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This thesis presents a prototype vehicle acoustic signal classification system with low

classification error and short processing delay. To analyze the spectrum of the vehicle

acoustic signal, we adopt biologically motivated feature extraction models – cochlear

filter and A1-cortical wavelet transform. The multi-resolution representation obtained

from these two models is used in the later classification system. Different VQ based

clustering algorithms are implemented and tested for real world vehicle acoustic signals.

Among them, Learning VQ achieves the optimal Bayes classification performance, but

its long search and training time make it not suitable for real time implementation. TSVQ

needs a logarithmic search time and its tree structure naturally imitates the aggressive

hearing in biological hearing systems, but it has a higher classification error. Finally, a

high performance parallel TSVQ (PTSVQ) is introduced, which has classification

performance close to the optimal LVQ, while maintains logarithmic search time.



Experiments on ACIDS database show that both PTSVQ and LVQ achieve high

classification rate. PTSVQ has additional advantages such as easy online training and

insensitivity to initial conditions. All these features make PTSVQ the most promising

candidate for practical system implementation.

Another problem investigated in this thesis is combined DOA and classification, which is

motivated by the biological sound localization model developed by Professor S. Shamma:

the Stereausis neural network. This model is used to perform DOA estimation for

multiple vehicle recordings. The angle estimation is further used to construct a spectral

separation template. Experiments with the separated spectrum shows significant

improvement in classification performance. The biologically inspired separation scheme

is quite different from traditional beamforming. However, it integrates all 3 biological

hearing models into a unified framework, and it shows great potential for multiple target

DOA and ID systems in the future.
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Chapter 1 Introduction

Researchers have long been working on automated target detection and

recognition systems. For ground vehicles, acoustic signals are useful for classification

purposes. The classification problem is defined as assigning an unknown vehicle sound

into one of a pre-specified class based on the extraction of significant features or

attributes [10]. Such a simple problem to a human is not so simple when we want to make

a machine perform the task. In order to be able to classify its input, the machine has to

process the input sound, measure its similarity and decide which vehicle class that input

belongs to. We may say that a pattern classification problem is a pattern recognition

problem and that recognition is the ability to classify.

Human beings have an outstanding ability to recognize natural sounds. Normally

a musician can easily tell the 1Hz difference between two tones. Since biological

perceptual nervous systems are basically self-trained classification machines, and have a

superior performance than most existing classification systems, the knowledge about how

signal processing is done in the nervous system has attracted significant attention from

researchers. In this thesis, we will study several state of the art biological signal

processing models, and use these models to extract multi-resolution features from vehicle
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acoustic signals. Based on these hierarchical feature representations, an aggressive

unsupervised TSVQ algorithm is implemented to classify the acoustic inputs.

Furthermore, we make some modifications to the existing binaural hearing model, which

provides us with new features very important for multi-vehicle ID systems. Through this

research, we hope to gain more insight into the potential application of biological models

in acoustic pattern recognition systems design.

1.1 Research Background

The Army Research Laboratory (ARL) has created the Acoustic-seismic

Classification Identification Data Set  (ACIDS) for vehicle classification research. This

database contains 9 types of vehicles, as shown in table 1.1.  In the ACIDS database, each

vehicle has dozens of runs, corresponding to different speed and gear, different terrain

(desert, arctic, normal roadway, and etc), and different recording systems. This database

represents an ideal opportunity for classification research.

Type 1:  heavy track vehicle

Type 2:  heavy track vehicle

Type 3:  heavy wheel vehicle

Type 4:  light track vehicle

Type 5:  heavy wheel vehicle

Type 6:  light wheel vehicle

Type 7:  light wheel vehicle

Type 8:  heavy track

Type 9:  heavy track

 Table 1.1 Different vehicles in the ACIDS database.
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Pattern recognition is an inexact science involving many areas and disciplines. A

typical pattern recognition system consists of the following standard parts as shown in

fig.1.1.  Later in this thesis, the design of each part will be described in detail.

Figure 1.1 Block diagram of acoustic signal classification system

1.2 Survey of previous research

The overall acoustic signal of a vehicle arises from several sources including

engine, gear, fan, cooling system, road-tire interaction, exhaust and air movement.

Historically, the most extensive study of this kind of signals was carried out by scientists

who were working on ground traffic control problems.

1.2.1 Algorithm based on time domain feature extraction:

In  [14], Sampan of Virginia Tech used block-averaging of the time domain signal

to classify vehicles into 4 different classes: cars, trucks, heavy trucks, and trailers.

Basically, his method is based on the short time strength of the acoustic signal, and little

spectrum information is used. So their method can not distinguish two different cars with

nearly the same size and engine power. In [14], the best performance is 96% correct

classification. In [28], Scott used a similar approach and obtained better performance.

Classification

Result

Observed

Data

Data

Preprocessing

Feature
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However, the time domain features limit this method to coarse classification of vehicle

types. For more precise classification, features extracted from the frequency domain must

be considered.

1.2.2 Wavelet and filter bank based features:

In [17], Dress and Kercel suggest that: “due to the non-stationary nature of the

vehicle acoustic signal, parameter based methods such as ARMA models are likewise

unsuccessful, and a time –frequency approach seemed more likely to succeed." In their

approach, the FFT of wavelet subspace signals are used as features. In [18], Choe et al.

use combined STFT and wavelets as features, and for a database containing 2 vehicles, he

achieved a 98% correct classification. For a larger database, their method doesn't

guarantee the same performance.

1.2.3 Classification algorithm:

Many types of classification algorithms have been used in vehicle signal

classification. In [18], Choe et al. use an HMM-ANN fused classifier, in [17], Dress and

Kercel use fuzzy set membership and ANN, in [14], Sampan uses Fuzzy logic. Classical

K-nearest neighbor and radial basis function networks are also found in the literature

[17].

In [3], Baras and Wolk introduced a tree structured vector quantization (TSVQ)

algorithm for the ship radar return classification. They demonstrated that a cascade of

Wavelet transform followed by a TSVQ clustering algorithm can achieve a progressive

classification scheme. In their experiments, the ‘parallel’ TSVQ provided a performance

very close to the optimal Bayes LVQ classifier. Furthermore, their model provides a
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natural way to imitate the hierarchical physiological hearing in the human nervous

system. Related discussions of this scheme can be found in [6][9][19].

1.2.4 Previous work on biological hearing models

• Periphery auditory processing models:

The sound signal undergoes a series of transformations in the early stage of

auditory processing, and people developed various kinds of biophysical models or

approximate computational algorithms to simulate the cochlear processing. In [4],

Shamma et al. integrated the earlier approach and introduced a new framework of 3 stage

cochlear processing. Using this auditory model he successfully reconstructed the original

sound from different stages of the auditory representation. Since the cochlear model

shows strong spectral analysis capability, in [29][30], Kumar et al. used it as a front-end

of a speech feature extraction system.

• Cortical processing model

In human nervous system, the stimuli from the peripheral auditory system are

transmitted to the cortex for further processing. In [5], Shamma et al. suggested that the

cortex analyses the input auditory spectral pattern along three independent dimensions: a

logarithmic frequency axis, a local symmetry axis and a local ripple frequency axis. It is

shown that this processing is equivalent to performing an affine wavelet transform of the

spectral pattern while preserving both the amplitude and phase information. In our

research, we use a constant Q filter bank as a simplified cortical model to decompose the

auditory spectrum into a multi-scale representation. This multi-scale representation,

combined with the TSVQ algorithm, provides us a hierarchical classification scheme as
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suggested before. In this sense, the whole classification system will be consistently

biological based.

• Stereausis binaural hearing model

In [10], Shamma introduced a binaural hearing model - Stereausis, to explain the

spatial hearing and sound localization in human physiology.  This model is unique in that

its output purely depends on the cross-correlation of different filter banks, and no neural

delay pathway is involved in the network. In the stereausis network, an unbalanced sound

input will cause the network response to shift away from the main diagonal. A proper

measure of this shift can be used to calculate the impact angle of arrival signal.

Later in this thesis, we will examine the Stereausis network based on a small array

for its DOA estimation performance for multi-vehicle recordings.  From this DOA

estimation, a signal separation scheme similar to traditional beamforming will be

introduced and discussed in detail. Through these approaches, we hope to integrate the

vehicle ID, DOA estimation, and multi vehicle signal separation problems into a unified

framework.

1.3 Contributions and scope of research

Our research goal is:

• Develop a prototype vehicle signal classification system with low classification error

and short classification delay.

• Test and modify the biology based hearing model as a practical feature extraction

system.



7

• Explore the VQ based classification algorithm, improve its overall performance such

as low classification error, short search time and easy online training.

The following contributions have resulted from this thesis:

• A prototype vehicle acoustic signal classification system is implemented and tested.

The suggested classifier can achieve above 90 percent correct classification, while only

using logarithmic search time.

• A combined DOA and classification system, in which significant classification gain is

obtained through Stereausis based DOA estimation.

• Feature extraction from biological hearing models proved successful for ground

vehicle classification purposes. This result should lead to wider usage of such models in

various speech processing applications.

• A new signal separation algorithm, different from traditional beamforming. This

algorithm is based on DOA estimation and performs very well for small arrays.

• A new method to initialize the LVQ classifier, which helps the LVQ classifier to

overcome local minimal points in a rapid manner.

• A thorough analysis and comparison of VQ based classification algorithms, which

may lead to further development of a tree structured LVQ algorithm.

• An entropy based classification confidence measure. This measure fits well with all

VQ based classifiers, and shows great potential in providing reliable confidence

suggestions to the end user.
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Chapter 2  Feature extraction with biological hearing models

Human beings have a strong ability to recognize acoustic signals. In recent years,

researchers have carefully studied this biological hearing capability, hoping to find

beneficial structures or useful models to assist the research of pattern recognition and

signal classification.  Some of the biological research results and findings have already

been used in speech recognition systems, such as the Mel-frequency scale[22], adaptive

mechanisms[23][24], and compressive non-linearity[25]. In recent years, Shamma et al.

presented a series of mathematical models to mimic the structure of the peripheral and

cortical auditory systems. His models not only proved to be successful in explaining the

mechanisms of the biological nervous system, but also showed remarkable ability in

spectral enhancements and noise suppression. In this chapter, Shamma’s peripheral

auditory model [4] and central cortex hearing model [5] will be introduced. Later, these

models will be extensively used to perform feature extraction for vehicle acoustic signal.

2.1. Biological hearing models

2.1.1 Peripheral auditory processing model

For human beings, the sound signal undergoes a complex series of

transformations in the early stage of auditory processing. In [4], Shamma divides the total

procedure into 3 concatenated stages: analysis stage, transduction stage, and reduction

stage. The whole mathematical model is plotted in figure 2.1.
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Figure2.1 Peripheral auditory model: (a) block digaram of the three basic stages in

the early auditory system, (b) Quasi-anatomic sketches of the suditory stages, (c)

mathematic models of each stages.
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In the analysis stage, the cochlear is modeled as a parallel bank of band-pass

filters. Along the logarithmic frequency, the transfer function of each band appears

approximately invariant except for a translation, i.e., a constant Q filter bank. Therefore,

it is natural to interpret the outputs of the cochlear filters as affine wavelet transforms of

the input signal. The biological counterpart of this module is the spatially distributed

basilar membrane along the length of the cochlea. Vibrations evoked by a single tone

appear as traveling waves that propagate up the cochlea, reach maximum amplitude

before slowing down and decaying rapidly. Thus basilar membranes at different locations

of the cochlea appear to be band-pass filters sensitive to particular frequency stimuli.

The transduction stage is modeled by a three-step process: The first part is a time

derivation, followed by a nonlinear transform (normally a sigmoid function), and end

with a low pass filter. Each part has a corresponding physiological process associated

with it. From the information processing point of view, these complex transforms merely

convey hair cell potentials to the cochlear nucleus. Under the high gain limit assumption,

this stage can be totally ignored[5].

The Reduction stage performs the spectral estimation function. Its dominant part

is a lateral inhibitory network (LIN), which is common in all nerve sensory systems. In

Shamma’s model, this stage is further decomposed into 3 parts. The first part is a

derivative (or differential) structure with respect to the spatial axis of the cochlea, which

models the lateral inhibition effects among the LIN neurons, which essentially enhances

the sensitivity to spatial discontinuities of the input pattern. A half wave rectifier is the

second part. It models the threshold non-linearity in the neuron models of the LIN

network. The final part is a long time constant (10-20ms) integrator. This step is based on
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the fact that central auditory neurons can not follow rapid temporal modulations higher

than a few hundred Hertz.

The processes in this module can be summarized into the following formulas:

),()(),(1 xtbtxxty t⊗=

)),((),( 12 xtygxty =

)),((),( 23 xtyxty x∂=

)0),,(max(),( 34 xtyxty =

)(),(),( 45 txtyxty t Π⊗=

where x(t) is the input acoustic signal, b(t, x) is the impulse response of the

wavelet filter at location (or scale) x; g(.) is a sigmoid function; Π(.) is a temporal

integration window, and 5,,1),,( L=ixtyi  correspond to the output of different stages in

Fig2.1.

To summarize, this module transforms the time domain acoustic signal into a log-

frequency spectrum profile. This 1-D spectrum profile maximally reduced the data

volume with minimal loss of perceptual information [4]; thus it is suitable for various

applications such as low bit-rate speech compression or automatic speech recognition.

2.1.2 Cortical processing model

The auditory spectrum generated from the auditory module is fed into cortical

nerves for further processing. In [5], Shamma uses a wavelet transform to model this

cortical function. A spatial frequency measure: ripple frequency, Ω, is introduced as

sinusoidally modulated magnitude spectrum in the log-frequency domain. It represents

the number of cycles in one octave. The relation between scale (log-frequency) and ripple
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domain is analogous to the relation between time and frequency domain. Therefore, the

outcome of this module is the complex-valued representation of the input auditory

spectrum at different resolutions (different ripple frequency). This 2-D cortical

representation is given by:

),()(),( 5 Ω⊗=Ω xwxyxr x

Where )(5 xy  is the input 1-D long-term averaged auditory spectrum from the

previous auditory model, ),( Ωxw is the impulse response of the cortical filter at a given

ripple frequency Ω. ),( Ωxr represents the auditory spectrum at the particular resolution

Ω. In the complex-valued 2-D pattern, the real part represents the In-phase component of

the cortical response, while the imaginary part is the corresponding quadrature

component. Since the In-phase component contains all information concerning the

classification, only the real-valued cortical representation will be preserved for later

usage.

2.2 Implementation issues:

• Auditory Module:

It is difficult to implement the entire function blocks in fig. 2.1, therefore we

make some simplifications. After preprocessing, segmented acoustic data with zero-mean

and unit variance are fed into this module. A 128-band constant Q filter bank serves as

the cochlear filters, some of the filter responses are plotted in fig.2.2. The nonlinear

compression function g(.) is dropped and replaced with a linear function. Since the

following cortical model requires a 1-D spectrum as input, we collapse the T-F

presentation onto the ripple frequency axis by calculating the mean value along the time

axis to obtain an 1-D auditory spectrum. The window for short time average is roughly
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250 ms, within such short time, the stationary assumption will hold for most vehicle

acoustic signals. However, severe fluctuations do happen in many situations. To

compensate the short time fluctuation, a decision fusion unit is implemented in the

classification system, which will be discussed in detail in Chapter 3. All the other parts of

the auditory model, such as the half wave rectifier and LIN, are the same as in [4].

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)

Normalized amplitude response

Figure 2.2 Frequency response of cochlear filter banks

• Cortical module:

This stage is implemented by a series of constant Q (ripple) band-pass filters, with

each filter tuned around a characteristic ripple frequency. Actually, this mapping of

spectral ripples onto a scale axis is very similar to the logarithmic mapping of an acoustic

frequency onto the spatial axis of a cochlear filter. This suggests that the sequence of

cochlear and cortical analysis of acoustic signal is conceptually a form of a double affine

wavelet transform, which is very similar to the cepstral analysis. After this stage, we

obtain a multi-resolution representation of the auditory spectrum.

2.3 Experiments on feature extraction

(1) Simulation on auditory processing:
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(a) (b)

Figure 2.3 cochlear pattern for vehicle signals (a): vehicle type 1, speed

5km/hr. (b): vehicle type 1, speed 10km/hr
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Figure 2.4 Vehicle signal auditory spectra. The horizontal axis is  index of

cochlear filters, the vertical axis is the amplitude of the normalized auditory

spectrum. Top: vehicle type 1, 5km/hr. Bottom: vehicle type 1, 10km/hr

Fig.2.3 (a) shows a typical auditory time-frequency representation obtained by

passing a vehicle signal through the cochlear filter banks. From this T-F representation,
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we find that the vehicle acoustic signal is approximately confined to the range of 20 to

200 Hz, and is dominated by salient low frequency harmonics parallel to the time axis.

Fig.2.3 (b) is the same type of vehicle running a little faster and on a different ground. It

is obvious that several harmonics have disappeared and reappeared repeatedly during the

40 seconds recording period. This non-stationarity is a very common phenomenon in

vehicle acoustic signals. In general, vehicle signal maintains stationary within a 250 ms

or shorter window. If longer than that, many harmonics will gradually shift away or even

disappear. Sometimes, they shift upward or downward in a synchronized manner as in

Fig. 2.3(a). More frequently, they show quite random shifting pattern as in Fig2.3 (b).

This kind of fluctuation within 1 second can be classified as short term non-stationarity.

Fig.2.4 shows the 1-D spectrum obtained by collapsing Fig2.3’s Time-Frequency

representation along the time axis (after LIN). Although the second recording is only 5

km/hr faster than the first one, we observe significant difference between the two signals.

Clearly there are a new harmonics appeared around 60 Hz in the 10-km/hr case. When

vehicles runs at different speeds, with different gears, the sound will change accordingly.

For vehicle classification, this varying spectrum causes even more troubles than the short

term non-stationary effect, because one vehicle running at one speed may have similar

spectrum as another type of vehicle running at a different speed. During the transitory

states that a vehicle engine changes its working state, the problem becomes even more

complicated.

To summarize, two types of spectrum fluctuations exist in vehicle signal, the first

is short-term non-stationarity, the second is long-term spectrum variation caused by

different vehicle speeds or different gears.
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(2) Simulation on cortical processing.

Fig. 2.5-6 give the cortical processing pattern for the auditory spectrum. This

pattern clearly demonstrates the following properties:

• The cortical processing of the auditory spectrum is conceptually an affine wavelet

transform. Since the auditory wavelet also use logarithmic frequency scale like other

wavelet transform, its harmonics are evenly distributed on the frequency axis.

• The coarse scale (low ripple frequency) captures the broad and skewed

distribution of energy in the auditory spectrum, while the finer scale captured the detailed

harmonics structure. In the other intermediate cortical scales (such as scales 30 to 60), the

dominant harmonics are highlighted while the weaker ones are suppressed. For example,

in Fig.2.6, the weak oscillation between band 40 to 60 in raw auditory spectrum (scale ∞)

is not observable for scales between 30 to 60. Thus these intermediate scales emphasize

the most valuable perceptual features within the signal.

• From fig.2.6, we can clearly see the multi-resolution character of the cortical

representation. This figure reminds us of the same phenomenon as in the radar return

research [3]. Along the artificial vertical lines we gradually extract all the harmonics just

the same way as we extract local peaks in ship radar returns; the only difference is that a

biological model-based wavelet transform, instead of an orthogonal wavelet transform, is

used here.

• The cortical filter is a redundant representation, not all the scales are necessary for

the classification algorithm. Fig.2.6 clearly suggests that 3~5 scales are sufficient. Since

we know that higher scale cortical representation preserves more harmonic details than

lower scale, while lower scale (here ‘lower’ refers to scales between 0 and 20) is a better
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descriptor of the spectral contour. Normally, the spectral contour at lower scales is

relatively insensitive to speed variations, which is a valuable characteristic for

classification problems. Nevertheless, since most vehicle harmonics are crowded within

the range of 20Hz to 200 Hz, these coarse scale spectral contours are very similar to each

other. Due to the limited resolution, the classification decision is not very reliable if based

solely on low resolution information. Meanwhile, since most intermediate scales

highlight the perceptually important components in the auditory spectrum, they are better

candidates for invariant features. Therefore, in future research, the scale [30 40 50 ∞ ]

will be consistently used in the classification system.
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Chapter 3. VQ based classification algorithm

3.1 Motivation

Once we implemented the biological hearing model as in Chapter 2, the job left is

to implement a suitable classification algorithm. Up to now, the features we obtained are

multi-resolution auditory spectrum. As physiological and psychological experiments

show [26], cortical neurons exhibit certain organizational characteristics that reflect

systematic response selectivity to various stimulus features. Those response areas

sensitive to different ripple frequencies are organized topographically across the surface

of the cortex. This topographic organization leads to the natural aggressive recognition

capability, as we experience it in life daily. Normally, the best way to model this

aggressive hearing capability would be a tree-structured multi-resolution classifier. At

lower levels (coarse resolution) of the tree, the cortex only performs preliminary and

indecisive classifications. As the sound becomes clearer, and more information becomes

available, the cortex will carry out more precise and decisive classification. In this

chapter, the TSVQ based classification algorithm will be consistently utilized; its tree

structure is the best imitation of the cortical system because it is both hierarchically

layered and topologically distributed. In this sense, our system is more biologically

motivated than other systems, such as systems based on fuzzy logic membership or

genetic algorithms (GA).

In our research, we studied 3 different VQ based classifiers: LVQ, TSVQ and a

parallel TSVQ (PTSVQ) algorithm. Among them, LVQ is an optimal Bayes classifier

and the slowest one, while the other two algorithms are not optimal but much faster and

more efficient to implement.  Generally, VQ is known as a tool for multidimensional data
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compression, however, classification and compression have long been known to be

highly correlated problems. Recent work has lead to very beneficial cross-fertilization

between the two fields, in particular, between TSVQ compression and classification trees

[3]. In general, classification of different features can be viewed as a form of compression

since it associates each input vector with a class label. Conversely, compression can be

viewed as a special form of classification, since it assigns a template or code word in a

small set to the input features drawn from a large set in such a way as to provide a good

approximation. All inputs sharing the same code word can be deemed as a common class.

In this sense, the VQ compression algorithm can be considered as an unsupervised

classifier. Although its classification performance is not optimal in the Bayes sense, it

offers significant advantages such as memory saving and fast searching and training. This

is true especially for the tree structured VQ algorithms. In this thesis, our goal is to

improve TSVQ’s classification performance as close to the optimal LVQ as possible. The

basic idea behind is to design a combined system that takes advantage from both systems.

3.2 Learning Vector quantization (LVQ)

Learning vector quantization (LVQ) is a non-parametric method of pattern

classification. As a supervised learning neural network, LVQ works in two stages: In the

training stage, it uses a set of training data to divide the feature space into non-overlapped

Voronoi cells. Later during the testing stage, it applies the nearest neighbor rule to

classify the new input. The following section outlines the basic LVQ algorithm:

Define input vector x, training data population N, codebook of size K with

Voronoi vectors im , i=1, 2, …, K. Then x is decided to belong to Voronoi cell c if

)(minarg
2

:1
i

Ki

mxc −=
=
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In the training process, the im  are updated using the following equations:
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Here 0< )(tα <1 is the learning rate, it may be constant or decrease monotonically

with time. After repeating the above training process sufficient times, the algorithm

converges to a stable state. In [1] and [2], Baras and Lavigna proved that the

classification error of LVQ converges to the optimal Bayes classification error as long as

the volume of the Voronoi cells goes to zeros as K→ ∞ , provided we have

0)/( →
∞→

NKLim
N

. Therefore, LVQ serves as an optimal calssifier in our research. It

provides a upper bound for the achievable classification performance.

One weakness of LVQ is that it is extremely difficult to be trained to the global

optimal state, especially when a huge volume of data is used as the training set.In [21]

[27], Kohonen points out that the convergence of the LVQ network depends on the

following factors: initial node allocation among different classes, initial Voronoi vector

position, learning rate and simulated annealing schemes, and times of presenting the

training data to the network. Direct training of the LVQ from a random initial state is

normally not successful, the most widely used way of training a LVQ network is using a

VQ algorithm to pre-cluster the training data, then the LVQ algorithm inherits the

Voronoi vectors from it, and continues the training until the LVQ algorithm converges. In

this sense, a robust and effective VQ classification algorithm is very important for LVQ,

because VQ with poor classificarion performance can not help LVQ to overcome the

local minima in a large vector  space.
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3.3 Tree structure vector quantization (TSVQ)

3.3.1. Definitions

In this section, we Define the VQ as an unsupervised clustering algorithm: An N-

dimensional vector quantizer consists of an encoder γ mapping an N-dimensional vector

space Χ to a set of code symbols F and a decoder δ mapping these code symbols to a

reproduction alphabet Α. For a given code symbol F∈F if we let l(F) denote its length (in

bits) then we can define the average rate R in bits per vector of a given encoder γ by

R=E[l(γ(X))], where the expectation arises from our chosen probabilistic model for the

random vector X. The distortion between any input vector x∈X  and its reproduction

δ(γ(x)) is defined as d(x, δ(γ(x))), with which one defines the average distortion of a

given VQ to be E[d(X, δ(γ(X)))]. In this thesis, we take the widely used squared error as

distortion measure because of its simplicity: 
2

))(())(( d(X, XXX γδγδ −=) , where

X=(X(1), …, X(k)) is a k-dimensional vector.

3.3.2 The classic LBG algorithm

This is the most common approach to VQ training. It repeatedly uses clustering

techniques to minimize the average distortion subject to the constrains on bit rate and

code structure. The LBG clustering algorithm can be summarized in the following steps: 

• Given a codebook { im }, the optimal partition { iR } of the signal space that

minimizes distortion aveD  is based on the nearest neighbor rule. In our case, it is the

minimum mean square error (MMSE) rule.

}),,(),(:{ jmxdmxdxR jii ∀≤=
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where d(.) is the distance measure and aveD is the average distortion.

)),(( xave mxdED =

• For a given partition P, the optimal decoder assigns to each index i the conditional

centroid of all input vectors X for which γ(x)=i. In our case of squared distance, the

representative of the current partition region is the conditional expectation E(x|γ(x)=i).

• For a given initial partition, we repeat the two steps, until a saturated state is

reached.

3.3.3 TSVQ based on LGB algorithm

We are especially interested in tree structured VQ (TSVQ) because it is consistent

with the aggressive perceptual model and it represents a natural way to use multi-

resolution feature vectors. Furthermore, TSVQ has a logarithmic search time compared to

the linear search time of a full search VQ, making TSVQ the most effective and widely

used technique for reducing search complexity. In TSVQ, the search is performed at

different scales. At each scale a substantial subset of candidate Voronoi cells is

eliminated. In a binary balanced tree with depth L, we only need 2L comparisons before

we find the best match.

Normally, a TSVQ tree is grown by successively splitting nodes and then

optimally pruning them until the desired rate is reached. In our research, we follow the

greedy method described in [3] to construct the tree. The basic problem here is whether

the splitting should be done in the current layer or down to a new layer.

When we get the multi-resolution representation of the features, we first partition

the feature space into non-overlapping Voronoi cells by repeatedly applying the LBG

algorithm. LBG is first applied to the coarsest resolution, the resultant distortion is
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determined by the mean squared distance metric, and is computed using the finest

resolution representation of the data. The cell that contributes most to the total average

distortion is the cell which is split in the next application of LBG. A new Voronoi vector

is found near the Voronoi vector for the cell to be split and is added to the Voronoi

vectors previously used for LBG. LBG is applied to the entire population of data vectors,

again using the coarsest representation of each vector. These steps are repeated until the

percentage reduction in distortion for the entire population falls below a predetermined

threshold. Then the partition in the coarsest resolution is fixed, and further partitioning

continues by splitting the existing cells based on finer representation of the data in the

cell. The algorithm then iterates until the allotted number of cells has been reached[3].

The whole process can be summarized into the following statements:

• For a given block I which contains J cells at scale M, we compute the average

distortion 
N

mX

D

J

j
celljx

M
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of cell  j at scale M and N is the total number of observations.
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=∆ , if it is larger than a prefixed threshold, than new

centroid J+1 is added at the same scale, otherwise goes down to scale m+1.

After the training stage, all Voronoi cells are labeled using majority voting, i.e. if

class k dominate Voronoi cell j, then in the testing stage, all samples falling into cell j

will be classified as class k. After the above training procedure, an hierarchical multi-

resolution classifier is available.
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3.4 Parallel TSVQ (PTSVQ)

In [3][6], Baras and Wolk introduced a Parallel TSVQ structure that shows superior

classification performance. The algorithm works in the following way: during the training

stage, features from different vehicles will be used to construct independent subtrees,

generally one tree for each type of vehicle. After that, the algorithm goes into testing

stage, each new input vector will be presented to all the subtrees in parallel, and being

processed in the usual way it is processed in the former TSVQ. Once settled in leaf nodes

in all the subtrees, we calculate the minimal distances between the new input vector and

the centroid of its settled Voronoi cell for each subtree. If the subtree that has the minimal

distance corresponds to type k vehicle, we declare a type k classification. In the following

part of this thesis, we will refer to this method as Parallel TSVQ (PTSVQ) method, while

the traditional method will be referred to as Global TSVQ (GTSVQ).

The PTSVQ has been shown to be successful in ship radar return classification. It

achieves classification rate close to the optimal LVQ, while the search time is comparable

to the logarithmic search time of the traditional GTSVQ. Furthermore, since only one

subtree will be involved in the training stage, on-line training can be easily implemented,

and the “new target insertion” in real time systems will also be possible.

The primary problem associated with PTSVQ is that it is totally heuristic. In the

next chapter, we will examine this algorithm through a series of simulations for the

vehicle classification problem. In this way, we hope to gain more insight from it and

provide some useful results for later theoretical study.
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3.4.1 PTSVQ vs. GTSVQ

The superior classification performance of PTSVQ originates from two aspects.

First, the ‘one subtree for each pattern’ structure will approximate individual pattern

density more precisely than the global tree structure. Secondly, PTSVQ uses a little more

search time than GTSVQ. Here, an example is presented to illustrate the first aspect.

In Fig.3.1, two classes exist in the 2-D vector space. Assume the two classes have

the same prior probability, both patterns are of spatial uniform distribution within their

definition boundary, and their density functions overlap in the middle. In the overlapped

region, we have higher compound density than the rest of the region. After using LBG

algorithm to assign two Voronoi nodes to this vector space, we get a result shown in

Fig.3.1 (a), If we perform LBG for these two classes separately (as in PTSVQ), we get a

result shown in Fig.3.1 (b). Using the nearest neighbor partition, we obtain the

classification boundary. Obviously the two resultant partition boundaries are different,

and the parallel subtree scheme yields a correct classification boundary in the Bayes

sense.

     Figure 3.1 Classification gain from independent clustering of different classes

Classification boundary

Class1 uniform distribution Class2 uniform distribution

Classification boundary

Voronoi centroid

(a) Clustering by Global LBG (b) Clustering by independent subtree

Voronoi centroid
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In general, when two patterns are highly overlapped, PTSVQ will achieve better

performance. A heuristic explanation of this phenomenon is that: since the LBG

algorithm distributes Voronoi nodes according to the underlying density functions, if we

apply LBG to the whole sample space, the nodes distribution will approximate the

compound density function. If we apply LBG to each pattern independently, the node

distribution will approximate the density function of each individual class. When

classification is concerned, node distribution according to individual density function will

lead to more meaningful classification boundary. E.g., the LBG algorithm will put more

Voronoi cells on the high compound probability density areas, while these areas may just

lie on the Bayes classification boundary. Therefore, PTSVQ can be deemed as supervised

algorithm; all ID information is incorporated into the training process.

We should also notice that PTSVQ could not approach the optimal Bayes

classification, even when the number of Voronoi nodes goes to infinity. This can be

proved using a simple example. In Fig.3.2(a) two patterns exist in the 2-D vector space,

both patterns are of spatial uniform distribution within some rectangle regions, and their

density functions overlap in the left rectangle. Assume the two classes have equal prior

probabilities.  In the overlapped region, Class B has higher regional density than Class A,

therefore by Bayes criterion, the whole left rectangle should belong to class B’s

classification region. After using LBG algorithm to these two patterns independently (as

in PTSVQ case), we get a classification partition as in Fig3.2 (d). As a result, class A will

always have some nodes left in the left rectangle. Finally, some areas in the left rectangle

are mistakenly assigned to class A. Therefore, PTSVQ can not approach Bayes

classification in this case. The underlying reason is that, in PTSVQ, LBG is carried out
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independently for individual class, it doesn’t concern which class has a higher relative a

posterior probability for an interested region. While Bayes classification is based on the

maximal a posterior criterion, it carefully examines which class has the highest a

posterior probability within interested region, and will declare a classification for that

class.

Class A

Class A

Class B
 Class  A
 Clustering
 region 1

Class A

Clustering region 2

Class  A

Class B

Class B

Class B Class A

(a) 2-D spatial uniform

distribution of

class A and B

(b) LBG result for

class A

(c) LBG result

for class B

(d) Resulting

classification

Partition

(e) Optimal Bayes

Classification

Partition

Figure 3.2 Difference between PTSVQ and Bayes optimal classification
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3.4.2 Comparison in search time

In this section we will prove that PTSVQ uses a  logarithmic search time. To keep the

derivation simple, we assume that all trees constructed are symmetric full-balanced trees.

Later experiments will show that this assumption will not seriously affect our result.

(1) The GTSVQ case: For an L scales multi-resolution representation, if we assign F

leaf nodes to an M-ary full balanced tree, then:

FM L =   or  LFM /1=

On the average, each parent node has LF /1  children. In each step, the input vector should

examine all the children in the next layer to find out the next branch to go. The average

search time for the GTSVQ tree is:

L
CTSVQ FLMLS /1** ==

(2) The PTSVQ case: In total, there are N classes, each has its own subtree. To make

the comparison fair, the same number of leaf nodes are assigned to the two algorithms, so

in average, we have F/N leaf nodes for each subtree. If each subtree is also fully

balanced, the search time for each subtree will be:

  NiforNFLMLS L
ii L,2,1)/(** /1 ===

Therefore, the total search time for PTSVQ is:
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Compared to the GTSVQ case, the PTSVQ has a factor of L

L

N
1−

. When N and L

are fixed, the PTSVQ has a logarithmic search time with respect to the number of leaf
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nodes F. In our case, N=9 (9 classes), L=4(4 scales), the search time of PTSVQ is

roughly 5.19 times that of GTSVQ.

In GTSVQ, there are ∑∑
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At the same time, the total search path goes from 1 (in the GTSVQ case) to N (PTSVQ

case).  To sum up, the PTSVQ keep a logarithmic search time with respect to the number

of leaf nodes, while it searches more branches and a little more intermediate nodes during

the testing stage. In practical, the greedy TSVQ algorithm may lead to many complicated

unbalanced tree, so some assumptions here may not be valid, but later experiment shows

the above conclusion are very close to the true value and can be used for coarse

evaluation of the search speed.

3.4.3 Node allocation schemes for PTSVQ

How to allocate leaf nodes among all subtrees is still an unsolved problem in PTSVQ.

In a VQ based classifier, classification decision is based on the nearest neighbor criterion,

therefore, the more nodes one class gets, the better the classification for this class, and the

worse the other classes will be. In this thesis, we tried the following ad hoc node

allocation strategies. By comparison between these schemes, it is hopeful to gain more

insight into PTSVQ algorithm which may be helpful in the future theoretical study.

(1) Allocation according to sample a prior probability:

This is a straightforward approach. The basic idea behind is that the class having

more training and testing samples should have more nodes assigned to it.
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(2) Allocation according to equal distortion of each TSVQ subtree.

This method is based upon the assumption that classes with a condensed

distribution would need less nodes to represent than classes with a sparse distribution. In

the extreme case, all samples belong to one class fall into one point in the N-dimensional

vector space, then one Voronoi centroid vector is enough to represent this class, no matter

how many samples it has. Therefore, a possible ‘fair’ way to distribute the leaf nodes

would be the one that, after the node allocation, all subtrees have the same mean square

distortion.

(3) One subtree for each speed:

The dominant difficulty of vehicle acoustic signal classification lies in the fact

that the auditory spectrum changes with different working conditions. Studies on ACIDS

data show most spectrum fluctuations are caused by speed changes, while the terrain has

less severe influences on it. Normally, when a vehicle changes speed, either new

harmonics show up or disappear, which corresponds to gear change, or the harmonics

gradually shift their relative position on the frequency axis, which corresponds to varying

engine vibration period. Therefore, the auditory spectrum from vehicles with the same

speed turns to group together in the vector space, and the whole feature space appears to

be a combination of several clustering areas, each cluster corresponds to a particular

vehicle running at a specific speed. In this case, it is a natural attempt to construct a

subtree for each such clustering area. Another advantage of this scheme is that “one tree

for each speed” maximally approximates the cortical processing, which may be just

topologically distributed neuron sensitive to specific stimuli. Finally, One subtree for

each speed may be a better candidate for real time on-line training, since in this case, the
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size of each subtree is further reduced. When new training data come, only  the

corresponding subtree are updated, all the other subtree remain unaffected.

3.4 Decision fusion

As a last step in our classification system, we perform a simple decision fusion

operation to improve the classification performance. Fig.3.3 illustrates this approach.

Each one-second input signal is segmented in 250 ms block, each block goes through the

proposed classifier, and provides a sub-decision. 4 such consecutive sub-decisions in a

row are feed into the decision fusion unit, where a majority voting operation will settle

the final classification. The basic idea behind this scheme is that the vehicle signal often

has severe short time fluctuations in the spectrum, and a majority voting can alleviate the

associated short time fluctuation. Finally, this scheme introduces 1-second delay in the

overall system, such a small cost is generally affordable in practical system design.

Sub Decision    1     2    3      4

Data
collection
1000 ms

Segment into 4

250 ms blocks

Feature

extraction

VQ based

Classification

Decision fusion

Final decision

Figure 3.3 Decision fusion unit
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Chapter 4 System implementation, Simulation and Discussion

In this chapter, all proposed VQ based classifiers are trained, tested, and

compared with each other. The performance is measured in both classification rate and

search time. When comparing different classifiers, we use the same sets of training and

testing samples, and the same amount of Voronoi cells, thus make the comparison fair. In

all the experiments, the feature extraction system is based on the biological models

introduced in Chapter 2.

4.1 Data preprocessing

Figure 4.1 Data preprocessing in the system

Incoming signal waveform is first segmented into equal length blocks. For a

classification system, short block length is preferred since it leads to small classification

delay. In our classification system, the block size is fixed to 250 point, shorter than that

will make the followed processing such as filtering and spectrum analyses unreliable.

Since the sampling rate is 1025 Hz, one such frame corresponds to roughly 250 ms. As

discussed in Chapter 2, vehicle signals are approximately “stationary” in such short

Incoming
signal

Segmentation Drop Low
SNR Block

LPF and
Hamming
Window

Normal-
ization

Feature
Extraction

NormalizationClassification
Algorithm
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duration. Combined with a decision fusion unit that corrects any burst error from short

time fluctuation, 250 point is proved to be an appropriate processing window.

Figure 4.2 A typical vehicle acoustic signal waveform

Fig 4.2 shows a typical recording in the ACIDS database. Although the whole

recording lasts more than 300 seconds, most part is too weak for classification purpose,

some even undistinguishable from the background noise. For this reason, after computing

the energy of each block, only the strongest 40 seconds from each recording are

processed, all the other low SNR blocks are dropped. Next, a low pass filter with 450Hz

stop frequency gets rid of the high frequency wind noise, and a hamming window added

to the raw data reduces the spectral side lobe. Before entering the feature extraction

system, each block is normalized into zero mean and unit variance frame. Each frame of

data is processed through cochlear and cortical filter banks as discussed in Chapter 2.

Through above procedures, a multi-resolution auditory spectrum is available. Before this

Time (in 100s)

Amplitude
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representation enters the classification system, it is normalized to zero mean and unit

variance again. This second normalization is very important because our VQ based

classifier uses 2L  norm as distance measure; un-normalized feature vectors will make the

classification unfair for different samples.

4.2 TSVQ for aggressive classification

This part will demonstrate the aggressive classification capability of the system.

Fig. 4.3 and 4.4 show the tree constructed by the method introduced in Chapter 3.3. Here

6 types of vehicle are employed to evaluate the TSVQ algorithm. For each type, 3

recordings of different speed and different ground condition are used.  Therefore, even

under stationary assumption, there are 18 perceptually different sounds present to the

system (similar to speaker-independent phoneme recognition in speech recognition).

Since our goal is preliminary evaluation of TSVQ algorithm, a reduced size database is

used. Fig.4.3 illustrates the resulting Voronoi centroid in each cell, and Fig.4.4 illustrates

the histogram in each cell.

In the top layers of the tree, the TSVQ algorithm clusters acoustic signals

according to their spectral profile, most cells are occupied by multiple classes. As we

move to finer resolution, detailed harmonics structure is available, and the situation gets

better. When we reach the leaf layer, most Voronoi cells are occupied by samples from a

specific class. This phenomenon also confirms our hypothesis in section 2.3 that fine

resolution cortical representation is more reliable in separating different classes than

coarse resolution representation.

Fig.4.5 gives a detailed example of how cells are split. In cell 1-3-0, patterns of

class 1 and 2 coexist. As we move to next layer (layer 2), class1 dominates cell 2-3-0,
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while class 2 dominates cell 2-3-1, and clear difference can be observed between the

feature vectors within the two cells.

Figure 4.3 Multi-resolution tree constructed by the TSVQ algorithm, the

voronoi centroid vector are plotted in each cell
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Figure 4.4 Multi-resolution tree constructed by the TSVQ algorithm, the

histogram of each cell are plotted correspondingly.
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Figure 4.5  Cell 1-3-0 is split into cell 2-3-0 and 2-3-1

4.3 Different node allocation schemes

From now on, the entire ACIDS data will be used. In total, 43840 multi-resolution

feature vectors from 274 recordings of all 9 types of vehicles are available. Among them,

70% is used for training and the rest 30% used for testing. Three VQ based classifiers are

examined here. For GTSVQ, since the whole tree is labeled automatically using majority

voting, no specific node allocation scheme is needed. The LVQ algorithm is initialized

using the Voronoi centroid resulting from PTSVQ, therefore its node allocation scheme is

the same as PTSVQ. Here, we briefly introduce 3 different node allocation schemes for

PTSVQ as in chapter 4.

• Allocation based on sample a prior probability:

Cell 1-3-0 at scale 1

Cell 2-3-1

At scale 2

Cell 2-3-0

At scale 2
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The number of leaf nodes of each class is proportional to the prior probability of

each class, as shown in table 4.1

Class 1 2 3 4 5 6 7 8 9

Train
samples

3487 2068 515 150
4

2167 2082 397 1990 1134

Total

Node

Case1 24 14 4 10 15 14 3 14 8 106

Case2 31 18 5 13 19 19 4 18 10 137

Case3 35 22 5 16 23 22 4 21 12 160

Case4 47 28 7 20 29 28 5 27 15 206

Case5 50 30 7 22 30 30 6 29 16 220

Case6 62 37 9 27 39 37 7 36 20 274

Table 4.1 Node allocation according to sample prior probability

• Node allocation based on equal distortion:

This method is based on the hypothesis that the average distortion for each

subtree should be the same after vector quantization. To implement this scheme, we first

compute 5~6 rate-distortion pairs for each subtree, and interpolate them into a complete

rate-distortion curve. When all 9 rate-distortion curves are ready, we fix a common

distortion for all subtrees, and use the rate-distortion curves to find corresponding rate

(number of leaf nodes) for each subtree. The rate distortion curves for all 9 classes are

plotted in fig.4.6, The resulting node allocation scheme is given in table4.2.

• Node allocation according to vehicle speed.

In this scheme, we build a subtree for each speed of each vehicle. In the ACIDS

database, there are 4 different speed values: 5, 10, 15, 30km/hr. Since 10 km/hr

recordings are rare, they are grouped into the 5 km/hr category.  In total, there are 27

subclasses, corresponding to 27 subtrees. Finally, we assign leaf nodes to these 27

subtrees according to a prior probability of each subclass. The resulting scheme
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Figure 4.6 rate distortion curves for 9 subtrees

Node Tree 1 2 3 4 5 6 7 8 9 Total

Rate
(Node)

8 8 33 6 3 5 5 32 6Case

1
Distorti
on

30.7 29.2 29.8 31.1 27.7 30.4 30.4 30.1 29.9

106

Rate
(Node)

10 9 35 8 3 8 6 51 7Case

2
Distorti
on

27.1 27.0 26.9 26.2 27.8 26.6 27.7 26.8 26.3

137

Rate
(Node)

15 10 43 8 5 9 7 56 7Case

3
Distorti
on

24.8 25.0 24.9 26.2 24.9 25.4 24.9 25.1 26.3

160

Rate
(Node)

24 12 52 10 8 12 13 65 10Case

4
Distorti
on

20.8 20.9 20.8 21.2 20.7 21.6 27.3 21.0 21.1

206

Rate
(Node)

29 12 53 12 8 13 15 67 11Case

5
Distorti
on

19.9 20.9 20.1 19.6 20.6 20.2 20.1 20.1 19.8

220

Rate
(Node)

50 14 61 15 10 17 19 74 14Case

6
Distorti
on

18.1 18.9 18.1 18.2 17.9 18.1 18.3 17.9 17.7

274

Table 4.2 Node allocation according to equal distortion.
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is given in table 4.3. For vehicle without specific speed, we assign 0 node to it.

Tree Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
1 9 11 13 18 18 23
2 8 11 13 15 18 22
3 7 8 10 12 14 17
4 3 4 5 6 7 9
5 5 7 8 10 11 14
6 5 7 8 10 11 14
7 0 0 0 0 0 0
8 2 3 3 6 4 5
9 2 3 2 3 4 4
10 0 0 0 0 0 0
11 5 7 8 9 11 14
12 5 6 8 9 10 13
13 0 0 0 0 0 0
14 8 10 12 15 17 21
15 7 9 11 12 14 18
16 0 0 0 0 0 0
17 9 11 13 15 18 23
18 5 7 8 12 11 14
19 0 0 0 0 0 0
20 2 3 3 6 4 5
21 2 3 2 3 3 2
22 0 0 2 3 2 3
23 12 14 14 21 22 26
24 2 3 4 6 5 6
25 0 0 0 0 0 0
26 5 6 8 9 10 13
27 3 4 5 6 6 8
Total 106 137 160 206 220 274

Table 4.3 Node allocation according to vehicle speed.

4.4 Classification performance and discussion

Our measure of performance is average probability of correct classification and

total search time. Average probability of correct classification is defined as the total

number of correct classification divided by total test population. While the total search

time is defined in the following formula:
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Total Search Time = ∑ ∑ ∑
= = =

test

i

tree

j

scale

k
kjiS

1 1 1
,,

Where    i: index of current testing sample j:  index of current searching subtree

   k: index of current searching layer tree: total subtree number

  scale: all layer used in the searching until reach the leaf node

  S: number of siblings need to be compared in current scale.

  test: testing data population

The following definition is used to denote different classification scheme:

GTSVQ: Global TSVQ

PTSVQ (1): PTSVQ, node allocation according to sample a prior distribution,

PTSVQ (2): PTSVQ, node allocation according to equal distortion,

PTSVQ (3): PTSVQ, one subtree for each speed of each vehicle.

Figure 4.7 Classification performance for different classifiers
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Figure 4.8 Total search time for different classifiers

Leaf Node GTSVQ PTSVQ(1) PTSVQ(2) PTSVQ(3) LVQ

106 66.29 73.57 61.25 77.49 87.64

137 68.04 76.00 63.81 80.37 90.05

160 68.86 79.21 68.89 82.45 90.12

206 69.56 79.56 75.32 84.31 91.18

220 71.75 80.09 76.46 84.41 91.50

274 72.42 81.46 77.07 86.12 92.61

Table 4.4 Classification performance for different classifiers

The overall system performance is given in Fig. 4.7, 4.8 and Table 4.4. Based on

these results, we summarize the outstanding features of these classifiers.

1. The LVQ has the best classification performance while GTSVQ has the worst

performance. PTSVQ is an intermediate state between the two. In the simulation, all 3

PTSVQ schemes are better than GTSVQ. PTSVQ(3) provides about 13 percent
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classification gain over GTSVQ, and PTSVQ(3) is about 7 percent lower than LVQ. We

should notice that the comparison is not absolute ‘fair’ for PTSVQ (3), because LVQ

uses PTSVQ(3)’s result as initial condition for further training, if equal amount of

training time is devoted to PTSVQ, it may be further improved.

2. PTSVQ(1) and PTSVQ(2) use about 2 times the search time of GTSVQ, and their

search time increases very slowly as total number of leave nodes increases, this result

confirms the logarithmic search time hypothesis in chapter 4. PTSVQ(3) will use a little

more time because the total number of leave nodes assigned to it is insufficient to build

full balanced subtrees, as more training samples and more vehicles involved, the full

balanced tree assumption will hold, and PTSVQ(3) will fall into the same category as

PTSVQ(1). In addition, PTSVQ(3) has the highest level parallelism. In this experiment, if

assign 1 CPU for each subtree, the total search time of PTSVQ(3) should be divided by

27, thus it will use far less search time than GTSVQ.  So when classification speed is

concerned, PTSVQ is the most promising scheme.

3. A serious problem with LVQ is that direct training of its neural network can not

overcome local minimum. In our experiment, we have tried to directly implement LVQ

from random initial conditions, but since both the training population and the

dimensionality of input vector are fairly large (21920*0.7*128), neither the MATLAB

LVQ tools nor Kohonen’s LVQ-Pak software package converges to the global optimal.

In the simulations, LVQ never achieved more than 80% classification from direct

training. The convergence of LVQ network relies on too many factors, such as initial

node allocation among classes, initial Voronoi centroid position, learning rate, simulate

annealing scheme, and the times of presenting the training data to the network. TSVQ



45

algorithm, on the other hand, can easily converge to a stable state that corresponds to

global minimal total distortion. Using results from GTSVQ as initial condition for further

LVQ training shows improvement than direct training from random initial condition.

However, since GTSVQ can only provide around 70 percent classification, their voronoi

node is still far from optimal. In most situations, the convergence to global optimal point

is not guaranteed.

For PTSVQ, when constructing a subtree, only a small subset of all training data

will be used. Therefore, the input data dimensionality is greatly reduced for each

individual class, and each subtree can approach to its global optimal state of minimal

distortion in extremely short time. This quality makes PTSVQ remarkably insensitive to

initial training condition. Given in addition the near-optimal classification performance,

PTSVQ serves as the best candidate for the initialization of LVQ network. In our

experiment, we adopted the final result of PTSVQ as the initial states for further LVQ

training, and after only a few training cycles (1000~3000), LVQ converges to a saturated

state. A problem with this scheme is that LVQ can not directly use the multi-resolution

features. In the simulation, we must carefully adjust PTSVQ network to make most of its

leaf nodes appear on the finest resolution. In the future, we hope to develop a tree

structured LVQ algorithm, so that it can directly use the multi-resolution representation

from the cortical model.

4. Another advantage of PTSVQ is its online training ability. When new target

shows up, only relevant subtrees need to be retrained, all the other subtrees maintain their

state. From online training point of view, this scheme may be the only possible candidate

for practical system design.
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5. Among the 3 node allocation schemes in PTSQV, PTSVQ(2) has the worst

performance. To account for this result, we propose a heuristic explanation through a

simple example, as shown in Fig.4.9.

Figure4.9 Failure of node allocation according to equal distortion

In this figure, samples from class 1 are sparsely distributed in the 2-D space,

while class 2 are more compactly clustered. According to equal distortion criteria, we

need more nodes for class 1 than class 2 to achieve equal distortion. However, one node

located in the center of each circle will be enough to separate class 1 and 2, since their

spatial distribution is not overlapped. In this case, more nodes should be reserved for

class 3 and class 4 since their spatial distribution is severely intersected. Generally, the

non-optimal nature of PTSVQ prevents any allocation schemes from absolute ‘fair’. For

ACIDS database, class 8 vehicles have the sparsest distribution, so when total number of

leaf nodes is small, nearly one third of all leaf nodes will be allocated to this class (as

shown in table4.2), thus seriously deteriorate the classification of all the other classes.

Class1

Class3

Class 4

Class2
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4.5 Further improvement of Classification

The decision fusion unit in section 3.4 is implemented here. Each sub-decision

comes from preceding PTSVQ(3) and LVQ classifiers, the final performance is listed in

table4.5. This table concludes our final performance: among all the 1644 one-second

testing samples, 91.01 (or 96.35) percent samples are correctly classified using a 274-cell

PTSVQ(3) (or LVQ) classifier.

Total Nodes 106 137 160 206 220 274

Original PTSVQ(3) 77.49 80.37 82.45 84.31 84.41 86.12

After Fusion 81.72 84.95 86.77 89.32 89.36 91.01

Original LVQ 87.64 90.05 90.12 91.18 91.50 92.61

After Fusion 91.24 93.86 94.56 95.07 95.19 96.35

Table 4.5 Classification gain using decision fusion

The decision fusion unit successfully reduces about 4 percent short time error

caused by burst oscillation within vehicles signals, the cost is 750 ms more processing

delay. In practical system, if we use a higher sampling rate, we may segment the input

data into shorter frames, thus the classification delay can be further reduced.

4.6 Experiments with independent testing data

So far in our experiments, the training and testing samples is from the same set of

recordings, i.e., for 21920 available samples, 70 percent samples are randomly selected as

training data, so nearly every recording has some frames picked into the training data set.

In this simulation environment, the classifier has experience with all available recordings.

However, in real battlefield condition, the classifier must recognize new input which may

come from unexpected speed and ground condition that it never encounters before.
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Therefore, we must reexamine the classification performance of previous algorithms with

totally new recordings.

In this experiment, the old ACIDS database is used to train the VQ based

classifiers. Once the training is finished, the classifier is fixed and a new set of recording

is used to test the classification performance. In Table 4.6, 4.7 and 4.8, the confusion

matrix of several classifier is presented.

Predicted\True 1 2 3 4 5 6 7 8 9
1 93.0769 37.5 18.9583 2.2917 0 0 11.5625 14.1667 4.25
2 5.9615 36.25 2.7083 1.0417 0 0 3.125 0.2083 19
3 0.1923 0 43.9583 0 0 0 5.3125 0 2.25
4 0 1.25 1.875 78.5417 0 0 38.4375 0.625 1.75
5 0 25 0.8333 0.625 0 0 1.25 0.4167 4.75
6 0 0 0.625 0 0 0 6.875 4.1667 6
7 0 0 4.5833 3.9583 0 0 6.25 0.2083 1.75
8 0.1923 0 3.125 3.5417 0 0 20.9375 79.5833 8.75
9 0.5769 0 23.3333 10 0 0 6.25 0.625 51.5

Total % 100 100 100 100 100 100 100 100 100

Overall Score 46/71 Correct

Table 4.6. 137-cell LVQ classifier, classification performance on high SNR 40

seconds of the acoustic data, all value in percentage, a classification result is

reported for each second.

Predicted\True 1 2 3 4 5 6 7 8 9
1 68.4615 34.375 9.7917 0.2083 0 0 1.875 4.1667 0
2 6.1538 17.5 1.875 0.8333 0 0 1.25 0.2083 4.25
3 0.7692 1.25 42.7083 0 0 0 5.9375 0 3
4 6.1538 20 10.8333 87.0833 0 0 43.75 2.5 8
5 0.1923 23.75 1.6667 0 0 0 6.5625 0.8333 5.25
6 3.0769 0 1.4583 0 0 0 2.5 3.125 7.5
7 0.9615 0.625 8.9583 0.8333 0 0 5 0 0.75
8 13.2692 1.875 3.9583 1.875 0 0 22.5 88.5417 16
9 0.9615 0.625 18.75 9.1667 0 0 10.625 0.625 55.25

Total % 100 100 100 100 100 100 100 100 100

Overall Score 49/71 Correct

Table 4.7. 401-cell LVQ classifier, classification performance on high SNR 40

seconds of the acoustic data, all value in percentage, a classification result is

reported for each second.
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Predicted\True 1 2 3 4 5 6 7 8 9
1 91.9231 46.875 41.0417 4.5833 0 0 23.125 28.75 19.5
2 5.3846 26.875 20.2083 6.25 0 0 9.6875 1.4583 8.75
3 0.1923 0.625 13.5417 0 0 0 0 0.625 1
4 0 0.625 1.6667 55.625 0 0 22.8125 0.4167 9.5
5 0 24.375 2.0833 7.5 0 0 15.9375 0.8333 8.25
6 0 0 0.625 0 0 0 2.1875 2.5 1.25
7 0.7692 0 3.75 5 0 0 5 0 0
8 1.7308 0 2.5 2.7083 0 0 11.25 64.375 15
9 0 0.625 14.5833 18.3333 0 0 10 1.0417 36.75

Total % 100 100 100 100 100 100 100 100 100

Overall Score 36/71 Correct

Table 4.8. 206-cell PTSVQ classifier, classification performance on high SNR

40 seconds of the acoustic data, all value in percentage, a classification result is

reported for each second.

From above simulation, we can draw the following conclusions:

1. With the independent testing data, both LVQ and PTSVQ classifiers suffer from

insufficient training. For class 1, 4, 8, 9, they still achieve a reasonable performance. The

independent testing data doesn’t include class 5 and 6 recordings. For class 3 and 7,

which has the smallest training samples in the ACIDS database, these two classes are

highly confused with other classes.

2. In average, LVQ classifier is still a little better than PTSVQ, however, LVQ is no

longer optimal in the Bayes sense, and under certain situation, PTSVQ outperforms LVQ.

For example, 206-cell PTSVQ classifier achieve better classification on class 1 vehicle

than 401-cell LVQ classifier.

3. Unlike the old experiments, the classification performance doesn’t increase as the

number of leaf nodes increases. This clearly suggests that insufficiently trained VQ

classifier is ‘biased’, i.e., the voronoi centroid only partially represent the real spatial

distribution for each class.
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4. To improve the performance, we need much more training data than current

ACIDS database. In this situation, when new data is available, it should be inserted into

the training set of particular subtree, and PTSVQ’s parallelism will show great advantage

over the LVQ algorithm.

4.7 Entropy based confidence measure

Using above proposed classifiers, we can make a classification decision on every

new testing sample, however, this decision is not always reliable. Basically, when

distribution of two vehicles are highly overlapped in feature vector space, it is better to

skip making a decision rather than straightly given an unreliable decision. In this case, a

confidence measure is needed.

For VQ based classifiers, a natural confidence measure is the ‘pureness’ of each

voronoi cell. For example, after the training stage, if only one type of training samples

exists in a specific voronoi cell, this implies no other classes have distribution function

overlapped in the surrounding area.  Therefore any decision from this cell is highly

reliable, the confidence value of the decision should be high. From information theory,

the best ‘pureness’ measure is entropy, which is defined using the following equation:

∑
=

−=
9

1
2 )(log)(

i
iij ppVE

here jV  is the jth voronoi cell, ip  is the percentage of class i training samples

among all training samples that ended up in this cell. Obviously, the lower the entropy,

the purer this voronoi cell, and more reliable the decision based on this cell. After the tree

construction stage, all training data are applied to all subtrees in parallel again, and the

class ID and corresponding entropy for each leaf node are recorded. In the future testing

stage, based on the leaf node where the testing sample ends up into, a confidence value
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can be reported together with the vehicle ID. Fig.4.11 shows an example of a PTSVQ

subtree with each leaf nodes labeled with entropy values. Fig. 4.11 gives the entropy

histogram based on PTSVQ training data.

Figure 4.10    PTSVQ subtree for vehicle 7, each node labeled with a entropy value

In Fig. 4.11, most training samples end up into low entrpgy voronoi cells,

therefore a straightforward approach is to drop the decisions corresponding to the high

tail end of the histogram (e.g. drop the 15% high entropy cell decisions). In this way, only

high confidence decision are kept for the end user. This scheme is applied to the

independent testing experiment as discribed in section 4.6, the resulting entropy

histogram is shown in Fig. 4.12, and after choping the 15% high entropy decision, the

resultant confusion matrix is shown in table 4.9.

TOP NODE

0 0 0 0 0 1

1 1 0 1 1 1 1 1 2 1 2 0 1 2 1

cell   entropy
1 1 0   0
1 1 1   0.9040
1 1 2   0.3898
1 2 0   0.3251
1 2 1   1.2370
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Figure 4.11 Entropy histogram of all classification decisions in PTSVQ training data
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Figure 4.12 Entropy histogram of all classification decisions in PTSVQ testing data
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Predicted\True 1 2 3 4 5 6 7 8 9
1 87.1576 30.9051 45.4476 2.7327 0 0 32.0975 29.3119 32.3543
2 7.1211 41.8322 13.9429 5.2802 0 0 8.8983 4.7811 11.6567
3 0.1217 0.3311 6.5524 0 0 0 0.5297 1.0724 1.5145
4 0.8521 4.1943 3.581 57.573 0 0 11.7585 1.6086 14.9151
5 0.5478 20.9713 4.0381 18.7124 0 0 10.911 1.2958 11.4273
6 0.213 0 1.1048 0.0463 0 0 1.9068 3.7534 1.4686
7 0.426 0.1104 3.5048 2.4085 0 0 2.6483 0.3128 0.3212
8 3.2562 0.6623 14.9333 1.8064 0 0 22.0339 56.5237 5.8284
9 0.3043 0.9934 6.8952 11.4405 0 0 9.2161 1.3405 20.514

Total % 100 100 100 100 100 100 100 100 100

Table 4.9 206-cell PTSVQ classifier, classification performance on the whole

acoustic data, all decisions counted, a classification result is reported for each

second.

Predicted\True 1 2 3 4 5 6 7 8 9
1 88.2112 34.4782 39.6243 1.8072 0 0 15.1424 17.8328 27.7655
2 6.5824 34.7424 13.3246 5.2711 0 0 9.2954 4.3732 15.0442
3 0.1488 0 6.0288 0 0 0 0.4498 0.8746 0.7743
4 0.8925 3.5667 2.3591 59.488 0 0 13.6432 0.8746 16.2611
5 0.595 25.2312 4.0629 20.8835 0 0 15.7421 1.0204 13.4956
6 0.1859 0 1.0048 0.0502 0 0 1.949 4.3732 0.9403
7 0 0.1321 0.3495 0 0 0 0.5997 0.0972 0.1659
8 3.0866 1.1889 25.9502 1.8574 0 0 31.1844 69.5821 3.4292
9 0.2975 0.66 7.2958 10.6426 0 0 11.994 0.9718 22.1239

Total % 100 100 100 100 100 100 100 100 100

Table 4.10 206-cell PTSVQ classifier, classification performance on the whole

acoustic data, 15% high entropy decision dropped, a classification result is reported

for each second.

From Fig. 4.12, it is obvious that more high entropy decision are made in the

independent testing experiment, this is because the classifier is trained using high SNR

data segment, while testing is carried out on the whole recording. In table 4.9 and 4.10,

class 1,4,8,9 show apparent improvement with the low confidence decision dropped.

However, class 2,3,7 show degradation in classification performance. A possible

explanation for this result is that currennt PTSVQ classifier still suffers from insufficient

training, many fixed vonoroi cell centroids are seriously biased, they can not represent
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the true distribuation of each class within feactre space. As an example, class 3 and  7 are

the most scarcely trained vehicles, as a result, their resulting entropy value for each node

is also biased. To improve this entropy based confidence measure, a much larger traininig

database  is needed.

4.8 Conclusion on classification algorithms

The effectiveness of Shamma’s biological feature extraction models is proved in

above practical system. Among different VQ based classification algorithms, LVQ has

the best performance but is also the slowest one. PTSVQ are found to be an intermediate

state between LVQ and GTSVQ. It provides a classification performance close to the

optimal LVQ, while maintains a logarithmic search time. After decision fusion,

PTSVQ(3) is only 7% lower than LVQ. Meanwhile, PTSVQ(3) is the best parallel

scheme to implement fast training, fast searching and online new target insertion. As a

direct result, PTSVQ (3) will be the best candidate for practical system design. For the

ACIDS database, a PTSVQ(3) scheme followed by a decision fusion unit can provide

91% correct classification.

On the other hand, in the independent testing experiment, all classifiers suffer

from insufficient training, many Voronoi cells are biased. To solve this problem, more

training data is needed, and PTSVQ’s parallelism and new-target insertion capability will

show great advantage during the online training.  Finally, an entropy based confidence

measure is proposed, although this confidence measure also suffers from biased voronoi

centroid, it shows great potential in evaluating the reliability of current ID decision, and

the efficiency of this measure will be a major research topic in the future.
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Chapter 5 Combined Classification and DOA Estimation

So far, we have been focused on the classification for ‘clean’ vehicle acoustic

signal.  In the real battlefield condition, the vehicle signal is seriously polluted by all

kinds of noise, especially by the sounds from nearby vehicles. For practical system, the

signal must be putrefied before any further processing. The traditional and classic method

for signal enhancement is beamforming based on array processing.  With plenty amount

of sensors, we can build a narrow acoustic beam in angular space that can extract the

signal from the interested direction, thus enhance the signal for further processing. Right

now, there are two serious problems associated with acoustic beamforming: first, it

normally takes more than 10 sensors to get a beam with main lobe narrow enough to

shield the sound from uninterested direction. Such a large sensor system is always

difficult to build, very expensive and difficult to deploy, therefore, most available data

sampling system is based on very small arrays. As an example, the current ACID

database is recorded using only 3 microphones. The second problem is that acoustic

signal, unlike most radar signals and some sonar signals, is broadband signal, therefore,

signal with different frequencies will endure different phase shift even when the

propagation delay between two sensors is the same. Right now, the common approach for

broadband acoustic beamforming is based on frequency invariant adaptive algorithms,

which involve complicated FIR filter bank design and various broadband array

processing techniques, and they still can not guarantee a beam narrow enough for a small

array of 3 sensors. On the other hand, biological hearing system shows remarkable sound
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localization ability, which is widely known as cocktail party effect. As shown in Fig 5.1,

a human being can easily identify the sound from different instrument, while the SNR

from each instrument is far below 0dB.  This remarkable ability is purely dependent on a

small array of only 2 sensors (2 ears). From this phenomenon, we hope to investigate the

localization ability within the biological system, with knowledge therein, we may find a

unified framework for combined multi-target detection, ID and DOA system suitable for

small arrays.

Figure 5.1 Cocktail party effect

5.1 Stereausis model for DOA estimation

There are several binaural hearing models that have been proved successful in

accounting for biological sound localization, such as [31], [32] and [33]. However, all

these models are based on a running-correlation measure between the cochlear outputs

from the two ears at various time delays, yet there is no direct physiological support of

the existence of spatially organized neural delays in the mammalian auditory system.

Shamma’s Stereausis model, on the other hand, utilizes the delays already present in the

traveling waves of the basilar membrane to extract the correlation function, thus avoids

involving undetected neural delay into the network. The two-dimensional stereausis

neural network is plotted in Fig 5.2.
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Figure 5.2 Stereausis neural network model

The stereausis network measures binaural differences by detecting the spatial

disparities between the instantaneous outputs of two series of filter banks of the two ears.

As shown in Fig. 5.3, the output of the cochlear filter banks from left ear is fed into the

network from left side, the output of right ear is fed in from the bottom. The two side

signals are cross-correlated inside the network, the output of the network is a 2-D image

with one axis representing the characteristic frequency of one ear, and the other axis

representing the other ear. As an example, a 2-D stereausis pattern is plotted in Fig. 5.3.

In the stereausis pattern, a dominant peak of activity appears along the main diagonal

(zero disparity). This diagonal equals the auditory spectrum in chapter 2. Parallel to the

main diagonal, there are some ridges and valleys. These ridges and valleys are the result

of different phase delay between neighboring bands. If the two bands are far apart, their

correlation decays quickly, since their bands no longer has overlapped part, and the cross

correlation between two signals with different carrier would be zero. When a tone is

binaurally phase-shifted, the network pattern shifts accordingly. As the dominant ridge

 StereausisNetwork - No Neural Delays
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shifts away from main diagonal and degrades into secondary ridges, the secondary ridges

or valleys shift toward main diagonal and grows into the dominant peak. In this way, this

model successfully explains the binaural localization ability in biological hearing.

To exploit the Interaural Time Delay (ITD), different recordings from different

microphones are used as inputs for the Stereausis Network. The disparity plot in Fig.

5.3(b) shows the 1-D patterns of activity computed near and along the cross-sections

which are perpendicular to the main diagonal. As discussed before, the more interaural

time delay, the larger the disparity from the main diagonal. Based on this disparity, the

following scheme is proposed to estimate the interaural phase difference.

All tones delayed by 7ms

Figure 5.3 (a)

Stereausis

Pattern, 3 tones

each with a ITD

of 7ms.

Figure 5.3 (b)

Disparity plot,

stereausis pattern

along the bar

perpendicular to

the main diagonal
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 In the stereausis network, DOA estimation is performed on each cochlear filter

bank, specifically, on the central characteristic frequency cw  of each band, here cw  is the

characteristic frequency of band c. Assuming the maximal disparity happens to be M

bands away from the main diagnal, then, this disparity corresponses to the maximal delay

when the source is on the same line as the two sensors, and it also corresponses to a phase

shift of π± if cw is the upper limit of spatial sampling frequency. Obviously, only the

disparity within M± should be considered, higher disparity, which corresponses to a

larger phase delay more than π± , is caused by the nolinearity within the peripheral

auditory system, and should not be used in our estimation. Let iy  and jy  be the

cochlear filter response to a pure tone of frequency cw , i.e.,

))(cos()()( ciccii wtwwAty θ+= (5.1)

))(cos()()( δθ ++= cjccjj wtwwAty (5.2)

where iA , jA  and )( ci wθ , )( cj wθ  are the amplitudes and phases of the traveling waves at

the ith and jth bands, δ is the inter sensor phase difference caused by wave propogation

between the two sensors. In practical systems, M is determined by array geometry as well

as the frequency resolution of the cochlear filter bank. For ACIDS recording system,

experiment shows M=3, therefore, only very small disparity is to be considered in ITD

estimation. With such small disparity, we can assume linear phase difference between

neighboring bands, i.e.,

MMMMii cci ,1,,0,,1,, −+−−=+∆=+ LLθθ  (5.3)

where cθ is the phase delay for subband c at frequency cw , and ∆ is the phase difference

between two neighbouring bands. Also, we can assume ccjci AwAwA ≈≈ )()( since these
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bands are close and highly overlapped. The correlation operation ),( ji yyC defined in the

stereausis system becomes

∫ +++=
T

jicij dtwtwtAC )cos()cos(2 δθθ

∫ ∫ ++++−−=
T

ji

T

cjic dtwtAdtA )2cos(
2

1
)cos(

2

1 22 δθθδθθ

∫ −−=−−=
T

jicjic A
T

dtA )cos(
2

)cos(
2

1 22 δθθδθθ (5.4)

For discrete system, the correlation function becomes:

∑
=

−∆−=
L

n
cij jiAC

1

2 ))cos((
2

1 δ

))cos((
2

2 δ−∆−= jiA
L

c (5.5)

where L is the frame size.

The disparity at band c is calculated along the cross-section bar, where

]},[,,{),( MMkkcjkciji −∈−=+=∈

define the disparity sequence:

)*2cos(
2

2
, δ−∆== −+ kA

L
CD ckckck

)]}*2(exp[)]*2({exp[
4

2 δδ −∆−+−∆= kjkjA
L

c          ],[ MMk −∈ (5.6)

To extract phase delay δ from }{ kD , we perform correlation operation on }{ kD ,

)
2

2
exp(

2

0
∑

=

−=
M

k
k k

M
jDG

π
(5.7)

Since disparity at k= M± corresponding to π± phase delay, we have

π=∆M2 (5.8)
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Now, put (5.8) into (5.7),

)2exp(
2

0
∑

=

∆−=
M

k
k kjDG

))]
2

(exp()[exp(
4

2

0

2 δπδ −−+−= ∑
= M

k
jjA

LM

k
c

))(exp(
4

)12( 2 δ−+= jA
ML

c (5.9)

Therefore, for a complex number G, we have

Angle(G)= )( δ− (5.10)

Amplitude(G)= 2

4
)12(

cA
ML += (5.11)

From (5.10) and (5.11), it is obvious that the complex number G provides enough

information for DOA estimation on bands, i.e., the amplitude G is proportional to signal

power at cw  and the angle of G is proportional to the phase delay δ . From δ , the DOA

estimation is given by:

)arcsin(
Dw

s

c

δθ = (5.12)

where D is the distance between 2 microphones, s is the sound propagation speed in the

air, θ is the estimated angle of arrival.

5.2 Experiments on Vehicle DOA estimation

The above scheme is tested against the battlefield acoustic data from ACIDS

database. In order to examine the multi-vehicle DOA performance of this algorithm, we

used a mixed signal in this experiment. First, two recordings from ACIDS database are

normalized into equal energy, and then the data from each microphone is mixed with the
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data from the corresponding microphone of another vehicle. Since the vehicle is fast

moving object, its impact angle changes within second, therefore, DOA must be carried

out on a short time window. In this case, we use quarter second as processing window.

After segmentation, each framed data is fed into the Stereausis network, and from which

we obtain the corresponding disparity curves on each band. Finally, we obtain an angle

and power estimation on each of the characteristic frequencies using the proposed

algorithm in 5.1.

Figure 5.4  DOA estimation at different frames
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Fig. 5.4 shows the DOA estimation at several different frames. On each frame, the

estimator gives a series of peaks, each peak corresponds to DOA estimation from one cw .

The position of the peak is the angle estimation result, and the amplitude of the peaks

represents the energy of this band. Since there are only 2 sets of peaks, two vehicles can

be clearly distinguished. Fig. 5.5 shows the 2-D plot of DOA pattern for all frames. From

these two figures, we can draw the following conclusion:

Figure 5.5 DOA pattern for mixed vehicle signal

1. The SNR on different subbands is different from each other, the estimation on

high SNR bands is more reliable than other bands, i.e., the height of each peak is a clear

indication of reliability of its estimation.

time (in quarter second)

an
gl

e 
(in

 d
eg

re
e)

DOA pattern for 2 vehicles

20 40 60 80 100 120 140 160

50

100

150

200

250

300

350



64

2. Since the two vehicles are spatially separated, the estimation peaks in the DOA

pattern can be clustered into 2 groups, each group centers on the true impact angle of one

vehicle. This natural clustering mechanism is the theoretical foundation for following

signal separation algorithm.

3. If Vehicle A is dominant on the nth band, this band will give correct DOA

estimation for Vehicle A. If both vehicles have strong signals in the nth band, its peak

will be somewhere between the true impact angles of the two vehicles.

4. In some of the frames, signal from one vehicle is stronger than that from another

vehicle, therefore, the DOA pattern for the weak signal is corrupted by the strong signal.

The degree of degradation will depend on the energy ratio of the two signal as well as

spectrum similarity of the two vehicles.

5.3 DOA aided vehicle ID

Signal separation is an indispensable step before multi-vehicle classification.

From the DOA pattern in Fig.5.5, it is obvious that Stereausis network can provide robust

DOA even with only 3 sensors. Based on this result, a straightforward scheme for the

mixed auditory spectrum separation for small array is possible, which is described below:

1. Pattern smoothing

As shown in Fig.5.6, a hamming window of length 100 is applied to the DOA

pattern in Fig.5.4. After the smoothing, only two peaks remain. From these two peaks, we

obtain two angle estimations: 1vθ and 2vθ , these two results will be used in the following

steps to cluster the cochlear filter banks and construct spectral separation template.
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2. Band grouping

The 128 cochlear filter banks are grouped into two sets according to DOA

estimation on each band. For example, if cθ  is the DOA result on band c, then band c

should be assigned to vehicle 1 if ),(),( 21 cangcang vdvd θθθθ < . Here ),( ••angd  is the

angular distance measure, it is defined by the following equation:

     2,1)]360,360mod(,)360,360min[mod(),( =+−+−= id icciciang θθθθθθ   (5.13)

3. Separation template

The function of the template is to emphasize the component from one vehicle in

the mixed spectrum while suppress the component of another vehicle. Therefore, the

value of the template should be proportional to the ratio of energy between these two

vehicles on the interested band.

Not all cochlear bands are considered in the construction of the template. Energy

of vehicle signal concentrates in bands between 40th ~120th, therefore, only these 81

bands will be considered. Furthermore, the signals in some bands are so weak that DOA

on these bands is highly unreliable, therefore, if the energy in one band is lower than

certain threshold, its associated template value will be fixed to 1.  In our scheme, this

threshold is set to be 10 percent of the energy of the strongest band.
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1
DOA pattern for the 60th frame
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Figure 5.6  Smoothed DOA pattern using Hamming window

2vθ



66

For bands whose energy is above the threshold, if its associated DOA is exactly

the same as 1vθ , which implies that Vehicle 1 dominates in this band, then the template

value at this frequency will be set to 2 (amplify). If its DOA equals 2vθ , alternatively, the

template value will be set to 0 (suppress).

If both vehicles have strong energy in the same band, as shown below:

             )cos()cos()( 1221 icici twAtwAty θθθ ++++= (5.14)

)cos()cos()( 212211 δθθδθ ++++++= jcjcj twAtwAty (5.15)

here, 1A and 2A  are the power spectral density of the 1st and 2nd vehicle signal on

frequency cw , iθ  and jθ are the phase responses of the ith and jth cochlear filter, 12θ is

the phase difference between the two sources, 1δ  and 2δ  are the phase differences

originated from inter-sensor wave prorogation delay. Obviously, if signal from different

sources mixed up in the same band, the value of angle(G) and amplitude(G) will depend

on all variables including 1A , 2A , 1δ , 2δ , 12θ  and iθ . From two known values,

angle(G) and amplitude(G), we need to find out 5 unknowns, it is a standard ill-posed

problem. However, in order to build a template whose value is proportional to the real

signal energy, we need to know the exact value of 21 / AA . Here, we adopted a simplified

assumption to speed up the processing, i.e., for a band with mixed signal from both

vehicles, its DOA estimation, 
cwθ , will be somewhere in the middle between the true

impact angle of the two vehicle. The angular distance between 
cwθ  and 1θ  and 

cwθ and

2θ will satisfy the following equation:
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after 21 / AA  is obtained through (5.16), the template is defined on this mixed band using

the following heuristic equation:
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The above template is only for one of the two vehicles. For the other vehicle, the

following formula is used to generate a complementary template:

)(2)(_ cc wTemplatewtemplatearyComplement −= (5.18)

Obviously, for all cw , c=1,2, …, 128, the template value will be a real number between

0(suppression) to +2 (enhancement).

5.4 Simulation of DOA aided classification.

After we obtain the two templates, we apply them to the mixed auditory spectrum:

128,...,2,1)(*)()(1 == cccc wwTemplatewFmixedwFsep (5.19)

128,...,2,1)(_*)()(2 == cccc wwtemplatearyComplementwFmixedwFsep (5.20)

here, )( cwFmixed  is the mixed auditory spectral density function at cw , )(1 cwFsep  and

)(2 cwFsep  are the separated spectral density function atcw .

The separated spectrum is presented to the previously trained classifier as

described in Chapter 4. If a PTSVQ classifier is to be used, the separated spectrum should

also go through the cortical filter to provide the necessary multi-resolution representation.

In Fig. 5.7, the original spectrum from each vehicle, the mixed spectrum, the template

and the separated spectrum are plotted.
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The classification experiment is based on synthetic data. Here the mixed vehicle

acoustic data is created by adding real acoustic data from two vehicles. The first real

acoustic data is selected from one of the class 4 recordings in the ACIDS database, while

the 2nd data is from a class 6 recording. For each recording, only the strongest 40 seconds

are kept, each 40 seconds data are normalized to unit energy and added up together to

build a mixed signal. Then, the mixed signal is segmented into quarter second frames,

and feed into the proposed Stereausis network.

Figure 5.7 Signal separation based on spectral template
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Classification Result:

1.(Best case) Separated spectrum is presented to a LVQ 137-cell classifier (the

same one as in Chapter 4).  Among all 320 decisions (160 frames, each frame provides 2

separated spectra for classification), 262 (82%) are correct.

2. (Worst case) Apply the mixed spectrum directly to a LVQ 137-cell classifier,

and find the two best matches in the LVQ centroid set (no template is used here). Two

classification decisions are made for each frame. Among 320 decisions, 99 (31%) are

correct.

3. (PTSVQ with template) The mixed auditory spectrum is presented to the

Cortical filter bank, then templates are applied to the multi-resolution representation from

the cortex module. A PTSVQ (137-cell) classifier is used to perform the classification.

Among 320 decisions, 170 (53 %) are correct.

4. (PTSVQ with weighted error) Mixed spectrum is presented to the Cortical filter

bank to obtain the multi-resolution representation. No templates are involved yet. Then a

PTSVQ (137-cell) classifier is adopted. Inside the classifier, a weighted distance is

computed using the template as weighting vector. Among 320 decisions, 109( 34 %) are

correct.

Conclusion:

1. The LVQ classifier achieves 82% correct classification using the separated

spectrum. There is 51% classification gain compared to the no template case. This result

suggests that Stereausis based DOA estimation greatly improve the performance for

multiple-vehicle ID system.
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2. In Fig.5.7, the separated spectrum is highly similar to the original spectrum. This

result suggests that DOA estimation based signal separation performs well and behaves

quite similarly to the traditional beamforming.

3. Classification experiments suggest that tree structure classifier suffers from the

introduction of spectral templates. This is reasonable because at higher layer of the tree,

small error in the template may direct the search to the wrong branch. To solve this

problem, we need to allow more early decisions to propagate to lower layer or devise a

full search scheme.

4. Besides using template to separate the spectrum, another scheme is to use

template weighted distance in the VQ search stage, as the case in simulation 4. The

motivation of this scheme is that: when template value is high, it implies that one vehicle

is dominating on this band, so considering only the error on these high SNR bands may

be better than considering the whole spectrum. However, the assumption above is not a

sound one because when the template is low on some bands, error on those bands is

mistakenly neglected. The simulation result also confirms that matching the spectrum

only on high SNR bands may lead to serious degradation on vehicle ID performance.

5. When the two vehicles are too close in their direction, or the spectrums of the two

vehicle are similar, DOA estimation based on Stereausis network is no longer reliable. As

an example, Fig. 5.8 shows the DOA pattern when two vehicles are very close to each

other. In the first 80 frames, peaks in the DOA pattern from the two vehicles merged into

a single ridge, therefore, signal separation based on DOA is totally impossible. In

general, most array processing algorithms suffer from spatial and spectral similarity. To
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solve these problems, either larger arrays or more advanced signal separation methods

should be employed.

Figure 5.8 DOA pattern for two closely spaced vehicles.

5.5 Future work and open problems

To sum up, our biologically based DOA system demonstrates great potential in

multiple-vehicle ID problem. It not only introduces a new view point in accounting for

biologically based sound localization and separation, but also proposes an efficient array

processing method for small arrays. However, to develop a complete multi-class,

dynamic, multi-scale combined localization and classification algorithm for acoustic

vehicle data, the following open problems should be answered.
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• For bands that both vehicles have significant energy, current Stereausis based

DOA system can not provide precise angle estimation. In this case, we need advanced

signal separation method, biologically or non-biologically based. For example,

Independent Component Analysis (ICA) [34] has shown great potential in separating

linear mixed acoustic signals. However, whether it can be used as preprocessing unit for

multiple vehicle classification system is still a open problem.

• So far, our approach has been concentrated on DOA driven classification

algorithm, which is quite similar to classical beamforming. However, physiology

experiment shows that human beings can recognize a specific talker in a multi-talker

environment, and then use the talker ID to aid into the DOA tracking of the current talker.

In order to develop ID aided DOA system, we should link deeper with auditory

physiology, psycho-acoustic measurements, cortical and cognitive models to introduce

more understanding and other cues into the framework

• Develop algorithms for vehicle ID based on partial, DOA tagged spectra.

Although the template weighted distance failed to provide improvement in classification,

bands that has higher template value should be more important than the other bands,

because these bands has only one vehicle dominant and can provide higher SNR signal

for DOA estimation. How and where the spectral template should be used remains an

open problem.
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Chapter 6 Conclusions and further research

In this thesis, a prototype vehicle signal classification system is implemented and

tested. Using PTSVQ clustering algorithm followed by a decision fusion unit, it achieves

more than 90 percent correct classification. The system uses a logarithmic search time,

enables on-line training, and the associated training time is negligible compared to LVQ.

Furthermore, in the sense of either feature extraction or aggressive topological

classification, it is one of the first practical classification systems totally based on

biological hearing models. Its success not only confirms the validity of these models, but

also encourages more extensive usage of them in other areas such as speech recognition

system or mechanic fault detection system.

Another major contribution of this thesis is our approach for the combined DOA

and vehicle classification problem. The multi-vehicle DOA system, which is also based

on biological localization model, provides robust multiple-vehicle DOA estimation. From

this DOA estimation, a new signal separation scheme based on spectral template is

proposed, and it shows great potential in improving the performance of multi-vehicle ID

system. Through further research, we hope this sound separation algorithm may help to

explain some anatomical problems in physiology science, or replace the traditional

beamforming technique on small array acoustic signal processing.

The most promising improvement for the Vehicle ID system may come from the

integration of current system with other Vehicle ID system, i.e., Combining our

biological feature extraction models with other classification algorithm, or test other
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feature extraction models on our VQ based classifier. Generally, every feature extraction

model and classification algorithm has its advantages and shortcomings. In the long run,

a decision fusion mechanism that can adaptively wake up the most appropriate function

block under specific environment might be the most promising way to improve the

overall system performance.

Another immediate future research is mathematical analysis of the PTSVQ

algorithm. We need to establish a theoretical foundation on how much classification gain

PTSVQ can provide over GTSVQ, and in what way. Our long-term goal is to develop a

tree structured LVQ algorithm that can directly use the multi-resolution representation

from cortical model. In this approach, we hope to combine LVQ’s optimal classification

with TSVQ’s fast search and high compression ability, thus we will be able to design

classification system that has advantages from both systems.

Finally, for combined DOA and Vehicle ID system, we need to Link deeper with

auditory physiology, psycho-acoustic measurements, cortical and cognitive models to

introduce more understanding and other cues into the framework. Through this research,

we may achieve simultaneous DOA driven ID and ID driven DOA in a reciprocal

manner, which might be the exact mechanism as in biological binaural hearing system.
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