permits the
user to use any type of object as edge or vertex. In its simplest form, the vertices of a graph
are represented by Integers or Strings, while the edges are represented by a default edge im-
plementation called DefaultEdge. A more meaningful example arises when modeling a road
network as a graph, where the vertices are intersections and the edges are road segments.
Typically, one would implement an Intersection class which stores the geographical coor-
dinates of an intersection, as well as a RoadSegment class which records information such as
number of lanes, driving speed, length, shape and perhaps the name of the segment. The
possibility to use any type of object as a vertex or edge makes JGraphT extremely versatile,
as its basic data structures are capable of capturing and expressing any type of relationship
or interaction between any type of object in a natural way.

JGraphT provides implementations of common graph types such as simple graphs, multi-
graphs, pseudographs, etc. Each of these graph types can be refined as directed or undirected,
and weighted or unweighted. An overview of predefined graph types can be found in Table 1.
Since each graph implements the aforementioned Graph interface, several methods behave
di↵erently depending on the type of graph. The method degreeOf(V vertex), for instance,
returns the number of edges touching a vertex (with self-loops counted twice) in case of
an undirected graph, whereas the same method returns the sum of the in-degree and the
out-degree in case of a directed graph. Similarly, the inDegreeOf(V vertex) method in a
directed graph returns the number of directed edges leaving the vertex while for undirected
graphs it returns the number of edges touching the vertex.

To create a new instance of, for example, a simple graph, a user can invoke:
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Graph<Integer, DefaultEdge> graph = new SimpleGraph<>(DefaultEdge.class);

Choosing a particular graph implementation, however, can be non-trivial for users foreign
to graph theoretical concepts. One potential strategy to circumvent this issue is to select
the most general graph implementation by default. For instance, a pseudograph which sup-
ports multiple edges and self-loops can be used to represent a simple graph which does not
support these features. This however comes with a clear performance penalty, since pseu-
dographs typically take more space, and operations on these graphs take more time than
their more specialized counterparts. To circumvent this issue, and to simplify the process of
selecting the desired type of graph, JGraphT allows the user to construct graphs through a
builder pattern [42] after which the library automatically determines the most suitable graph
implementation:

Graph<Integer, DefaultEdge> graph =

GraphTypeBuilder.<Integer, DefaultEdge> directed()

.allowingMultipleEdges(true)

.allowingSelfLoops(false).

.edgeClass(DefaultEdge.class)

.buildGraph();

Algorithms which behave di↵erently depending on the underlying graph characteristics,
can query the graph during runtime for its GraphType. The GraphType contains the nec-
essary type information, defining whether the graph is directed or undirected, weighted or
unweighted, and whether it allows self-loops, multiple-edges, etc.

3.2 Graph structure

The structural design of JGraphT, as depicted in Figure 1, separates the functional Graph<V,E>
interface, from the underlying data structures used to store the graph. The Graph interface,
at the top of the hierarchy, defines all high-level graph operations. The class AbstractGraph
o↵ers a minimal implementation of this Graph interface, without explicitly defining the data
structures for storage and indexing as these are managed by the graph backend. The graph
backend extends AbstractGraph, records the GraphType, and implements data structures
to physically store the graph. Figure 1 depicts the default backend, implemented by the
AbstractBaseGraph class. Most of the predefined graph classes listed in Table 1 are sub-
classes of the AbstractBaseGraph class. A detailed discussion of the di↵erent graph backends
supported by JGraphT is provided in Section 3.3.

To implement a new graph type, or to adjust the underlying implementation of an
existing graph type, the user would typically instantiate, override or extend some of the
classes depicted in Figure 1. Views over graphs, for instance, can be defined by extend-
ing AbstractGraph. This is similar to the concept of filtered graphs in BGL. All opera-
tions invoked on a view are delegated to the graph backing the view. Consequently, views
o↵er a natural way to model, for instance, induced subgraphs (AsSubgraph). They can
also be used to treat a directed graph as an undirected graph (AsUndirectedGraph), to
add weights to an unweighted graph (AsWeightedGraph) or to render a graph unmodifiable
(AsUnModifiableGraph). In addition to views, it is possible to define adapter classes by
extending AbstractGraph. One such example can be found in the jgrapht-guava package,
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which implements adapters for graph-data structures encountered in the Guava Library5.
Through these adapters, a user can invoke all algorithms described in Section 4 on graphs
implemented with Guava data-structures.

3.3 Graph backends

The underlying implementation and data storage of a graph, independent of whether the graph
type is predefined or user-defined, is highly customizable. There exist many scenarios where
domain specific knowledge of the end-user is required to determine the best choice of data
structures. Particularly relevant in this context are: type of data being represented; graph
density (sparse or dense graph); graph size (number of edges/vertices); available storage space;
performance requirements; and the type of graph operations that will be most frequently
performed. Similar considerations are made when explicitly storing an adjacency matrix to
lookup adjacent vertices (neighbors) or when selecting the structures used to represent the
incidence matrix. If for instance the vertices are simple integers, the incidence matrix can
be a 2-dimensional array, whereas in case of arbitrary vertex objects we must resort to hash
tables.

Fine-grained control over how the data in a graph is stored can be obtained by adjusting
the graph backend. JGraphT provides two predefined backends which collectively cover most
common use-cases: the default backend and the sparse backend. In addition, the user can
implement custom backends, simply by creating a new subclass of the AbstractGraph class
(Figure 1). It is worth noting that when using the predefined backends, all operations invoked
on JGraphT graphs are performed in a deterministic fashion. This behavior is realized through
the usage of data structures having a predictable iteration order such as lists, as well as sets
and maps backed by doubly linked lists (LinkedHashSet and LinkedHashMap).

The default backend, implemented by the AbstractBaseGraph class (Figure 1), is designed
to o↵er a good trade-o↵ between performance and memory consumption. Since vertices and
edges can be modeled by arbitrary objects, the default backend primarily relies on hash tables
to store vertices and edges, and to implement adjacency lists. Consequently, basic operations
such as vertex or edge removal and addition can be performed in expected constant (O(1))
time. An (optional) indexing mechanism is provided to index edges by their two endpoints
to enable fast edge lookups. This indexing mechanism again provides a trade-o↵ between
performance and additional memory consumption. The user can further customize how the
adjacency and incidence matrices are stored and how edge lookups are performed (including
how edge weights are stored) by providing alternative implementations of the Specifics and
IntrusiveEdgesSpecifics interfaces. For instance, the standard Java hash tables used to
store the adjacency and incidence matrices can be swapped out by specialized alternatives
from the Fastutil6 library or from the Eclipse Collections7 to reduce the memory footprint of
a graph.

The default backend is well-suited for general-purpose graphs which e�ciently support
edit operations such as the addition or removal of a single vertex or edge. Better perfor-
mance, however, can be achieved in a less dynamic setting where the graph is constructed in
a single bulk operation. Such a write-once read-many strategy is very common when execut-
ing complex algorithms on graphs, which usually involve loading a graph from an external

5
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«interface» 

Graph<V,E>

AbstractGraph<V,E>

AbstractBaseGraph<V,E>

«interface» 

Specifics<V,E>

UndirectedSpecifics<V,E> DirectedSpecifics<V,E>

Views

 AsSubgraph 

 AsUnmodifiableGraph 

 AsUndirectedGraphs 

 ...

Standard Graphs

 SimpleGraph 

 PseudoGraph 

 MultiGraph 

 ...

 ...

«interface» 

GraphType

«interface» 

IntrusiveEdgeSpecifics 

Algorithms

 DijkstraShortestPath 

 PrimMST 

 HierholzerEulerianCycle 

 ...

Figure 1: Core structure of JGraphT

source into memory, executing the algorithms, and querying the final result. To accommodate
such a use-case, JGraphT provides a specialized sparse graph backend which implements the
Graph<Integer,Integer> interface and hence requires that all vertices and edges are repre-
sented by integers. Here it is assumed that the vertices are numbered 0, . . . , n�1 while edges
are numbered 0, . . . ,m� 1, where n and m are resp. the number of vertices and edges in the
graph. The latter assumption renders edit operations less e�cient, since adding or removing
a vertex (resp. edge) potentially involves re-numbering all other vertices and edges. To reduce
the storage space requirements of a graph, the sparse backend stores the incidence matrix in
Compressed-Sparse-Rows (CSR) format [86], thereby taking advantage of the fact that most
real-world graphs are sparse graphs. Graphs stored in this format support both self-loops and
multiple-edges. An overview of the sparse graphs and their capabilities is provided in Table 1.
To implement undirected graphs, the sparse backend represents the incidence matrix through
a single boolean matrix, whereas two boolean matrices (one for each direction) are used for
directed graphs. Edge weights, in case of weighted graphs, are stored in a simple array of
length m.

4 Algorithms

JGraphT contains a large number of algorithms. A detailed discussion of each algorithm is
outside the scope of this paper; instead a general overview of the algorithms currently sup-
ported is provided. Most of these algorithms are single-threaded, unless otherwise explicitly
mentioned.

Connectivity Detecting connected components in graphs is a fundamental problem. For
undirected graphs or weakly connected components in directed graphs, standard traversals
such as BFS or DFS su�ce. For directed graphs, the library provides the linear time algorithm
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public interface Graph<V,E> {
GraphType getType();

V addVertex();
boolean removeVertex(V v);
E addEdge(V sourceVertex, V targetVertex);
boolean removeEdge(E e);

Set<V> vertexSet();
Set<E> edgeSet();

V getEdgeSource(E e);
V getEdgeTarget(E e);
E getEdge(V sourceVertex, V targetVertex);

double getEdgeWeight(E e);
void setEdgeWeight(E e, double weight);

Set<E> edgesOf(V v);

/* More methods omitted */

}

Figure 2: The Graph<V,E> interface. All interactions with the graph happen through this
interface.

of Kosaraju-Sharir [90] using two DFS traversals, as well as Gabow’s algorithm [40]. The
classic Algorithm 447 [56] is also provided for the computation of biconnected components.
These algorithms can also be used to identify cutpoints and bridges in a graph, or to construct
a Block-Cutpoint graph.

LCA The least common ancestor of two nodes v and u in a tree or in a directed acyclic graph
(DAG) T , is the deepest node that has both v and u as descendants. A naive implementation
(supporting both trees and DAGs) and the o�ne tree algorithm of Tarjan [41] can be used
for small graph sizes or for batched queries. For larger tree instances, the library provides
three additional implementations with di↵erent space time tradeo↵s: (a) using the heavy-
path decomposition with linear space to support LCA queries in O(log n) time, (b) using
the Euler-Tour technique [12] and the classic reduction [9] to the RMQ (range minimum
query) problem to support LCA queries in O(1) time but with O(n log n) space, and (c) a
preprocessing approach which improves over the naive approach by computing jump pointers,
using dynamic programming [10]. In the latter approach, each node stores jump pointers to
ancestors at levels 1, 2, 4, . . . , 2k. Queries are answered by repeatedly jumping from node to
node, each time jumping more than half of the remaining levels between the current ancestor
and the goal ancestor (i.e. the lca). The worst-case number of jumps is O(log n) which means
that this method has O(log n) query time again using O(n log n) space.

Cycles Another fundamental problem involves enumerating all simple cycles of a graph.
Several classic algorithms have been implemented for this problem such as the algorithms
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class name edges self-loops multiple-edges weighted

SimpleGraph undirected 7 7 7
Multigraph undirected 7 3 7
Pseudograph undirected 3 3 7
DefaultUndirectedGraph undirected 3 7 7
SimpleWeightedGraph undirected 7 7 3
WeightedMultigraph undirected 7 3 3
WeightedPseudograph undirected 3 3 3
DefaultUndirectedWeightedGraph undirected 3 7 3
SparseIntUndirectedGraph undirected 3 3 7
SparseIntUndirectedWeightedGraph undirected 3 3 3
SimpleDirectedGraph directed 7 7 7
DirectedMultigraph directed 7 3 7
DirectedPseudograph directed 3 3 7
DefaultDirectedGraph directed 3 7 7
SimpleDirectedWeightedGraph directed 7 7 3
DirectedWeightedMultigraph directed 7 3 3
DirectedWeightedPseudograph directed 3 3 3
DefaultDirectedWeightedGraph directed 3 7 3
SparseIntDirectedGraph directed 3 3 7
SparseIntDirectedWeightedGraph directed 3 3 3

Table 1: All available graph implementation classes.

of Tiernan [101], Tarjan [99], Johnson [60], Szwarcfiter and Lauer [97], and Hawick and
James [53].

Additionally, the set of Eulerian subgraphs (subgraphs where all vertices have even de-
grees) forms the cycle space of a graph (over the two-element finite field). A cycle basis is a
basis of this vector space. The library contains a variant of Paton’s algorithm [85] as well as
some classic fundamental cycle basis construction algorithms using graph traversals [27].

Shortest Paths The library contains extensive support for shortest path computations,
both single-source and all-pairs. When all edge weights are non-negative, Dijkstra’s algo-
rithm can be used. In JGraphT, Dijkstra’s algorithm is implemented using a Fibonacci
heap. A bidirectional variant is also included which enhances performance significantly for
source-target queries. Additionally, when edge weights can be negative, users can resort to
the Bellman-Ford algorithm or Johnson’s algorithm. Support for all-pairs shortest paths
is provided by the Floyd-Warshall algorithm. The delta-stepping algorithm [77], a parallel
algorithm for the single-source shortest path problem, is also included.

The library also contains an A* implementation together with the ALT admissible heuris-
tic [45] and Martin’s algorithm for the multi-objective shortest paths problem [71]. With
respect to k-shortest paths, JGraphT includes variants of the Bellman-Ford algorithms for
finding k-shortest simple paths, Eppstein’s algorithm [36] for finding the k shortest paths
between two vertices, Yen’s [72] algorithm for finding loop-less shortest paths and Suurballe
and Tarjan [96] algorithm for finding edge disjoint shortest paths.
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Finally, a graph measurer class o↵ers additional distance related metrics such as the graph
diameter, the radius, vertex eccentricities, the graph center, and graph (pseudo) periphery.

Node Centrality Node centrality measures the importance of nodes inside a network.
Centrality metrics play a crucial role in social network analysis. The library support several
vertex centrality [79] metrics including alpha, betweenness, closeness, coreness, harmonic
centrality and PageRank; see [78] for details. For betweenness centrality the algorithm of
Brandes [15] is used. Coreness is computed using the techniques described in [74]. The
remaining measures are computed using power iteration.

Spanning Trees and Spanners The minimum spanning tree problem asks to compute
a spanning tree in a weighted graph of minimum total weight. The library includes Prim,
Kruskal and Bor̊uvka’s algorithms for the construction of minimum spanning trees. Prim’s al-
gorithm is implemented with a Fibonacci heap, while Kruskal’s and Bor̊uvka’s algorithms rely
on a Union-Find data structure with union-by-rank and path-compression. More general span-
ners can also be computed using for example the greedy algorithm for (2k� 1)-multiplicative
spanner construction [3].

Recognizing Graphs The library contains algorithms for the recognition of important
types of graphs. Examples are bipartite graphs, chordal graphs and Berge graphs. Bipartite
graphs are recognized by standard graph traversals. For the recognition of chordal graphs we
compute a perfect elimination order either using maximum cardinality search [13] or lexico-
graphic breadth first search [24]. Both require linear time. Finally, recognizing Berge graphs
is accomplished using the O(n9) state-of-the-art algorithm of Chudnovsky et al. [20]. Recall
that a graph is Berge if no induced subgraph of G is an odd cycle of length at least five or
the complement of such a cycle.

Matchings Matching algorithms for general, bipartite, weighted and unweighted graphs are
provided. For maximum cardinality matching in general graphs the library includes the highly
e�cient O(mn↵(m,n)) implementation of Edmonds [31] algorithm presented in the LEDA
book [76]. For bipartite graphs, the user can invoke Hopcroft and Karp’s algorithm [57].
To calculate a maximum weight matching in bipartite graphs, there is a highly e�cient
O(n(m + n log n)) implementation, again from the LEDA book. Minimum weight perfect
bipartite matchings can be computed using the O(n3) Hungarian method. To compute a
minimum weight perfect matching in general graphs, there is an e�cient implementation of
Edmond’s algorithm using the techniques introduced by the Blossom V implementation [64].
Finally, several fast 1/2-approximation algorithms for matchings are provided, including (a)
a greedy algorithm and (b) the linear time path growing [29] algorithm.

Cuts and Flows Maximum flows and minimum cuts in graphs are by definition closely
related. The maximum flow problem [1] involves calculating a feasible flow of maximum
value from a source vertex s to a sink vertex t through a capacitated network. Similarly, a
minimum s � t cut in a graph is a partitioning of the vertices V into two disjoint subsets
S and T such that s 2 S, t 2 T while minimizing the sum of weights of the edges with
exactly one endpoint in S and one endpoint in T . To e�ciently calculate maximum s � t

flows, and by extension minimum s � t cuts, the library provides implementations of the
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Edmonds-Karp algorithm [33], the Push-Relabel algorithm [46], and Dinic’s algorithm [28].
Determining maximum s� t flows or minimum s� t cuts for every s� t pair in the graph can
be realized by computing resp. an Equivalent Flow tree [51] or a Gomory-Hu tree [48] using
Gusfield’s algorithm. The Gomory-Hu tree can also be used to compute the minimum cut
in the graph, i.e. the minimum cut over all s � t pairs. Alternatively, the user can employ
Stoer and Wagner’s algorithm [94] for this purpose. Finally, the more general minimum-cost
flow problem, which considers both costs and capacities for each arc in the network, can
be solved by the successive shortest path algorithm, with or without capacity scaling [1].
An implementation of the algorithm by Padberg and Rao [82] to compute Odd Minimum
Cut-Sets is also present.

Isomorphism (Sub)graph isomorphisms can be computed through the classic VF2 [23]
algorithm. Additionally, e�cient heuristic isomorphic tests based on color refinement [11] are
also provided.

Coloring The well-know NP-hard graph coloring problem entails the assignment of colors
to vertices of a graph such that no two adjacent vertices share the same color. The library
includes the exact coloring algorithm of Brown [17] as well as several heuristic algorithms
such as (a) greedy, (b) random greedy, (c) largest-degree-first (d) smallest-degree-last, and
(e) saturation-degree [16] coloring.

Cliques The Bron-Kerbosch algorithm is an algorithm for enumerating all maximal cliques
in an undirected graph. The library contains several variants.

• Implementation of the Bron-Kerbosch clique enumeration algorithm as described in [87].

• Bron-Kerbosch maximal clique enumeration algorithm with pivot. The pivoting follows
the rule from Tomita et al. [102], in which the authors show that this rule guarantees
that the Bron-Kerbosch algorithm has worst-case running time O(3n/3), excluding time
to write the output, where n is the number of vertices of the graph; this is worst-case
optimal.

• Bron-Kerbosch maximal clique enumeration algorithm with pivot and degeneracy or-
dering. The algorithm is a variant of the Bron-Kerbosch algorithm which apart from
the pivoting uses a degeneracy ordering of the vertices. The algorithm is described in
Eppstein et al. [37] and has running time O(dn3d/3) where n is the number of vertices
of the graph and d is the degeneracy of the graph.

Moreover, algorithms to compute clique minimal separator decompositions [14] and maximum
cliques in chordal graphs are also provided.

Vertex Cover The minimum vertex cover problem is yet another classical NP-hard prob-
lem and involves selecting a subset of vertices of minimum cardinality such that each edge
of the graph is incident to at least one selected vertex. JGraphT provides (a) an exact
branch-and-bound algorithm, (b) a greedy heuristic and (c) various 2-approximation algo-
rithms which di↵er either in running time or in solution quality, including the Bar-Yehuda
and Even algorithm [5] and Clarkson’s algorithm [22].
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Tours Several algorithms to compute tours, that is, both Hamiltonian Cycles (HCs) and
Eulerian Cycles (ECs), are available. To solve the Traveling Salesman Problem (TSP) with
optimality, thereby obtaining a minimum cost HC, the Held-Karp dynamic programming
algorithm can be used. For weighted graphs satisfying the triangle inequality, two approx-
imation algorithms are provided. The first algorithm is a 2-approximation and follows a
traditional approach which first computes a MST, which is then traversed in a depth-first
search manner to obtain a tour. The second algorithm is an implementation of Christofides
3/2-approximation [19]. Finally a 2-OPT heuristic is available to quickly compute HCs, but
without any quality guarantees. Determining whether a graph permits any HC irrespective
of its cost remains an NP-Complete problem. Nevertheless, whenever the input graph sat-
isfies Ore’s condition, a HC can be identified in polynomial time (O(|V |2)) using Palmer’s
algorithm [83]. Ore’s condition essentially states that a graph with su�ciently many edges
must contain a HC.

In addition to HCs, it is also possible to calculate ECs. ECs play an important role in
the context of Arc Routing. To find an EC in Eulerian graphs, Hierholzer’s algorithm [54]
can be used. Similarly, the Chinese Postman Problem, requiring the calculation of a tour
(closed walk) of minimum length which traverses every edge in a graph at least once, can be
solved e�ciently using an implementation of Edmond’s algorithm [32]. Obviously, when the
input graph is Eulerian, Edmond’s algorithm returns an EC; otherwise the algorithm returns
a closed walk of minimum length which traverses some edges multiple times.

5 Generators

JGraphT provides a number of graph generators to deterministically generate graphs of arbi-
trary size which model and capture characteristics of real-world networks, e.g. social networks,
communication networks, chemical interactions etc. These generators enable engineers and
researchers to generate arbitrarily large synthetic datasets resembling real world data, without
the need to go through a costly and often time-consuming data collection process. Various
types of graphs can be generated, including: complete graphs, bipartite graphs, grid graphs,
hypercubes, ring graphs, star graphs, wheel graphs, and others. Additionally, dedicated gen-
erators for specific graphs famous in Graph Theory such as the Doyle graph, the Petersen
graph, Balaban graphs, etc are also provided.

Random graphs can be generated through the traditional Gnm and Gnp Erdös-Rényi [38]
models. In the Gnm model, a graph is chosen uniformly at random from the set of all graphs
with n nodes and m edges. In the Gnp model a graph of n nodes is constructed and each of
the possible edges is chosen with probability p. Similar models are available for the generation
of random bipartite graphs where the user specifies the size of the two partitions and either
the number of edges or the edge probability. Finally, generators for random regular graphs
are also available.

More sophisticated models popular in e.g. social sciences are also provided. The Barabási-
Albert [6] model starts from a small clique and incrementally constructs a graph by adding
new vertices one by one. Each new vertex is attached to a certain number of previously
constructed vertices using preferential attachment. The Watts-Strogatz [2] model builds a
graph by interpolating between a regular lattice and a random graph. It starts from a regular
lattice with n nodes and k ⌧ n edges per node. Then it chooses a vertex and the edge that
connects it to its nearest neighbor in a clockwise sense. With probability p, it reconnects
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this edge to a vertex chosen uniformly at random over the entire ring with duplicate edges
forbidden; otherwise it leaves the edge in place. It continues this process for each vertex of
the ring and then repeats the procedure for the second-nearest neighbor, etc. As there are
nk
2

edges in the entire graph, the rewiring process stops after k
2

laps. For intermediate values
of p, the graph is a small-world network: highly clustered like a regular graph, yet with small
characteristic path length, like a random graph. A small variant [80] is also provided wherein
instead of re-wiring, the shortcut edges are added to the graph. This variant is sometimes
called the Newman-Watts variant of the Watts-Strogatz model.

The Kleinberg [63] small-world model, which is also implemented, has as a basic structure
a two-dimensional grid and allows for edges to be directed. It begins with a set of nodes
(representing individuals in the social network) that are identified with the set of lattice
points in an n⇥ n square. For a universal constant p � 1, the node u has a directed edge to
every other node within lattice distance p (these are its local contacts). For universal constants
q � 0 and r � 0, we also construct directed edges from u to q other nodes (the long-range
contacts) using independent random trials; the i-th directed edge from u has endpoint v with
probability proportional to 1

d(u,v)r where d(u, v) is the lattice distance from u to v.

6 Importing & Exporting Graphs

To increase interoperability between JGraphT and other software solutions, and to facilitate
e�cient storage of graphs, JGraphT enables the user to read and write graphs in a variety
of popular data formats. Some of the common formats are: GML [55], CSV, DIMACS [59],
graph6 and sparse6 [75]. In particular, for DIMACS the library supports the formats used
in the 2nd challenge for max-clique problems and graph coloring problems, as well as the
shortest path format used in the 9th challenge. Sparse6 and graph6 are formats used for
storing graphs in a compressed manner, using printable ASCII characters only.

Besides the aforementioned formats, JGraphT also supports richer formats capable of
storing additional information such as graph attributes and labels. Among these formats are
the DOT language specification [43] and GraphML [98]. Both formats are fully supported.
The implementations rely on Antlr v4 [84] for low-level parsing. For GraphML, two parsers
are provided: one light-weight parser optimized towards parsing speed, and one full fledged
parser which implements the complete GraphML specifications.

7 Experimental Evaluation

This section provides a computational evaluation of JGraphT. In the evaluation, various al-
gorithms from JGraphT (v1.4) are compared against their counterparts in alternative graph
libraries. Given the large number of di↵erent algorithms and libraries, it is by no means possi-
ble to provide an exhaustive comparison. Therefore, a number of commonly used algorithms
and libraries have been selected. These libraries were selected because of their popularity,
plus the fact that they are open-source, actively maintained and developed, and supporting
a wide range of algorithms.

In particular, comparisons are made against igraph (v0.7.1 written in C), BGL (v1.65
written in C++), Jung (v2.1.1 written in Java) and NetworkX (v2.1 written in Python).
The igraph library represents graphs using a simple compressed-sparse-rows (CSR) based
representation, which requires six di↵erent vectors, two of size n and four with size m. BGL,
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on the other hand, implements graphs through adjacency lists and an adjacency matrix. BGL
enables the user to customize the graph implementation through template parameters. In all
our experiments we used the adjacency list graph parameterized with the STL vector container
for both the vertex list and the edge lists containers. Moreover, in case of weighted graphs,
edge weight properties are stored directly on the edges as opposed to storing them in a separate
table, thereby avoiding additional edge lookups. Finally, the Java library Jung and the Python
library NetworkX, similar to the default JGraphT implementation, rely on dictionaries to
store the nodes and the node neighbors in a graph. Most of the graph implementations in
the Jung library are optimized for sparse graphs. In the experimental evaluation, we execute
JGraphT with the two di↵erent backends (Section 3.3): the default backend, simply denoted
by ‘JGraphT’, and the sparse backend, denoted by ‘JGraphT Sparse’.

In addition to a computational study of di↵erent algorithmic implementations across li-
braries, we conduct a limited internal comparison of di↵erent algorithms for the same fun-
damental mathematical problem. Intrinsically, it is possible to compare algorithms by their
worst-case runtime complexity, but an experimental evaluation of their performance which
largely depends on the quality of their implementations is more informative in practice. This
section is concluded by a comparison of di↵erent graph representations, thereby evaluating
speed and memory trade-o↵s between the di↵erent representations.

7.1 Instances

For the computational evaluation, experiments are performed on a large number of benchmark
instances. The instances are either taken from SNAP [66], or generated using the well-known
(a) Barabási-Albert model [6], (b) Recursive Matrix (R-MAT) model [18], and (c) the Gnp

Erdös-Rényi [38] random graph model. Unless otherwise noted, we generated 10 di↵erent
instances for each graph size and report results averaged over these 10 instances. A table
with the real-world instances from SNAP that were used in the experiments can be found in
Appendix A.

Graphs following the Barabási-Albert model are generated from a complete graph of size
m

0

. New vertices are added to the graph, one by one, until a desired number of n vertices
is reached. Each new node is connected to m  m

0

existing nodes with a probability that is
proportional to the number of links that the existing nodes already have. In the experiments,
we set m

0

= 20, m = 10, for varying n 2 [0 : 250k]. The resulting graphs are sparse and
scale-free.
The recursive matrix (R-MAT) model generates a graph by recursively subdividing the ad-
jacency matrix into four equal-sized partitions and distributing edges within these four par-
titions using unequal probabilities a, b, c, d where a + b + c + d = 1. Starting with an empty
adjacency matrix, edges are added into the matrix one by one. The model generates very
realistic graphs which have power-law degree distributions and at the same time are small-
world graphs. We use the same settings as the Graph-500 benchmark8, i.e. for a given
SCALE the number of nodes equals n = 2SCALE , the number of edges m = 16n and we set
a = 0.57, b = 0.19, c = 0.19 and d = 0.05.
In Gnp Erdös-Rényi graphs, edges are included with probability p. Therefore, Gnp graphs
with n vertices have an expected number of edges equal to p

�n
2

�
. In the experiments, we use

p = 0.1, thereby obtaining relatively dense graphs.

8
https://graph500.org
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7.2 Setup & Measuring Methodology

All experiments were executed on an Intel(R) Core(TM) i7-6700 CPU @ 3.4GHz running
a 64-bit version of GNU/Linux using 32GB of memory. To facilitate a fair comparison, all
experiments were performed on a single processor core. The algorithms written in igraph and
BGL were compiled using GCC v7.3 using the -O3 optimization flag. The Java libraries were
executed using Java version 1.8.0 221 on Java HotSpot(TM) 64-Bit GraalVM EE 19.2.0.1
(build 25.221-b11-jvmci-19.2-b02, mixed mode). We use GraalVM [104] in order to compile
all Java code ahead-of-time (AOT) into native executables, resulting in faster startup times
and much lower runtime memory overheads. GraalVM’s tool native-image produces a native
executable with a lightweight subsystem called SubstrateVM which includes all the necessary
components like memory management, thread scheduling, garbage collector, etc., in order to
allow native execution without the use of the Java VM. In order to avoid any unnecessary
interference from garbage collection, we used -Xmx30g when executing any Java code. Python
3.6.5 was used for the execution of the NetworkX library. All reported times are wall-clock
times.

The use of ahead-of-time compilation makes it considerably easier to compare di↵erent
libraries. Nevertheless, we still have libraries written in C/C++ which explicitly cleanup
memory and libraries written in Java and Python which rely on a garbage collector. In
languages which include a garbage collector, we use the following procedure to measure the
running time of an algorithm: (a) The graph is first imported from the input file and read
into memory using the corresponding library, (b) at this point we explicitly call the garbage
collector, (c) the start time is recorded, (d) the algorithm is then executed, (e) we again
explicitly call the garbage collector without releasing any references to the graph, and (f) we
record the finish time. Our goal is to solely measure the execution time of the algorithm plus
the time it takes to allocate and cleanup any auxiliary data structures used by the algorithm.
In case of languages like C++ where memory is released when a ”smart” pointer gets out of
scope, we enclose the algorithm’s execution inside an additional block statement, thus forcing
any auxiliary memory to be released at the end of the block, just before we measure the finish
time.

7.3 Computational Results - External comparison

In this subsection, algorithms from JGraphT are compared against implementations from
alternative libraries. In particular the comparison uses the following algorithms: Dijkstra
shortest path, PageRank, Maximum Cardinality and Minimum Weighted Perfect Matching.

7.3.1 Dijkstra Shortest Path

Dijkstra Shortest Path algorithm computes shortest paths from a single source node to all
other nodes in the graph, thereby producing a shortest-path tree. Figure 3 compares the
performance of the Dijkstra’s shortest path implementations for JGraphT, Jung, NetworkX,
BGL and igraph. We used JGraphT’s Dijkstra implementation using a 4-ary heap. BGL does
the same while the remaining libraries use a binary heap.

The experiments are performed in both generated graphs and real-world USA road net-
works taken from the 9th DIMACS challenge [26]. For the generated instances, we executed
Dijkstra’s algorithm by starting from the same node in each graph and computed the shortest
path tree to all other vertices in the graph. The result is the average running time over 10
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Figure 3: Execution time of Dijkstra algorithm implementation in the five libraries using
Barabasi-Albert (top-left), Gnp with p = 0.1 (top-right), undirected R-MAT (a = 0.57, b =
0.19, c = 0.19) (bottom-left), and USA roadmaps (bottom-right).

di↵erent graphs constructed using the same parameters. For the road networks we picked uni-
formly at random ten source vertices and constructed one shortest path tree for each source
vertex. The result is the average running time over these 10 executions.

As can be observed from Figure 3, the C/C++ libraries BGL and igraph provide the best
performance. On average, measured over all four graphs, these libraries are resp. 7.3 and 3.0
times faster than JGraphT Sparse. In all cases, the Java library Jung and the Python library
NetworkX provide the worst performance (resp. 5.2 and 10.5 times slower than JGraphT
Sparse). In general, the JGraphT Sparse backend outperforms the more flexible default
backend.

In order to better understand and explain the performance di↵erence between the C/C++
libraries and JGraphT Sparse we performed the following experiment. We used the igraph li-
brary as a baseline and modified our implementation by gradually eliminating di↵erences. As
a first step we wrote a JGraphT backend which uses exactly the same low level representation
that igraph is using. Afterwards, like igraph does, we modified our Dijkstra implementation
to utilise the fact that vertices are integers and store distances and predecessor information
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Figure 4: Execution time of PageRank algorithm implementation in the five libraries using
Barabasi-Albert (up-left), Gnp with p = 0.1 (up-right), directed R-MAT (a = 0.57, b =
0.19, c = 0.19) (bottom-left), and SNAP directed graphs (bottom-right).

directly in arrays. Finally, we used a d-ary heap for the priority queue just like igraph does.
After all these modifications we rerun our experiments comparing our new implementation
with igraph. The performance di↵erence in these experiments was the same as in Figure 3.
Given the fact that the two implementations of Dijkstra are almost identical, they both utilize
the same graph representation, both use arrays and random access for distances and predeces-
sor pointers, and both use similar heap implementations, we conclude that the performance
di↵erence between igraph and JGraphT Sparse is mostly due to the extra overhead that
GraalVM entails. Recall that GraalVM is a relatively new implementation, which is likely
not able to produce the same quality executables as GCC at least w.r.t. the level of code
optimization. Additionally, the SubstrateVM, while much more lightweight in comparison to
a full-blown Java VM, still needs to perform additional bookeeping and thus entails additional
performance penalties. This conclusion is further supported by our next experiment.
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7.3.2 PageRank

Pagerank is regularly used in bibliometrics, social and information network analysis, and
for link prediction and recommendation [44]. For all libraries, we execute the PageRank
algorithm with a damping factor of 0.85, 20 iterations and tolerance equal to 10�16. While
some libraries, such as igraph, contain several alternative PageRank implementations, we
selected the implementation based on power iterations, as the same technique is used by the
other libraries.

Similar to the computational results of Dijkstra’s Shortest Path algorithm, the best per-
formance is again obtained with igraph (6.0 times faster than JGraphT Sparse), but BGL,
Jung and NetworkX are resp. 13.4, 34, 62.4 times slower than JGraphT Sparse. These per-
formance di↵erences are consistent among the 4 graph types. Interesting to observe is that
also JGraphT with its default backend which relies on hashtables to perform edge and vertex
lookups, outperforms the vector based BGL implementation. A detailed code comparison of
the Pagerank implementations reveals that the lower performance of BGL can be attributed
to the fact that BGL repeatedly reads the graph while executing the iterations of the Pagerank
algorithm, whereas both igraph and JGraphT read the graph only once by transforming it
into a more appropriate integer based matrix representation and then run PageRank directly
on top of this matrix.

These results further support our claim that compared with the C/C++ libraries, when
the algorithmic details are similar, the performance di↵erence is mostly due to the di↵erent
programming language implementations.

7.3.3 Maximum Cardinality & Minimum Weight Perfect Matchings

Graph matching is a fundamental problem in computer science and graph theory, and has
applications in computer vision, computational biology, arc routing and pattern recognition.
In this subsection we evaluate the performance of algorithms for the Maximum Cardinality
Matching Problem (MCMP) and the MinimumWeight Perfect Matching Problem (MWPMP)
in general graphs. While both problems admit very e�cient algorithms, their implementations
are highly complex and require a significant amount of engineering. Consequently, there exist
only a few commercial and non-commercial libraries which incorporate implementations for
either of these problems.

Matching problems can be straightforwardly formulated as Integer Linear Programming
Problems (ILPs), which can be solved by any o↵-the-shelve ILP solver. Given an undirected
graph G(V,E) with vertex set V , edge set E ✓ V ⇥ V , and edge weights cij for all (i, j) 2 E,
the MCMP and MWPMP can be modeled as ILPs through Equations (1)-(3) and (4)-(6) as
follows:
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MCMP:

max.
X

(i,j)2E

xij (1)

s.t.
X

j:(i,j)2E

xij  1 8i 2 V (2)

xij 2 {0, 1} 8(i, j) 2 E (3)

MWPMP:

min.
X

(i,j)2E

cijxij (4)

s.t.
X

j:(i,j)2E

xij = 1 8i 2 V

(5)

xij 2 {0, 1} 8(i, j) 2 E

(6)

To provide a point of reference, as part of our computational study, we solve these mod-
els with the commercial ILP solver ILOG CPLEX 12.8, and compare against a number of
dedicated matching algorithms. In these experiments, CPLEX is invoked with default param-
eters. Figure 5 compares the execution of the MCMP implementations of JGraphT, BGL,
and Lemon (v1.3.1 written in C++). igraph, Jung and NetworkX have been omitted from
the comparisons as neither includes an MCMP implementation. Similarly, CPLEX results for
the largest graphs have been omitted since the solver ran out of memory.

As can be observed from Figure 5 the dedicated MCMP implementations are significantly
faster than the generic ILP solver CPLEX on all graphs: CPLEX is about 57.4 times slower
than JGraphT, with the di↵erences being bigger for denser graphs. The BGL is slightly faster
than JGraphT on Barabasi-Albert graphs, but performs worse on the real-world graphs from
SNAP and dense Gnp graphs. Averaged over all graphs, JGraphT is 5.7 times faster than
BGL. The best results are however obtained with the C++ library lemon which is on average
9.7 times faster than JGraphT.

Figure 6 contains a comparison of the most e�cient algorithmic implementations available
for the MWPMP. In order to generate random instances which are guaranteed to contain a
perfect matching, similar to the Gnp model, we first created n vertices, connected them in
pairs with edges and then created all remaining edges with probability equal to p. Notice
that the BGL library does not provide a MWPMP implementation and is therefore excluded
from the comparison. Instead we included the BlossomV9 [64] implementation (v2.05 written
in C++) which is currently considered the fastest MWPMP solver available. As can be
observed from Figure 6, JGraphT is highly competitive, even when compared with the state-
of-the-art low level BlossomV implementation. BlossomV and Lemon are resp. 2.4 and 1.3
times faster than JGraphT. All methods are more than an order of magnitude faster than
CPLEX. Finally, note that for this particular algorithm, there is no significant di↵erence in
performance between the default and the sparse backend of JGraphT. The reason for this is
that the algorithm reads the graph only once, and maintains its own internal representation.

7.4 Computational Results - Internal comparison

For many graph problems, JGraphT provides several alternative algorithms which implement
a common Java interface. As these algorithms utilize di↵erent underlying techniques, they
often exhibit di↵erent runtime-characteristics. Due to their common interface, a user can
straightforwardly interchange di↵erent implementations without the need to change code.
Since selecting the best algorithm for a given problem under specific circumstances is not

9
http://pub.ist.ac.at/

~

vnk/software/blossom5-v2.05.src.tar.gz
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Figure 5: Execution time of the maximum cardinality matching algorithm implementation
in di↵erent libraries using Barabasi-Albert (up-left), Gnp with p = 0.1 (up-right), undirected
R-MAT (a = 0.57, b = 0.19, c = 0.19) (bottom-left), and SNAP undirected graphs (bottom-
right).

straightforward, in this section we include an internal comparison of di↵erent implementations
for two common graph problems, the Minimum Spanning Tree (MST) and the Maximum-Flow
(MF) problem.

7.4.1 Minimum Spanning Tree

JGraphT contains three classic algorithms for solving the MST Problem in weighted, undi-
rected graphs: Prim’s algorithm (O(m + n log n)), Kruskal’s algorithm (O(m log n)) and
Bor̊uvka’s algorithm (O((m + n) log n)). The implementation of Prim’s algorithm relies on
a Fibonacci Heap whereas the other two rely on Union-Find data structures with the union-
by-rank and path-compression heuristics.

For the Barabasi-Albert, Gnp and USA roadmaps graphs, Figure 7 shows that Prim’s
algorithm outperforms Kruskal’s algorithm which in turn outperforms Bor̊uvka’s algorithm.
These results are consistent with the results reported in [8]. Here, Prim is 2-3 times faster than
the other 2 algorithms. Interestingly, for the R-MAT graphs, Kruskal’s algorithm is roughly
3.8 times faster than Prim’s algorithm. In our implementation, Prim’s algorithm typically

20



0

2

,0
0

0

4

,0
0

0

6

,0
0

0

8

,0
0

0

10

0

10

2

10

4

nodes

ti
m
e
[m

s]

0

1

,0
0

0

2

,0
0

0

3

,0
0

0

4

,0
0

0

5

,0
0

0

10

0

10

2

10

4

10

6

nodes

JGraphT JGraphT Sparse BlossomV CPLEX Lemon

Figure 6: Minimum Weight Perfect Matching. Left is Gnp with p = 0.1, right is Gnp with
p = 0.5.

performs well on denser graphs; on really sparse graphs, Kruskal becomes competitive due to
its simplicity (simpler data-structures). Bor̊uvka’s algorithm is consistently slower than the
other 2 algorithms in all experiments. However, its main idea (repeated rounds of contrac-
tions) has been successfully applied in parallel implementations [21]. Thus, for completeness
as well as for research and comparison purposes, we retain all three algorithms as we believe
that all these techniques should be present in the library. Ultimately, the end-user decides
which algorithm is best suited for his or her application.

7.4.2 Maximum Flow

JGraphT provides three algorithms to compute Maximum Flows in weighted graphs: Edmonds-
Karp algorithm (O(nm2)), Dinic’s algorithm (O(n2

m)) and the Push-Relabel algorithm
(O(n3)). For this experiment we use the same experimental set up as in [39]. Instead of
using the general Barabasi-Albert or Gnp models to generate the instances, we used two ded-
icated generators10 from the first DIMACS [59] challenge: RMFGEN [47] and washington.

RMFGEN takes 4 parameters a, b, cmin and cmax and produces a graph which consists
of b layers, each having a⇥ a nodes laid out in a square grid. A node in a layer has edges to
its adjacent grid nodes, as well as one additional edge to a random node in the next layer.
The resulting graph has n = a

2

b nodes and m = 4a(a � 1)b + a(b � 1) edges. The source
node is part of the first layer, while the target node is located in the last layer. Capacities
between layers are randomly generated in the range [cmin, cmax]; capacities inside layers are
big enough so that all flow can be pushed around inside the layer. Similar to [39], we generate
three types of graphs: (a) long where a

2 = b, (b) flat where a = b

2, and (c) wide where a = b.
Analogous to RMFGEN, the washington generator is used to produce random level graphs

in which nodes are laid out in rows and columns. Each node is connected to 3 randomly
selected nodes in the next column. The source node has edges to all nodes in the first row,
whereas the target node is connected to all nodes in the last row. Two types of graphs are

10
http://archive.dimacs.rutgers.edu/pub/netflow/generators/
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Figure 7: Execution time of the Prim, Kruskal and Bor̊uvka minimum spanning tree algo-
rithms using the JGraphT library (sparse backend) with Barabasi-Albert (top-left), Gnp with
p = 0.1 (top-right), undirected R-MAT (a = 0.57, b = 0.19, c = 0.19) (bottom-left), and USA
roadmaps (bottom-right).

generated: (a) wide graphs having 64 rows and a variable number of columns, and (b) long
graphs with 64 columns and a variable number of rows.

The computational results for each of the 5 graph types are depicted in Figure 8. In each
of the graphs, Push-Relabel has the best performance, followed by Dinic. These algorithms
are approximately 489.7 and 58.9 times faster than the well-known Edmonds-Karp maximum
flow algorithm. Again these results match the findings reported in [39].

7.5 Computational Results - Graph Representations

In this subsection we compare the performance and memory utilization of the di↵erent graph
representations (see Section 3.3): (a) the default JGraphT backend, (b) the default JGraphT
backend using the fastutil11 (v8.2.2) library for all hashtables, (c) a graph adapter which
wraps the Guava12 (v26.0) library graph data-structures, and (d) the sparse backend. In
particular, for the Guava library, we selected two of their graph representations: (a) Network,
and (b) ValueGraph. The third Guava representation, Graph, behaves almost identical to the

11
http://fastutil.di.unimi.it/

12
https://github.com/google/guava

22



0

1

,0
0

0

2

,0
0

0

3

,0
0

0

4

,0
0

0

10

0

10

1

10

2

10

3

ti
m
e
[m

s]

0

1

,0
0

0

2

,0
0

0

3

,0
0

0

4

,0
0

0

10

0

10

1

10

2

10

3

0

2

0

,0
0

0

4

0

,0
0

0

6

0

,0
0

0

10

0

10

2

10

4

10

6

nodes

ti
m
e
[m

s]

0

1

0

,0
0

0

2

0

,0
0

0

3

0

,0
0

0

10

0

10

2

10

4

10

6

nodes

0

2

0

,0
0

0

4

0

,0
0

0

10

�1

10

1

10

3

10

5

nodes

Dinic

Push-Relabel

Edmonds-Karp
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ValueGraph and has therefore been omitted from our figures.
To measure the computational performance of the di↵erent graph representations, we

created a portfolio of algorithms, consisting of Prim’s MST algorithm, Dijkstra’s shortest path
and Edmonds’ Maximum Cardinality Matching Algorithm. In the experimental evaluation,
we measure the total time it takes to execute these algorithms on a number of graphs with
di↵erent representations. Figure 9 contains the results of this comparison. The experiments
are conducted using the exact same settings as in the previous experiments. As can be
observed from Figure 9, the default, sparse and fastutil JGraphT representations have rather
comparable performance profiles: the sparse backend is 1.2, resp. 1.4 times faster than the
default or the one with fastutil. In contrast, both Guava representations are significantly
slower, despite the fact that the Guava adapter classes in JGraphT merely translate calls to
the underlying Guava implementations, and thus do not impact the performance significantly.
For reference, Guava ValueGraph and Network graph representations are resp. 4.1 and 3 times
slower than JGraphT’s sparse backend.

Finally, a comparison of the memory-footprint of the various graph representations is pre-
sented in Figure 10. In this particular experiment, we measure the memory utilization of
di↵erent representations for di↵erent types of graphs inside the JVM. When the graph rep-
resentation has no native support for edge weights, we wrapped the graph inside JGraphT’s
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AsWeightedGraph adapter class. Performing memory measurements in the JVM is a some-
what involved process for which we used the specialized Jamm software package [34]. In short,
Jamm loads a Java agent which internally relies on the Instrumentation.getObjectSize

method from the java.lang.instrument package to measure the amount of space occupied
by Java objects. In order to present the final results we normalize the space utilization per
graph by dividing by the total number of edges in the graph.

When comparing the results in Figure 10, it is obvious that JGraphT’s sparse represen-
tation has the smallest memory footprint, followed by the fastutil and Guava’s ValueGraph.
The latter two require resp. 7.1 and 7.8 times more memory than the sparse representation.
These results are consistent across the di↵erent graphs. JGraphT’s default representation,
as well as Guava’s Network graph are the most memory intensive (resp. 8.6 and 9.3 time
more memory than the sparse one). For the largest Gnp graphs, both representations re-
quire the same amount of memory. Overall, when comparing both space and computational
e�ciency, JGraphT’s sparse representation yields the best performance characteristics. The
use of fastutil hashtables performs slightly slower than the default representation, but re-
quires significantly less memory. Finally, the Guava representation should only be used when
interoperability with Guava is required.

8 Conclusions

We have presented in detail the motivation, development choices, features, algorithmic sup-
port and internals of the JGraphT library. The library has been in development for more than
a decade and is currently deployed in a variety of commercial products, as well as academic
research projects. A major challenge in the design of a graph library is the delicate balance
between expressiveness and performance. In JGraphT, vertices and edges can be represented
by any type of object, thereby enabling the user to represent virtually any type of network.

In the experimental evaluation, we compared the performance and memory utilization
of JGraphT across a number of alternative open-source graph libraries using a diverse set
of input graphs ranging from USA roadmaps and real-world instances acquired from SNAP,
up to generated instances using well-known random generators such as R-MAT, Barabasi-
Albert and Gnp. The experimental evaluation shows that JGraphT is highly competitive
both performance-wise and feature-wise since it includes a large and diverse set of graph
algorithms coupled together with e�cient graph representations.
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sparse spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81–100,
1993.

[4] Kelli Bacon and Prasun Dewan. Mixed-initiative friend-list creation. In ECSCW 2011:
Proceedings of the 12th European Conference on Computer Supported Cooperative Work,
24-28 September 2011, Aarhus Denmark, pages 293–312. Springer, 2011.

25



0

5

0

,0
0

0

1

· 1
0

5

1

.5
· 1
0

5

2

· 1
0

5

2

.5
· 1
0

5

100

200

nodes

by
te
s/
ed

ge

0

1

,0
0

0

2

,0
0

0

3

,0
0

0

4

,0
0

0

5

,0
0

0

6

,0
0

0

100

200

nodes

1

0

3

1

0

4

1

0

5
0

100

200

nodes

by
te
s/
ed

ge

1

0

5

1

0

6

100

200

300

edges

JGraphT JGraphT Sparse fastutil
Guava Network Guava ValueGraph

Figure 10: Space requirements for di↵erent graph representations with Barabasi-Albert (up-
left), Gnp with p = 0.1 (up-right), undirected R-MAT (a = 0.57, b = 0.19, c = 0.19) (bottom-
left), and SNAP undirected graphs (bottom-right).

[5] Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for the
weighted vertex cover problem. Journal of Algorithms, 2(2):198–203, 1981.
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A Real-world Datasets

The real-world datasets used in our experiments were acquired from SNAP [66] and can be
found in Table 2.

name type #nodes #edges

p2p-Gnutella24 directed 26518 65369
wiki-Vote directed 7115 103689
email-EuAll directed 265214 420045
soc-Epinions1 directed 75879 508837
ego-Twitter directed 81306 1768149
web-Stanford directed 281903 2312497
web-Google directed 875713 5105039
soc-Pokec directed 1632803 30622564

ego-Facebook undirected 4039 88234
ca-CondMat undirected 23133 93497
email-Enron undirected 36692 183831
ca-AstroPh undirected 18772 198110
com-Amazon undirected 334863 925872
com-DBLP undirected 317080 1049866

Table 2: SNAP dataset.
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