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With the recent growth of telecommunication networks, network fault man-

agement has gained much importance. Since it is a di�cult task for human

operators to manage large networks, the idea of automating some of these func-

tions has attracted some attention. Some of the ideas proposed for automating

such functions include the use of arti�cial intelligence techniques. Neural net-

works are very useful for performing analysis of large volumes of numerical data.

Expert systems are useful for analyzing observed symptoms and identifying the

cause by using a rule-based approach. However, research in arti�cial intelli-

gence has shown that when either of these two methods is used alone, several

weaknesses are observed in the resulting system. Thus, some other methodology

would be required for tackling such large problems.



In this thesis, an approach involving the use of a hybrid system involving

both neural networks and expert systems for performing automated network

fault management is investigated.
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Chapter 1

Introduction

During the last decade, there has been a tremendous growth in the services

o�ered to users of communication networks. The increasing demand on the part

of such users has led to the evolution of large networks. In order to maintain

such large networks and to provide services to users in an e�cient manner, good

network management techniques are necessary. In the ISO model for network

management, there are �ve functional areas, listed below:

1. Accounting Management.

2. Con�guration Management.

3. Fault Management.

4. Performance Management.

5. Security Management.

Our focus is in the area of fault management. Fault management is very im-

portant because network service providers might lose customers if they do not
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provide e�cient service. For example, if users experience long delays in access-

ing information from a site, it could be very frustrating. Some of the functions

of fault management include detecting, isolating, and repairing problems in the

network. It also deals with the ability to trace faults, given many alarms in the

system. Furthermore, it is also concerned with the use of error logs, and tracing

errors through the log reports. One of the problems faced by network control

centers (which manage such networks) is that of handling extremely large vol-

umes of data dealing with the performance of the networks. It is often very

di�cult to determine the existence and location of a problem in the network if

a network operator (at the network control center) would have to analyze the

data. The volume of such data would make the task of �nding the problem a

very time-consuming process. However, unlike some of the other network man-

agement functions listed in the ISO model, in fault management, speed is very

crucial and recovery from a problem has to occur quickly. If the downtime for

systems is high, it could lead to a substantial �nancial loss. In order to be able

to handle huge amounts of data quickly, we used some ideas from arti�cial intel-

ligence, with neural networks and expert systems. Such ideas have been applied

with some success in chemical engineering, in the management of chemical pro-

cesses. We have applied some of those ideas to the network fault management

scenario. By using arti�cial intelligence techniques to automate some of the fault

management functions, network operators can provide assistance in other areas.

In this project, a prototype system has been built to perform automated net-

work fault management. Our system consists of a X.25 packet network simulated

using OPNET, a communication network simulation tool from MIL3, and a neu-

ral network/expert system module developed using the G2/Neuronline package
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from Gensym Corporation. We performed SNMP (Simple Network Management

Protocol) monitoring of variables in order to aid in the fault management pro-

cess. Our approach consists of a proactive component and a reactive compo-

nent in the fault management process. The former is achieved using a minimum

cost routing algorithm. The latter is achieved by the use of a hybrid neural

network/expert system architecture. These points will be explained in greater

detail in later portions of this thesis.

The rest of this thesis is structured as follows. In Chapter 2, a detailed

description of the X.25 network simulation is provided. The assumptions used,

together with the features present in the simulation for simulating the occurrence

of faults, are all described. In Chapter 3, the SNMP variables being logged in the

X.25 simulation, together with the SNMP traps, are described. In Chapter 4,

the neural network and expert system components are described. Training and

testing results are presented. The kind of queries used by the expert system are

also described in detail. In Chapter 5, the results from Chapter 4 are summarized

in a step by step, concise format. Finally, in Chapter 6, some conclusive remarks

are presented.
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Chapter 2

Description of Network Topology in

OPNET

The network that we have designed in OPNET is based on the X.25 protocol.

Since this is a prototype system, our network has the option of having up to

10 users. However, more users can be easily added. Each user corresponds

to a Data Terminal Equipment (DTE), connected to a Data Communications

Equipment (DCE). A DTE usually corresponds to a dumb terminal, while a

DCE usually corresponds to a modem. Thus, having 10 users implies having 10

DTE/DCE pairs, where each DTE can have several logical channels. Each DTE

can handle 2 applications, thus making it possible to run up to 20 applications

at a time. There are both permanent virtual circuits (PVCs) and virtual calls.

Two PVCs have been prede�ned. In addition to the DTEs and DCEs pertaining

to the X.25 model, there is also a SNMP manager, details of which will be

provided in Chapter 3. A diagram illustrating the network topology is presented

in Figure 2.1.
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Figure 2.1: Diagram illustrating the network topology.

2.1 The X.25 Cloud

In the X.25 scenario, information travels from a DTE to a DCE, which in turn

sends the information onto the X.25 network. This is often referred to as the

X.25 cloud. In our simulation, the X.25 cloud consists of 15 nodes (or switches |

these two terms shall be used interchangeably in this document) used to transmit

the packets in a store-and-forward manner. These 15 nodes are grouped into 3

subnetworks, where each subnetwork consists of 5 nodes. A typical subnetwork

is shown in Figure 2.2.

The �ve nodes in each subnetwork are not fully interconnected, i.e. every

node does not necessarily have a direct link to every other node. However, there

are several paths between one node and another, thus providing redundancy in

the design to recover from failures at certain nodes. The main di�erence between

subnetworks is the di�erence in speed for the links connecting the nodes. Thus,

di�erent subnetworks have links with di�erent speeds. A DTE is connected to

a DCE which is then connected to one of the nodes in the cloud. Each node
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Figure 2.2: Diagram illustrating a typical subnetwork.

consists of point-to-point transmitters, point-to-point receivers, one queue for all

the input links, and one queue for each output link. The internal structure of a

typical node is shown in Figure 2.3.

2.2 Assumptions about the model

1. Each application generates packets using a Markov Modulated Poisson Pro-

cess (MMPP). However, the calls are exponentially distributed. Therefore,

within each call, the packets are sent in a random fashion, as modeled by

the MMPP source. The source sends packets whose sizes are �xed. The

MMPP source is used in order to simulate a bursty tra�c model for data.

Details about the MMPP model are provided in the next section.

2. Amount of data transfer. This is established by a random number gener-

ator that determines the number of paragraphs of text to be transferred
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Figure 2.3: Diagram illustrating the internals of a typical node in the subnetwork.

from the source DTE to the destination DTE.

3. Each packet has a priority of 0 or 1, depending on the user generating the

packet. A packet with priority 0 has lower priority than a packet with

priority 1. This is used to allow for a real scenario in which a network

provider might have several kinds of customers.

4. The input and output queues (shown in the �gure) have �nite capacity

and �xed service rate that are user-speci�ed.

5. Each DTE has a destination assigned to it. Thus, there are a collection of

source/destination pairs. Each source DTE is connected to a certain sub-

network and the destination DTE could either be in the same subnetwork

or in a di�erent subnetwork.

6. Queueing with Priorities. When packets arrive at a node through the input
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links, they are inserted into an input queue, waiting to be served. All the

packets (arriving from the various nodes via the input links) are inserted

into one queue. The queueing mechanism that is used is a preemptive

scheme. Therefore, if a queue is non-empty, and a packet of priority 1

arrives, it will get inserted behind all the other priority 1 packets currently

in the queue, but ahead of all the packets of priority 0. Furthermore, if

there are no packets with priority 1 waiting in the queue, and a packet

of priority 1 arrives while a packet of priority 0 is currently being served,

its service will not be interrupted by the priority 1 packet that has just

arrived.

2.3 TheMarkovModulated Poisson Process (MMPP)

Source

In this network, we are generating packets according to an MMPP model. In this

model, we are using a 3-state Markov chain, where each state in the Markov chain

represents a Poisson process with a certain rate. This is shown in Figure 2.4.

This routine is written in C and is incorporated into the OPNET source code.

In the program developed in OPNET, the transition probabilities pij between

the di�erent states in the Markov chain are speci�ed by the user, together with

the rates, �i, in each of the states in the chain.
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Figure 2.4: Diagram illustrating the 3-state Markov chain used to simulate the

Markov Modulated Poisson Process (MMPP) tra�c source.

2.4 A Minimum Cost Routing Algorithm

When a packet is created by an application running on a DTE, a source to

destination pair is assigned to it. Based on this pair, a route is selected from

the routing table and is assigned to the packet based on a minimum cost routing

algorithm. An example of how this algorithm works is shown in Figure 2.5.

In this �gure, the numbers next to each link represent the cost of that link.

A packet going from Node A to Node X will follow the path A-C-D-X and not

A-B-X because the former has a cost of 1.5 + 2.5 + 3.0 = 7.0 while the latter

has a cost of 6.0 + 5.5 = 11.5. At the start of the simulation, all the links have a

cost of 0.0 assigned to them. As the simulation progresses, this cost is updated

periodically by relating the cost of the link to the utilization on the link using

the following cost function:

ci = (1� �)ci�1 + �
1

1� �i
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Figure 2.5: Diagram illustrating the minimum cost routing algorithm.

where ci is the cost of the link at the i
th time instant (when the data is sampled),

ci�1 is the cost of the link at the previous time instant, � is a weighting factor

between 0 and 1 (inclusive), and �i is the utilization on the link at the ith time

instant. The weighting factor, �, is used in order to take into account the

dynamics of the network. By taking a portion of the previous cost and a part

of the current utilization, the new cost is computed. The choice of � is left for

the network designer. In our simulations, we chose � to be a number greater

than 0.5, thus assigning more weight to the current value of the utilization (and

therefore less importance to the past).

When the utilization of a link increases, the cost of the link increases also

(though not in a linear fashion). As a result, the tra�c will be re-routed through

links that are relatively underutilized. Therefore, there is a notion of "self-

healing" that takes place within the X.25 cloud itself. This is the proactive

component of our design.
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Figure 2.6: Diagram illustrating how tra�c would uctuate during a typical

business day.

In addition to depending on the source and destination addresses, this rout-

ing algorithm also depends on the maximum number of hops allowed. This

parameter is speci�ed by the user. Thus, if the maximum number of hops is 2,

then path A-C-D-X would not be considered in Figure 2.5.

2.5 Simulation of Varying Tra�c Patterns

When running a simulation for T seconds, we are varying the tra�c in such a

way that there are periods when tra�c is high and other periods when there is

less tra�c. A possible example of this is illustrated in Figure 2.6.

For example, if T = 1200 seconds, we start simulating with a small number

of applications and at t = 400 s, we bring the network to maximum tra�c. At

around t = 750 s, we remove a couple of applications, reecting the possibility
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that the real users might be away from work, e.g. at lunch. Then, by reintro-

ducing other applications, we reach peak tra�c again. At around t = 950 s, we

reduce the tra�c again, and complete the simulation. By varying the tra�c in

such a manner, we believe this would be a fairly good model for the network

tra�c in a 24-hour period. Note that during the simulation, we never bring the

tra�c completely to zero since there will usually be some tra�c on the network

at all times. Examples of such tra�c include backups by system administra-

tors, execution of scripts speci�c to the operating system (such as UNIX, DOS,

etc.), automatic logging of network performance data, and so on. Depending on

the computing resources available to run the simulation, one could use di�erent

lengths of time to correspond to a 24-hour period. Our simulations were con-

ducted on Sun Sparc stations and thus, we were able to run them for 24 hours

of simulation time (which took anywhere between 1 and 2 hours, depending on

the load on the network at the time the simulation was running).

2.6 Data Generated by the Network

The performance data being collected consists of statistics about the following

parameters:

1. Blocking of packets

2. Queue sizes

3. Packet throughput from all the applications

4. Utilization on links connecting subnetworks

5. End-to-end delays experienced by packets

12



The data is sampled periodically for the �rst 4 parameters over a certain time

window. This period can be speci�ed by the user, based on how often such

measurements need to be made. In our simulations, this interval is 50 seconds

of simulation time. The delays are computed every time a packet reaches its

destination. When a packet enters the X.25 cloud (from the DCE) at a certain

node, as shown in Figure 2.2, it is time stamped. Upon reaching the destination

node (before being passed to the DCE at that node), the di�erence is determined

between the current simulation time and the instant when the packet was time

stamped. This di�erence corresponds to the end-to-end delay experienced by

the packet in traveling through the X.25 network. Thus, end-to-end delays are

computed within the X.25 cloud without including the DTE-DCE time at the

source and the DCE-DTE time at the destination.

In addition to the above, we also have SNMP variables being monitored and

traps have also been implemented in our simulation. These points are discussed

in greater detail in Chapter 3.

2.7 Fault Scenarios

The modeling of faults is done as follows. We de�ne a "normal" state in the

network, where "normal" refers to levels of tra�c ow that are not unusually

low or high, e.g link utilization between 0.20 and 0.70. Then, a set of fault

scenarios are modeled and used to train the neural network system. By training

the neural network to understand a normal state of operation, it would then

be able to recognize abnormal states also. The fault scenarios that we have

simulated are the following:
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1. Reducing switch capacity, i.e. dropping the service rate. This would a�ect

blocking of calls and response times for applications.

2. Increase the (normal) packet generation rate of a certain application (e.g.

3 times the original amount of tra�c).

3. Disabling of certain switches in the X.25 cloud. This would cause re-routing

of calls around other (working) switches.

4. Disabling certain links.

These scenarios are used for training the G2/Neuronline model. The OPNET

simulator provides the capability of altering the attributes of network elements

during the simulation. Examples of such attributes include link speeds, service

rates of bu�ers, tra�c generation rates, and so on. Using this feature, we are

able to model scenarios that could represent faults within the network.

2.8 Alarms

A method for simulating the occurrence of alarms is also incorporated in the

simulation. The alarm contains information regarding the severity of the prob-

lem, the location of the event (i.e. which node in which subnetwork), and a

threshold. The severity is de�ned as shown in Table 2.1.

The decision of whether or not to send an alarm is determined by examining

the sampled data over a user-speci�ed time window. If, for example, the queue

size for a particular queue is above a certain minimum threshold, then a counter

is incremented. Each time this parameter is sampled during that time window,

the counter will be incremented if it exceeds that threshold. If the value of the

14



Alarm Information

Severity Codes

Alarm Severity

Code Level

critical 5

major 4

minor 3

warning 2

informational 1

cleared 0

Alarm codes associated with performance data

Link utilization 0, 1, 2, 3, 4, 5

Blocking 5

Queue size 4, 5

User throughput 4, 5

Table 2.1: Alarm Information.
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counter exceeds a certain number, then that value is incorporated in the alarm

packet as the threshold. These counters are used to allow for the possibility of

severe uctuations in the sampled data. Thus, if one sample of a certain param-

eter has a high value, but a few samples before it and after it appear normal,

then an alarm would not be sent. This avoids the generation of unnecessary

alarms, causing confusion at the network control center.

Alarms have been de�ned for all the performance measures, except for end

to end delay. For link utilization, all the levels of severity (of the alarm) are

used. For queue size, we are only using levels 4 and 5. The same is true for user

throughput. For blocking of packets, we are generating an alarm (of severity

level 5) every time blocking is observed (for a certain number of times over the

time window). This information is summarized in Table 2.1.

16



Chapter 3

SNMP Monitoring

In much of the literature that was reviewed, there had been little mention regard-

ing the use of SNMP variables to perform fault management. In our approach,

we are logging statistics pertaining to SNMP variables based on the RFC 1382,

"SNMP MIB Extension for the X.25 Packet Layer" and we have also installed

SNMP traps, as described in the following sections.

3.1 Logging of SNMP variables at the X.25 packet

layer

The following list of variables was extracted from RFC 1382 and are being logged

during the simulation:

1. x25StatInCalls. This is the number of incoming calls received.

2. x25StatInDataPackets. This is the number of data packets received.

3. x25StatOutCallAttempts. This is the number of outgoing calls attempted.

17



4. x25StatOutDataPackets. This is the number of data packets sent by the

Packet Layer Entity (PLE).

5. x25StatOutCallFailures. This is the number of call attempts which failed.

This includes calls that were cleared because of restrictive fast select.

6. x25StatRestartTimeouts. This is the number of times the T20 restart timer

has expired. This timer speci�es the length of time that a DTE will wait

for a response to a restart request packet. The default value for this timer

is 180 seconds. The restart might occur as a result of a severe problem,

such as a crash in the network.

7. x25StatCallTimeouts. This is the number of times the T21 call timer has

expired. This timer speci�es the length of time that a DTE will wait for

a response to a call request packet. The default value for this timer is 200

seconds.

8. x25StatResetTimeouts. This is the number of times the T22 reset timer

has expired. This timer speci�es the length of time that a DTE will wait

for a response to a reset request packet. The default value for this timer

is 180 seconds. Reset is used only during a data-transfer state. Reset

procedures may be necessary when problem conditions arise.

This subset of variables were chosen from the RFC because they are helpful in

identifying faults that could occur in the X.25 simulation. The variables are

logged on a "per DTE" basis and not on a "per logical channel" basis. This is

implemented by assigning IDs to each DTE. For example, if we have a DTE in

California with one application (with ID 10) running on it, the ID for this DTE

18



would be the ten's digit, i.e. 1. If we have another DTE in Maryland with 2

applications running on it (with IDs 20 and 21), the ID for that DTE will be the

ten's digit of its applications, i.e. 2. The reason for logging the data on a "per

DTE" basis is so that the volume of information used by the expert system can

be reduced. This would not be the case if the information were monitored on

a "per logical channel" basis. In this case, the volume of information would be

overwhelming and it would take the inference engine of the expert system much

longer to arrive at a conclusion. This would not be good for a function such as

fault management where speed is a crucial factor.

3.2 SNMP Traps

In addition to the above, we also have the facility for agents to send traps to

a manager when something goes wrong. Here, an agent refers to a node in the

X.25 cloud. This manager is designed to manage the switches in the X.25 cloud.

It does not receive traps from the DTEs or DCEs in the network. According to

RFC 1215, "A Convention for De�ning Traps for use with the SNMP", there are

six basic types of traps, together with a seventh enterprise-speci�c trap. These

are reproduced below for convenience:

� coldStart(0). "A coldStart trap signi�es that the sending protocol entity

is reinitializing itself such that the agent's con�guration or the protocol

entity implementation may be altered."

� warmStart(1). "A warmStart trap signi�es that the sending protocol entity

is reinitializing itself such that neither the agent con�guration nor the

protocol entity implementation is altered."
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� linkDown(2). "A linkDown trap signi�es that the sending protocol entity

recognizes a failure in one of the communication links represented in the

agent's con�guration."

� linkUp(3). "A linkUp trap signi�es that the sending protocol entity rec-

ognizes that one of the communication links represented in the agent's

con�guration has come up."

� authenticationFailure(4). "An authenticationFailure trap signi�es that the

sending protocol entity is the addressee of a protocol message that is not

properly authenticated... "

� egpNeighborLoss(5). "An egpNeighborLoss trap signi�es that an EGP

neighbor for whom the sending protocol entity was an EGP peer has been

marked down and the peer relationship no longer obtains." This means

that the exterior protocol gateway (EGP) is down.

� enterpriseSpeci�c(6). This can be used to de�ne additional trap messages

as needed.

In our simulation, we have implemented traps 2, 3, and 6 above. Trap 4 has not

been implemented since we are not considering the modeling of gateways in the

simulation. In our implementation of trap number 6 we have, among others, two

�elds in the packet that are for the trap code and fault code, respectively. In the

case of a linkDown or linkUp trap, the trap codes are 2 and 3, respectively. For

the other traps, the trap code is 6. The fault code will be a unique code for each

type of fault scenario, as listed in the section "Fault Scenarios" in Chapter 2.

Thus, there could be two traps with 6 as the trap code, but with 10 and 20 as the
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SNMP Trap Information

Trap Trap Fault

Type Code Code

Reduced Switch Capacity 6 10

Switch Capacity Back to Normal 6 20

Node Disabled 6 50

Node Enabled 6 60

Link Down 2 70

Link Up 3 80

Table 3.1: Trap types, trap codes, and their respective fault codes.

respective fault codes. These fault codes are listed in Table 3.1. In addition to

the trap and fault codes, each trap that is generated also includes the subnetwork

ID and the node ID, indicating the sender of the trap.
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Chapter 4

Expert Systems and Neural Networks

4.1 OPNET/Neuronline Interface

The data from the X.25 simulation in OPNET is gathered in a at �le and stored

in an ORACLE database. The data is then read by G2 and Neuronline, where

the former is the expert system and the latter is the neural network component.

From the literature reviewed, we chose radial basis function networks (RBFN) as

the neural network architecture for conducting classi�cation. In implementing

our system, we are using a combination of both neural networks and expert

systems. A brief description of RBFN networks is provided in the next section.

4.2 Radial Basis Function Networks

In much of the research done on fault diagnosis, primarily in the area of chem-

ical processes, the research has focused mainly on feedforward networks with

sigmoidal transfer functions, commonly called backpropagation networks. One

of the drawbacks of this architecture is that it generates false classi�cations since

it cannot handle novel cases and it arbitrarily classi�es areas that are not covered
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by the training data.

Recently, researchers have been looking at using radial basis function net-

works for handling classi�cation problems. RBFNs are three-layered networks,

with an input layer, a hidden layer, and an output layer. Unlike backpropagation

networks, RBFNs use Gaussian transfer functions, with one per hidden node (in

the hidden layer). Thus, each radial basis function unit represents a unique

local neighborhood in the input space. The hidden layer activations are deter-

mined by the Euclidean distance to the center of each Gaussian. This results in

the hidden nodes having (spherical or elliptical) regions of signi�cant activation.

Such �nite bounding of the activation regions is why RBFNs are able to detect

novel cases. Another advantage of RBFNs is that they require less (typically an

order of magnitude) time for training compared to backpropagation networks.

However, they have a slower run-time execution.

The training of RBFNs is done in three stages. In the �rst stage, the center of

each of the radial basis function units is determined using the k-means clustering

algorithm. This is an unsupervised technique that places unit centers centrally

among clusters of points. In the second stage, the unit widths are determined

using the nearest neighbor technique, which ensures the smoothness and conti-

nuity of the �tted function. In the �nal stage, the weights of the second layer of

connections are found using linear regression.

4.3 Using RBFN for network monitoring

One of the most crucial elements in performing fault management of networks

is speed for fault detection, fault location, and identi�cation of the type of fault.
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For managing the X.25 network, we are using a hybrid architecture of neural

networks and expert systems to perform the fault management functions. Specif-

ically, we are using the radial basis function networks to analyze the performance

data being generated by OPNET. There is one RBFN for each subnetwork. The

possible outputs for the neural network are the di�erent classes of faults that

could occur in the X.25 network (as listed in Chapter 2). Thus, when a fault

occurs within a certain subnetwork, the RBFN assigned to monitor that subnet-

work will alert the network operator that a fault of a speci�c class (e.g. disabled

node) has occurred. However, this will not inform the operator of the location

of the fault. Thus, in the example above, the operator would know that a node

in a speci�c subnetwork was disabled, but he/she would not know which node

was disabled. Then, based on the outcome of the neural network, appropriate

action is taken by the expert system. The expert system uses information about

alarms and SNMP traps, together with the SNMP variables which we chose from

RFC 1382, to make its conclusions regarding the possible location and cause of

the fault. There will be special rules to handle disabled nodes, others to handle

failed links, and so on. These rules will be described in later sections of this

document.

4.4 Fault Detection and Fault Diagnosis

4.4.1 First Level of Diagnosis: Neural Networks

In our approach, we are using one radial basis function network for each sub-

network in the X.25 cloud. In Figure 4.1, the setup of the training phase for a

speci�c neural network is shown. The original data is the performance data ob-
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Figure 4.1: Diagram illustrating the training phase of a RBFN.

tained directly from the network. This data is then scaled using a data rescaler,

which was con�gured to use zero mean, unit variance scaling on the input and

no scaling on the output. The scaled data is then used by the trainer to train

the RBFN. A �t tester is also available. The criterion chosen for the �t tester is

"fraction misclassi�ed". Thus, the output of the �t tester is a number between

0 and 1, reecting how accurately the samples of data are classi�ed.

The neural network has spherical nodes for its hidden layer. The number of

hidden nodes per class is a parameter that does not have a unique answer. This

number has to be chosen through trial and error, after several training sessions,

until the desired performance is achieved. During the experiments, it was found

that as the number of hidden nodes increased, the �t tester error decreased

(though not linearly), thus implying that there was a better �t of the data by

the neural network. However, a higher number of hidden nodes also meant a

longer training period. The training of the neural networks is a�ected by the

following factors:
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1. The quality of the input data and how well it reects the conditions of the

X.25 network. If the input data is not good, the neural network will not

be trained well.

2. The number of hidden nodes in the hidden layer of the RBFN. More hidden

nodes usually translates to a better �t of the data, accompanied by longer

training periods.

3. The number of input variables that are supplied to the neural network.

In our case, we supplied the utilization levels on all the links (in both

directions), the queue sizes, and the measured packet throughput at each

node.

4. Is the data distinct? If the data for di�erent fault classes is not clearly

distinct, then the neural network will have a higher percentage of misclas-

si�cation.

Since a neural network observes patterns and makes inferences based on those

patterns, similar patterns for di�erent fault classes would lead to misclassi�ca-

tions. In Figure 4.2, Figure 4.3, and Figure 4.4, the average queue sizes at the

input bu�ers are shown for 3 nodes in a subnetwork. These graphs represent

the average queue sizes under normal tra�c. In Figure 4.5, Figure 4.6, and Fig-

ure 4.7, the average queue sizes at the input bu�ers are shown for the same 3

nodes with node 4 being disabled at t = 1400 secs. Here, we note that nodes 1

and 2 have higher bu�er sizes after node 4 is disabled. This occurs as a result

of re-routing of packets. In Figure 4.8, Figure 4.9, and Figure 4.10, the queue

sizes at the input bu�ers are shown for the same 3 nodes with a user at node

1 generating excess tra�c, starting at t = 1500 secs. Here, we note that all
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Figure 4.2: Queue size in bits for normal tra�c.
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Figure 4.3: Queue size in bits for normal tra�c.

three nodes have higher bu�er sizes from the time the user connected to node

1 started generating the excess tra�c. In the cases outlined above, there are

certain distinct patterns that help the neural network to identify the di�erent

cases. However, there are other instances when it is more di�cult. For example,

a link failure and a node failure both lead to re-routing of tra�c. If the samples

of training data are small, it is very di�cult for the neural network to distinguish

between a node failure and a link failure, simply by analyzing the re-routing that

occurs. Thus, more data is needed to distinguish between the re-routing that

occurs in these two cases in order to have a small percentage of misclassi�cation.
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Figure 4.4: Queue size in bits for normal tra�c.
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Figure 4.5: Queue size in bits with node 4 disabled.
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Figure 4.6: Queue size in bits with node 4 disabled.
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Figure 4.7: Queue size in bits with node 4 disabled.
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Figure 4.8: Queue size in bits with excess throughput at node 1.
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Figure 4.9: Queue size in bits with excess throughput at node 1.
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Figure 4.10: Queue size in bits with excess throughput at node 1.

In Figure 4.11, the testing phase of the RBFN is shown. Note that this

is the testing phase for a laboratory environment only. In an actual network

control center, this would be the setup used for monitoring the network. The

data sampled from the network in real time is input to the block labeled "testing

dataset". This data is read by a data set reader and passed to a data pair divider.

The latter accepts a pair of vectors, X and Y, as input. In this case, since we are

dealing with testing in a laboratory environment, X is the performance data from

the network and Y is the class that it belongs to (e.g. normal state, disabled

node, and so on). Since we want the neural network to be able to identify

the class of fault, we reject the Y vector and retain the X vector only. This

vector is scaled using the input scaler (obtained from the training phase) and

then supplied to the RBFN, whose output is then observed using the output

classi�er. The output will be the fault class determined by the RBFN.

Several di�erent tests were conducted to develop a better understanding of

how the neural networks were trained. In the �rst test, we considered 3 classes

(normal, disabled node, and excess user tra�c). We used 180 samples of data

for the "normal" class and 90 samples for each of the other two classes. The
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Figure 4.11: Diagram illustrating the testing phase for a RBFN.

results are shown in Table 4.1.

In the second test, we repeated the �rst test but changed the number of

samples of training data to 180 samples per class and retrained the RBFN net-

works. The results for this case are shown in Table 4.2. Thus, from Table 4.1

and Table 4.2, we see that for these 3 classes, with more data points per class,

the total number of hidden nodes decreases for a certain range of error values

for the �t tester.

In the third test, we considered all �ve classes of faults and trained the RBFNs

with di�erent sample sizes. We �rst trained the RBFN with 150 samples for the

"normal" class and 80 samples for each of the other fault classes, giving a total

of 470 points in the training set. The results for this case are shown in Table 4.3.

By looking at the last two columns in each row, it is observed that the percentage

error is higher for those two fault classes. This provided the motivation for the

next test.
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Neural Network Training: 3 Classes

Total Fit Perc. Error Perc. Error Perc. Error

Hidden Tester Normal Disabled Excess User

Nodes Error State Node Throughput

45 0.26 0.15 0.15 0.13

60 0.24 0.11 0.10 0.09

66 0.23 0.09 0.09 0.07

75 0.20 0.06 0.07 0.04

Table 4.1: Neural network training chart for the �rst test.

Neural Network Training: 3 Classes

Total Fit Perc. Error Perc. Error Perc. Error

Hidden Tester Normal Disabled Excess User

Nodes Error State Node Throughput

15 0.29 0.09 0.10 0.08

24 0.24 0.06 0.07 0.05

30 0.22 0.04 0.05 0.04

33 0.19 0.03 0.04 0.03

Table 4.2: Neural network training chart for the second test.
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Neural Network Training: 5 Classes

Total Fit Perc. Error Perc. Error Perc. Error Perc. Error Perc. Error

Hidden Tester Normal Disabled Excess User Degraded Disabled

Nodes Error State Node Throughput Bu�er Link

175 0.20 0.13 0.16 0.14 0.19 0.21

200 0.15 0.10 0.13 0.13 0.17 0.18

210 0.14 0.08 0.11 0.12 0.16 0.15

230 0.13 0.07 0.10 0.09 0.14 0.11

Table 4.3: Neural network training chart for the third test.

In the fourth and �nal test, we again considered all �ve classes of faults and

trained the RBFNs with di�erent sample sizes. We trained the RBFNs with 180

samples each for the normal, disabled node, and excess user tra�c classes. For

the remaining two faults classes, we used 320 samples for each class, giving a

total of 1180 points in the training set. The reason for this is because these two

cases do not manifest themselves in an obvious manner through the performance

data from the network. When the testing for these two cases was performed

with 180 samples per class, the percentage of misclassi�cation was very high

(approximately 0.40 for each fault class). On the other hand, when we tried

using 500 samples for each of these two classes, the RBFN was "overtrained"

and all data points (from the testing data) were classi�ed either as "degraded

bu�er" or "link failed". Thus, we had to use an intermediate number of points

between these two extreme cases of training and the results for this case are

shown in Table 4.4.
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Neural Network Training: 5 Classes

Total Fit Perc. Error Perc. Error Perc. Error Perc. Error Perc. Error

Hidden Tester Normal Disabled Excess User Degraded Disabled

Nodes Error State Node Throughput Bu�er Link

200 0.30 0.12 0.35 0.55 0.35 0.10

250 0.26 0.04 0.44 0.33 0.52 0.10

300 0.20 0.33 0.50 0.20 0.31 0.10

Table 4.4: Neural network training chart for the fourth test.

Another interesting observation was noted when the neural networks were

tested for detecting faults under the following scenario. Consider a neural net-

work that was trained to detect disabled nodes using data when Los Angeles and

Utah were disabled independently, i.e. they were not disabled simultaneously.

The network is shown in Figure 4.12. When either one of these nodes is disabled

during an actual simulation, the neural network will detect the fault, depending

on how well it was trained. However, if testing data is presented to the RBFN

with the node at Phoenix being disabled, the RBFN may not always indicate the

correct type of fault, i.e. it does not always give "node disabled" as its output.

After analyzing the behavior of the network under fault conditions, it appears

that the network topology is the main reason for these observations. Since all

occurrences of a particular fault class are not identical, i.e. the behavior of the

network (re-routing of packets, etc.) due to a fault in Los Angeles is not identi-

cal to the behavior of the network due to a fault in Utah, several di�erent cases

need to be presented to the RBFN for the same fault class. Obviously, this corre-
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Figure 4.12: Diagram illustrating a typical subnetwork.

sponds to longer training sessions for the neural networks. Similar observations

were also recorded for the other fault classes.

The output of the neural network is used by a classi�er to inform the network

operator of the current status of the network. The codes used in our implemen-

tation are listed in Table 4.5. If a certain fault code (other than 0) is observed

several times (e.g. K times out of M samples, where K and M are de�ned by

the network designer), then the expert system is activated to determine further

information about the location and cause of the fault, as described in the next

section.

4.4.2 Second Level of Diagnosis: Expert Systems

The neural network for each subnetwork analyzes the incoming data and if a state

other than a normal one appears to be present, then the expert system makes

queries to an ORACLE database to determine further information about the
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Fault Codes for the Neural Network Classi�er

Network Fault

State Code

Normal 0

Node Disabled 1

Excess User Tra�c 2

Reduced Switch Capacity 3

Link Down 4

Table 4.5: Network states and their respective fault codes for the neural network

classi�er.

observed fault in the network. Di�erent fault conditions have di�erent queries,

as described below.

1. When a node failure occurs, we need to look for a SNMP trap. In addition,

the following queries can be made to con�rm the reception of the trap:

� The utilization levels of each of the outbound links from the failed

node should be less than some number � > 0.

� Examine x25StatCallTimeouts counter (at the source DTEs). It should

increase. By identifying a source/destination pair, as it is possible for

a permanent virtual circuit (PVC), the location of the problem can

be traced.

� Look at x25StatOutCallFailures counter at the source DTE. It should

increase. This can be checked in conjunction with the x25StatOutCallAttempts
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parameter.

� Look at the x25StatRestartTimeouts and x25StatResetTimeouts coun-

ters. They should increase.

2. When excess tra�c is generated by a user, causing network congestion to

occur, we need to look for an alarm indicating this condition. This alarm

occurs as a result of an increase in measured packet throughput at the

node (in the X.25 cloud) connected to the source DTE generating the high

tra�c. In addition, we also need to look at the following:

� The value of the x25StatOutDataPackets parameter for the DTEs

connected to the node where the high throughput measurements were

made.

� The value of the x25StatInDataPackets parameter for the destination

DTE in the case of a PVC.

� The value of the x25StatInCalls for the destination DTE in the case

of a PVC. Although this is a useful parameter, it should be used

in conjunction with the other parameters listed above and not used

alone. This is to allow for the possibility of there being a small number

of calls to the named destination, with each call having a lot of tra�c

(i.e. a high value of x25StatInDataPackets).

3. For a degradation in the service rate of an input queue, a SNMP trap

would be generated. In addition, the following queries can be made to the

database:

� An alarm reecting high queue sizes and possibly blocking.
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� An increase in the end to end delay experienced by packets.

4. When a link failure occurs, a SNMP trap will be generated. In addition,

the following query can be made to con�rm the reception of the trap:

� A link that has zero utilization in both directions (recall that the links

in the X.25 cloud are bidirectional).

� Look at the x25StatRestartTimeouts and x25StatResetTimeouts coun-

ters. They should increase.

All the points mentioned above agree with the simulation results from

OPNET. These points are summarized in the next chapter in a step-by-

step format.
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Chapter 5

Fault Detection Algorithm

5.1 Single Faults

� To detect a node failure at node i, the �rst thing to look for is a SNMP trap.

Reception of a trap would solve the problem. If, due to some problem in

the network, the trap was not received by the SNMP manager (a feature

that exists in our simulation), then we execute a query from the expert

system looking for the following condition:

X

8js:t:9link(i;j)

�ij < �

In theory, we would require the sum to be equal to zero. However, in a

software implementation, we would set � to be a very small number, such

as 0.01, and changing the equality to an inequality as shown above.

To con�rm the hypothesis, examine:

1. x25StatCallTimeouts counter at the DTEs that are the "source" part

of the source/destination pairs for the DTEs connected to node i.
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2. x25StatOutCallFailures and x25StatOutCallAttempts counters at the

source DTE.

3. x25StatRestartTimeouts and x25StatResetTimeouts counters.

� To detect a user connected to node i that is submitting excess tra�c to

the network, we look for the following condition:

X

8js:t:9link(i;j)

�ij > �

To con�rm the hypothesis, check the following:

1. x25StatOutDataPackets at the DTEs connected to node i.

2. Measured packet throughput at node i.

3. x25StatInDataPackets at the destination DTE, i.e. node i, obtained

by checking the source/destination pairs in the case of PVCs.

4. x25StatInCalls at the destination DTE, obtained by checking the

source/destination pairs in the case of PVCs.

� To detect a degraded switch, start by looking for a SNMP trap. Reception

of a trap would solve the problem. To con�rm the hypothesis, check the

following:

1. Alarms corresponding to high queue sizes and/or blocking of packets.

2. High end to end delays experienced by packets.

� To detect a link failure on link (i; j), i.e. the link connecting nodes i and

j, the �rst thing to look for is a SNMP trap. Reception of a trap would
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solve the problem. If the SNMP manager does not receive a trap, then we

execute a query from the expert system looking for the following condition:

�nd i and j such that

�ij = 0

and

�ji = 0

In addition, look at the x25StatRestartTimeouts and x25StatResetTimeouts

counters.

5.2 Multiple Faults

In the case of multiple faults, we simply need to look at the outputs of the

RBFN neural networks and see which ones do not correspond to normal tra�c.

By doing so, we eliminate a large number of nodes in the X.25 network and we

can focus on those subnetworks that are experiencing problems. In this project,

we are not considering multiple faults occurring simultaneously within the same

subnetwork since the probability of occurrence of such an event is much smaller

than the probability of occurrence of multiple faults within di�erent subnetworks.
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Chapter 6

Conclusion

In this project, we have explored the area of automated fault management of data

networks. Rather than taking a purely reactive approach towards this problem,

we have used a proactive and reactive approach. The former is present through

the minimum cost routing algorithm in the X.25 network. The latter is present

through the use of arti�cial intelligence techniques. We used these techniques

for performing fault detection and diagnosis, using performance data, SNMP

network statistics, alarms, and SNMP traps. Although the OPNET simulation

consisted of a relatively small number of nodes, that is not a problem since

we have divided our X.25 network into a group of subnetworks and assigned

a RBFN network to each of these subnetworks. The idea of using one neural

network for each subnetwork (in the X.25 network) is appealing because it leads

to a scalable solution in the case of large networks. For example, if a certain

company has 100 subnetworks (which implies 100 RBFN neural networks) and

they decide to expand their network by adding another subnetwork, then they

would only need to train one more RBFN network without having to change the

other 100 RBFN networks. Furthermore, the expert system queries are common
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to all subnetworks and can be used with minimal modi�cation, if any. This

leads to code reuse, an important element of any software development project.

Although it takes time to train the neural networks (since there is no unique

training scheme that can be used), once a certain performance (or a desired error

criterion) is obtained, the neural network can be used with high con�dence, as

long as the network topology of the subnetwork (in the X.25 network) has not

changed. This is not an unreasonable assumption since many companies choose

several of the traditional network architectures (such as token bus, token ring,

star, etc. Thus, the time spent initially (to train the neural networks) leads to

long term dividends from a network management point of view.

In terms of future work in this area, some possibilites include working with

other protocols, such as TCP/IP, for example. Alarm correlation is also a very

important issue in this area. Correlations can be drawn between the alarms and

perhaps the SNMP traps.

43


