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The Ka-band satellite system is of increasing interest around the world due to its

huge bandwidth. Rain fading is one of the primary factors affecting performance and

availability of the Ka-band system. Extra power on the satellite can provide

compensation for rain attenuation. In this thesis, we study the rain fade compensation

problem for downlink transmission in the Ka-band satellite by dynamic resource

allocation. The resources we consider include power and antennas onboard the satellite.

The goal is to maximize the aggregate priority of packets arriving at all downlink spots as

well as maintain fairness among downlinks. We formulate the problem mathematically in

the framework of Knapsack Problems (KP). In particular, we show the resource

allocation problem is equivalent to a Multi-choice Multiple Knapsack Problem

(MCMKP), which, in general, is very hard to solve in a reasonable time. By introducing

the seeding theory into the antenna scheduling, we decompose the original MCMCP into

a sequence of Multiple-choice Knapsack Problems (MCKP), which are easier to solve.



The effectiveness of our approach is demonstrated through simulations in

OPNET. Comparison with the Multiple Knapsack Problem (MKP) approach proposed by

Birmani is also provided.



RESOURCE ALLOCATION IN KA-BAND SATELLITE SYSTEMS

by

Youyu Feng

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

Of the requirements for the degree of
Master of Science

2001

Advisory Committee:

Professor John S. Baras, Chair
Professor Armand Makowski
Professor Subramanian Raghavan



©Copyright by

Youyu Feng

2001



ii

DEDICATION

To my family



iii

ACKNOWLEDGEMENTS

I am grateful to my advisor Dr. John S. Baras for his advice, support and

encouragement. I would also like to thank Dr. Armand Makowski and Dr. S. Raghavan

for agreeing to serve on my committee and to review this thesis.

This thesis was motivated by Vineet Birmani’s work. I am also grateful for his

valuable help in the start of this work. Special thanks are due to Mingyan Liu, Manish

Karir, Arvind Mani, Majid Raissi-Dehkordi and numerous other colleagues who

contributed to constant help and support.

The research reported in this thesis was supported through collaborative

participation in Advanced Telecommunications/Information Distribution Research

Program (ATIRP) consortium sponsored by the U. S. Army Research Laboratory under

the Federated Laboratory Program, Cooperative Agreement DAAL 01-96-2-0002. This

support is gratefully acknowledged.



iv

TABLE OF CONTENTS

LIST OF TABLES............................................................................................................vii

LIST OF FIGURES..........................................................................................................viii

Chapter 1: Introduction................................................................................................. 1

1.1 Introduction to Ka-band Satellite Systems.......................................................... 1

1.2 Motivation for Resource Management................................................................ 4

1.2.1 Rain Fade Problem.......................................................................................... 5

1.2.2 Review of Rain Compensation Approaches.................................................... 7

1.3 Contributions and Organization.......................................................................... 8

Chapter 2: Problem Description and Formulation...................................................... 10

2.1 System Configuration........................................................................................ 10

2.1.1 Multimedia Services...................................................................................... 11

2.1.2 Uplink and Downlink.................................................................................... 12

2.1.3 Onboard Switch and Scheduler..................................................................... 14

2.1.4 Network Operations and Control Center (NOCC)........................................ 14

2.2 Problem Description.......................................................................................... 16

2.3 Problem Formulation......................................................................................... 18

2.3.1 Notation......................................................................................................... 19

2.3.2 Mathematical Formulation............................................................................ 20

Chapter 3: Knapsack Problems: Some Background................................................... 22



v

3.1 Introduction to Integer Programming................................................................ 22

3.2 Overview of 0-1Knapsack Problems................................................................. 23

3.3 0-1 Single Knapsack Problem........................................................................... 25

3.4 Multiple Knapsack Problem.............................................................................. 27

3.5 Multiple-choice Knapsack Problem.................................................................. 28

Chapter 4: Formulation of Resource Allocation as Knapsack Problems.................... 31

4.1 Multi-choice Multiple Knapsack Model........................................................... 31

4.2 Multiple Knapsack Model................................................................................. 34

4.2.1 Stable Load Condition................................................................................... 34

4.2.2 Unbalanced Load Condition.......................................................................... 35

4.3 Multiple-choice Knapsack model...................................................................... 38

4.3.1 Performance Metrics..................................................................................... 38

4.3.2 A New Multiple-choice Knapsack Scheme.................................................. 39

Chapter 5: Simulation and Results.............................................................................. 47

5.1 OPNET Simulation Model................................................................................ 47

5.2 Traffic Models................................................................................................... 48

5.2.1 Web and Bulk Data Transfer Workload........................................................ 49

5.2.2 Connectionless Bursty Data.......................................................................... 51

5.3 Resource Allocation Schemes........................................................................... 53

5.4 Simulation Results............................................................................................ 55

5.4.1 Aggregate Priority......................................................................................... 56

5.4.2 Computing Time........................................................................................... 66

5.4.3 Resource Utilization...................................................................................... 67



vi

5.4.4 Service Missing............................................................................................. 68

Chapter 6: Conclusions and Future Work................................................................... 71

6.1 Conclusions....................................................................................................... 71

6.2 Future Work...................................................................................................... 72

Appendix A: Algorithms for Solving Knapsack Problems......................................... 73

Bibliography...................................................................................................................... 82



vii

LIST OF TABLES

Table 5.1: Computing time in seconds of three algorithms.............................................. 55

Table 5.2: Computing times of MCKP and MKP............................................................. 67

Table 5.3: Resource utilization and service missing......................................................... 67



viii

LIST OF FIGURES

Figure 2.1: Typical satellite network architecture............................................................. 10

Figure 2.2: Uplink MF-TDMA scheme............................................................................ 12

Figure 2.3: The transmission rate vs. power level and rain condition.............................. 13

Figure 2.4: Hysteretic relationship between signal level and rain fade condition............ 16

Figure 4.1: The standard method for seeding a tournament with 16 teams...................... 41

Figure 4.2: Illustration of burst scheduling....................................................................... 43

Figure 5.1: OPNET simulation model............................................................................... 48

Figure 5.2: Two-state MMPP OPNET model................................................................... 52

Figure 5.3: Satellite onboard processor OPNET model.................................................... 54

Figure 5.4: Aggregate priorities under no rain condition.................................................. 57

Figure 5.5: Aggregate priorities with rain fade area 2%................................................... 58

Figure 5.6: Aggregate priority with rain fade area 5%..................................................... 59

Figure 5.7: Aggregate priority with rain fade area 8%..................................................... 60

Figure 5.8: Aggregate priority with rain fade area 10%................................................... 61

Figure 5.9: Aggregate priority with rain fade area 12%................................................... 62

Figure 5.10: Aggregate priority with rain fade area 15%................................................. 63

Figure 5.11: Aggregate priority under 18% rain condition............................................... 64

Figure 5.12: Advantage of MCKP over MCP vs. rain area.............................................. 66

Figure 5.13: Number of out-of-service downlinks vs. rain area....................................... 68

Figure 5.14: Histogram of number of missed rounds (12% rain area )............................. 69



ix

Figure 5.15: Histogram of number of missed rounds (15% rain area).............................. 69

Figure 5.16: Histogram of number of missed rounds (18% rain area).............................. 70



1

Chapter 1: Introduction

1.1 Introduction to Ka-band Satellite Systems

There has been considerably increasing interest in expanding the broadband

integrated services to include satellite communication links. Compared to conventional

terrestrial networks, satellite communications have the following attractive features:

•  Ubiquitous access: Services are available to whole regions within

satellite footprints, including locations where terrestrial wired networks

are not possible or economically infeasible.

•  Broadcast/multicast nature: Many multimedia applications benefit from

this feature of satellite networks.

•  High bandwidth: Satellite channels today can deliver gigabits per second.

•  Flexible bandwidth-on-demand capability: This may result in maximum

resource utilization.

To provide sufficient bandwidth to meet the growing demand for satellite

transmission capacity, people need to exploit higher frequency range and develop new

technologies. In the late 1970’s, the Ka band (20/30GHz) was selected by many space

agencies around the world as the frequency band for the next generation broadband

satellite networks. Utilizing the Ka band and even higher frequency bands has obvious

advantages over the lower frequency ones:

•  Large bandwidth: Huge bandwidth available in this frequency range is

the primary motivation for developing Ka band satellite systems.
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•  Small antenna size: The increasing radio frequency implies that we can

decrease the size of the antenna beam shape. Thus, either the distortion

due to interference from adjacent satellite systems is reduced, or

antennas with smaller diameter can be used. Smaller antenna size makes

broadband satellite services affordable to millions of personal and

commercial end-users.

•  Even larger system capacity: Using many small spot beams in the Ka

band systems increases the satellite power density and permits large

frequency reuse, which leads to a much larger effective bandwidth.

Thousands of user terminals equipped with inexpensive antennas can be

served at the same time without using expensive hubs.

As early as in 1970’s, researchers started to explore the Ka-band region in the

United States as well as in Europe and Japan. The first Ka band satellite services were

introduced with the basic technologies for transparent transponders in Japan.

The first operational regenerative Ka-band system integrated with terrestrial

networks, was implemented in the Italian Ka-band program, ITALSAT. Since ITALSAT-

F1 was successfully launched in January 1991, satellite has been no longer a “cable in the

sky” based on transparent transponders; instead it has become a network node. Main

features of the system included: Italian coverage obtained by means of six very narrow

spot beams; total capacity of 0.9 Gbit/s achieved with 147 Mbit/s time division multiple

access (TDMA) in the uplink; interspot connectivity provided by a synchronous baseband

space-switch matrix; TDM in the downlink. ITALSAT system also provided operational

experience for reallocation of capacity in a fast and flexible way [1].
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In the United States, the Advanced Communications Technology Satellite

(ACTS) program was formulated at the National Aeronautics and Space Administration

(NASA) in 1984 to continue NASA’s role of developing advanced space

communications technology. The ACTS satellite was launched in September 1993. It

created a revolution in the satellite system architecture by introducing the following key

digital technologies in Ka-band systems [2]:

•  Fast hopping multibeam antenna

•  On-board baseband processor

•  Wide-band microwave switch matrix

•  Adaptive rain fade compensation

•  Very small and ultra small aperture terminal

•  High data rate terminal and 900 MHz transponder

These technologies have become the foundation of the current interests in the use of Ka

band in global interactive multimedia systems.

Stimulated by the strong industrial interest, the Federal Communications

Commission (FCC) awarded 13 licenses for the use of Ka band in the United States in

1997. Hughes’ SPACEWAY was among the first filed systems. The SPACEWAY

network is aimed at providing interactive “bandwidth-on-demand”, cost-effective,

multimedia communication services for hundreds of millions of people within the

continuous view of the satellites. The state-of-the-art features of SPACEWAY network

are listed below [3]:

•  Narrow (about 1°) and wide (3°) spot beams cover both populated and

low population areas.
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•  On board processors and switches provide individual customers with

immediate access to the satellite, route packets within appropriate spot

beams, and interconnect with other satellites in the network.

•  Small, easily installed ground terminals bring satellite technology to the

economic threshold of a greater universe of customers.

•  Various digital transmission bit rates can support a variety of

applications.

Also, through a unique arrangement of intersatellite links, SPACEWAY, which was

proposed to launch in the time window 2002-2003, will create the first truly

interconnected worldwide network.

1.2 Motivation for Resource Management

Most new generation Ka-band satellite systems like SPACEWAY are being

designed to provide low-cost telecommunication services to hundreds of millions of

users. Thus efficient management of various satellite and spectrum resources is required

to meet the fast-growing service demand. Some of these resources, like the frequency

spectrum, have been a limited factor in most of the old and present day systems, so a lot

of work has been done in designing good resource allocation algorithms. Allocation of

satellite power and antennas gained less attention in the past. But it has become more and

more important because of the special rain fade problem and new technologies such as

multibeam antennas in satellite systems operating at Ka band.
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1.2.1 Rain Fade Problem

Having the advantages of increased bandwidth and significantly smaller ground

terminal equipment, Ka frequency band was long maligned as being totally impractical

for use by satellite. The “bad” mask was the degradation due to atmospheric propagation

effects which is much more severe than those found at lower frequency bands.

The primary propagation factors that affect Ka-band earth-satellite channels

include:

•  Rain attenuation

•  Wet antenna

•  Depolarization due to rain and ice

•  Gaseous absorption

•  Cloud attenuation

•  Atmospheric noise

•  Troposphere scintillation

Among all these factors, rain fade presents the most challenging impediment to system

designers because signal attenuation due to rain is the most severe propagation effect at

Ka band.  According to ACTS’ propagation research, rain attenuation at 20 GHz is

almost three times that at 11 GHz and it can easily exceed 20 dB in many areas of the

world.

Rain attenuation is a function of frequency, rain intensity, raindrop size

distribution, raindrop temperature, elevation angle and polarization angle. For example,

the relationship between frequency and rain attenuation is approximately as follows:
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where fi, Ai (i=1,2) represent the frequency and the corresponding attenuation,

respectively.

The following rain fade characteristics need careful consideration in fade

compensation [5]:

•  Rain time: In general, the average rain time that needs compensation is

less than 5%-10% of a year. Thus dynamic resource allocation would be

better than fixed link margins.

•  Simultaneous rain fade over extended areas: A preliminary analysis

indicates that fades at sites separated by distances exceeding the average

rain cell size are uncorrelated.

•  Fade rates: Rain fade rates rarely exceed 1 dB/s for most locations.

•  Fade duration: Fade duration varies from several seconds to a few hours

depending on the system margin and rain conditions.

•  Frequency scaling: Uplink and downlink fades are generally correlated.

Thus accurate fade measurements in only one direction are enough for

fade compensation.

The downlink rain attenuation can be measured directly by observing the power

of the 20 GHz beacon signal received at the earth station. Frequency scaling techniques

then can be used to compute the fading in the 30 GHz uplink. When rain fade is

determined, appropriate methods can be implemented to mitigate the fade.
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1.2.2 Review of Rain Compensation Approaches

Satellite communication systems operating at Ka-band are subject to impairments

produced by the troposphere, especially the rain attenuation. As a consequence, fade

compensation schemes have to be implemented to guarantee certain system performance

and availability. During the past few years, considerable effort has been devoted to

developing effective fade mitigation techniques. Roughly speaking, there are four

different approaches.

The most intuitive approach would be using larger ground station antennas and/or

higher power amplifiers. But since the current trend is to use small (< 20 inches

apertures), low-cost ground terminals (< $1000) that are affordable by a great universe of

customers, this form of compensation would be too expensive to most end-users. In

addition, since the average rain time for which compensation must be employed is

usually short (< 10%), the added system margin will be wasted for over 90% of the time.

Site diversity is another effective but “expensive” countermeasure in combating

rain fade. This technique involves tandem operation of two earth stations located several

kilometers apart in distance. As we mentioned before, rain fades at sites separated by

distances exceeding the average rain cell size (several kilometers) are expected to be

uncorrelated. This enables a re-routing of the traffic via the less affected earth station

whenever a severe attenuation occurs at the other site. But the cost of two earth terminals

makes this approach not applicable to common customers’ budget.

The third approach is to provide additional power to the transmit carriers at the

satellite to compensate for rain attenuation. As the downlink rain fading occurs in some

beam, power control correction of approximately 1.5 times fade is required to maintain
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the carrier to noise ratio. Transponders with various output power levels that are

necessary for this mitigation method should be commanded into high power modes under

rain conditions and switch back whenever the fading is over.

    The most well known approach is ACTS’ adaptive rain fade compensation.

This protocol provides 10 dB of margin by reducing the burst by half and invoking one-

half-rate forward error correction coding during a period of signal loss caused by rain.

This protocol also includes a decision process, which makes use of the downlink signal

level together with the FADED and CLEAR thresholds identified for each very small

aperture terminal (VSAT) to determine the need for compensation in real time.

The third and fourth compensation techniques both try to alleviate rain

impairments by setting aside an extra portion of system capacity. These resources will be

allocated to beams suffering from rain attenuation only when needed. For example, in

Time Division Multiplex (TDM) systems, the additional time slots will provide adequate

redundancy for impaired signals.

Based on the third approach, Birmani proposed a power allocation and antenna

scheduling scheme in his thesis [4]. The basic idea there was to boost the power of beams

under rain conditions to maintain the normal bit rate, and then schedule bursts in such a

way that the aggregate profit is maximized. In particular, he posed the scheduling

problem as a multi-knapsack problem (MKP).

1.3 Contributions and Organization

Motivated by Birmani’s work, this thesis proposes an effective and flexible rain

fade compensation scheme. We first model the rain fade compensation as a linear integer
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programming problem, and further formulate it in a framework of “multi-choice multiple

knapsack problem” (MCMKP).  This framework subsumes Birmani’s MKP model as a

special sub-solution. Completely solving the MCMKP in reasonable time is intractable in

consideration of the number of variables involved. Then we present a sub-optimal

scheme to the original optimization problem, which decomposes the MCMKP into a

sequence of multi-choice (single) knapsack problems (MCKP). The latter is solvable in

real time. To be specific, our scheme consists of two parts: scheduling antennas using the

seeding theory, and allocating power by solving MCKP. Essentially our approach

decouples the originally coupled antenna scheduling problem and power allocation

problem. Compared to the MKP scheme, our MCKP scheme enjoys the following

advantages: fairness, maximum utilization of extra power, and low computation

complexity. The effectiveness of our resource allocation scheme is demonstrated by

simulation in OPNET.

The remainder of the thesis is organized as follows. Chapter 2 describes the

system configuration, states the problem we want to solve and gives the mathematical

formulation. In Chapter 3, the classical theory of knapsack problems (KP) is briefly

reviewed and several variants of KP relevant to our problem are introduced. We

investigate the relationship between the rain fade compensation and knapsack problems

followed by the detailed description of our multi-choice knapsack allocation scheme in

Chapter 4. Chapter 5 provides the simulation implementation and results. Finally,

conclusions and suggestions for future work are given in Chapter 6.
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Chapter 2: Problem Description and Formulation

2.1 System Configuration

In this work, we will focus on the geosynchronous Earth orbit (GEO) satellites

operating at Ka band and providing broadband services. Figure 2.1 below illustrates the

typical satellite network architecture.

Figure 2.1: Typical satellite network architecture

The considered network scenario is mesh configured, comprising a satellite with

on-board switching/processing, hundreds of low-cost earth stations generating different
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types of traffic and a Network Operations and Control Center (NOCC) that collects data,

exchanges information among the network components and controls the operations of the

satellite.

2.1.1 Multimedia Services

Using Ka band satellite, interactive multimedia services can be provided globally

to fixed and mobile users with inexpensive cost. Various applications supported by the

system include: internet web browsing, bulk date transfer, interactive on-demand and

database consultation, voice, video conference, image transmission, etc.

In the context of integrated services networks, we consider four distinct service

categories [6], [7]:

•  Guaranteed Service (GS): This category includes the real time and

long-lasting calls which require low packet loss and minimum delay.

ATM classes CBR (constant bit rate) and rtVBR (real-time variable

bit rate) can be mapped into this category. GS has the highest priority.

•  Sustainable Service (SS): This category requires only low packet loss.

ATM class nrtVBR (non-real-time variable bit rate) falls into this

category. SS has lower priority than GS.

•  Controlled Service (CS): ATM class ABR (available bit rate) belongs

to this family. CS can tolerate slight packet loss and bounded delay.

Its priority is lower than SS.

•  Best Effort (BE): This category corresponds to ATM UBR

(unspecified bit rate) service class. It requires no guarantee and has the

lowest priority.
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According to the different QoS (Quality of Service) requirements of the above

categories, we assign priorities 4, 3, 2, 1, to the traffic belonging to GS, SS, CS and BE

respectively.

2.1.2 Uplink and Downlink

The number of downlink spots in the system is about four times that of uplink

spots. Consequently, the downlink cell size is much smaller than that of the uplink. Thus,

downlink power is concentrated and small antennas are allowed.

The earth stations share the 30GHz uplink (earth to satellite) channel in a Multiple

Frequency TDMA manner (MF-TDMA) [7], which combines Frequency Division

Multiple Access (FDMA) and Time Division Multiple Access (TDMA). The total

bandwidth allocated to each spot beam is first divided into a number of non-overlapping

carriers, as the rows in Figure 2.2. This allows for the smaller size of the ground stations

due to the lower transmission rates. Then each sub-channel is further divided into non-

overlapping time slots, as the columns in Figure 2.2. This combination of FDMA and

TDMA makes the bandwidth utilization more flexible and efficient.

Figure 2.2: Uplink MF-TDMA scheme

Time

Frequency
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On the 20 GHz downlink (satellite to earth), the access mechanism inside every

spot is time division multiplex (TDM).

In this thesis, we will focus on the resource allocation problem in the downlink

transmission. There are tens of antennas and hundreds of downlink buffers on the

satellite.  Downlink transmission to the ground spots is organized into bursts, each of

which occupies a fixed time interval. Each antenna serves one and only one downlink

spot during a burst. To guarantee certain Bit Error Rate (BER) performance, the

maximum downlink transmission rate B allowed is a function of the transmission power

and the weather condition:

),( rainpowerfB = ,

as illustrated in Figure 2.3. To be specific, for a fixed transmission power level, we need

to reduce the transmission rate to satisfy the BER requirement when rain condition gets

worse. On the other hand, under the same weather condition, with a higher power level,

we can raise the transmission rate without affecting the BER performance.

1 2 3 4

power level

no rain

light rain

heavy rain

Figure 2.3: The transmission rate vs. power level and rain condition
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For convenience of discussion, we will fix certain BER requirement in the sequel.

Also we define certain transmission rate as the standard rate. The corresponding

standard power for each downlink is thus defined to be the power required serving this

downlink at the standard rate under clear weather condition. We assume the satellite has

some extra power in addition to the sum of standard power needed by downlink spots in a

burst, which provides compensation when some downlinks suffer from rain fade. In

particular, we will assume that with the extra power, the standard rate can still be

maintained if the rain area is less than 10%.

The antennas can adjust power levels and thus transmission rates to accommodate

weather conditions. The earth stations are also capable of doing appropriate adjustment.

2.1.3 Onboard Switch and Scheduler

Due to the large number of beams, an onboard switch is required to route traffic

among the end spot beams. Since the number of uplink beams is different from the

number of downlinks, the switch matrix would be asymmetric, that means, the switch has

unequal number of input and output ports.

The onboard scheduler will receive control information from the Network

Operations and Control Center (NOCC), pick the appropriate downlink beams, allocate

power to these beams and schedule the bursts.

2.1.4 Network Operations and Control Center (NOCC)

NOCC is the core of this network scenario. It instructs the satellite to operate in

different modes according to the information it collects. The resource allocation work

will be done mainly in NOCC.
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The typical mission lifetime for a Ka band satellite will be 10-15 years. During

this period of time, the Internet traffic will grow even faster and the types of applications

will change unpredictably. A preprogrammed algorithm onboard the satellite will not be

able to provide efficient capacity allocation and utilization, thus implementing the

resource management algorithms (which maybe change as the time evolves) in NOCC on

the ground would be a better choice.

For rain fade compensation, each earth terminal measures the downlink signal

level and transmit it to the NOCC. Taking the reported signal level as an input, we

determine the corresponding rain fade condition through a hysteretic operator [8], as

illustrated in Figure 2.4. The rain fade condition takes value from {Heavy rain, Light

rain, No rain}. If the signal level is between the predefined CLEAR1 and FADE2

thresholds, the earth terminal is claimed to be under light rain condition. The rain

condition remains “Light rain” until the signal increases and passes CLEAR2, or it

decreases and passes FADE1. In the first case, we say the rain fade is over; while in the

second case, we claim the terminal is suffering from heavy rain fade. Similarly, we can

determine the fade levels for various other cases.

Using both CLEAR and FADE thresholds we can cope with the noise in signal

level measurement and add stability to the decision system. These thresholds are set

individually for every earth terminal based on their BER performance.

NOCC also collects the traffic data, such as traffic type and traffic load, from the

ground stations and the satellite. Whenever substantial change in traffic occurs or an earth

terminal requires rain fade compensation, NOCC will call the resource allocation
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algorithm and transmit the resulting operational schedule to the satellite. The scheduler

onboard the satellite thus manages its next burst according to the new schedule.

Figure 2.4: Hysteretic relationship between signal level and rain fade condition

2.2 Problem Description

In this section, we will state the resource allocation problem in the scenario

described in the previous section.

We have defined priorities for different types of services in Subsection 2.1.1.

Thus every uplink packet has a priority set in its header. Every downlink spot beam is

assigned an individual buffer on the satellite. After receiving the packets, the onboard

switch will route them into appropriate downlink buffers according to the destination

addresses specified in their headers.

As we mentioned earlier, the number of downlinks is many (say 30) times that of

antennas, and each antenna serves one downlink spot during a burst. The resources we
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consider here include antennas and the total power of antennas. By resource allocation,

we mean two things:

•  Burst scheduling: Assignment of antennas to downlinks for each burst

period;

•  Power allocation: Allocation of power to each antenna under the

constraint that the total power of antennas does not exceed a specified

limit.

Our objective in the resource allocation is two-folded: high profit and fairness,

which are made clear below.

•  High profit: We define the profit by the aggregate priority collected at all

earth stations during a fixed time interval (to be specified soon), i.e., the

sum of priorities of all packets received at all terminals.

•  Fairness: We want to prevent the following situation from happening: one

or more downlinks do not get service for a relatively long time.

 In consideration of this fairness requirement, we define the time interval during

which high profit is sought, to be the time it takes to serve every downlink one and only

one burst with no antenna idling.  In the sequel, we call this time interval “a round”, and

it is the time horizon for our resource allocation problem.

 If there were no rain fade or traffic variation, the solution is straightforward:

serving the downlink buffers in a round robin manner with a fixed data rate. This scheme

is very simple and fair to every downlink.  Unfortunately, this is not the real case.

 When rain fades occur in some spot beams, those spots may not be able to be

served with the fixed rate due to the limited total transmission power in satellite. In
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Subsection 2.1.2, we have described the relationship between the transmission rate, the

transmission power, and the rain fade level for a certain BER performance. Under certain

rain condition and BER requirement, if there is extra power available, we can raise the

transmission power to hold the fixed rate, otherwise we have to reduce the transmission

rate. In other words, when the rain condition and required BER performance are given,

there is only one freedom left, either power or rate, for each downlink.  Since the

transmission power is the active factor in these two, we view it as a power allocation

problem.

From the above analysis, we can see that the antenna assignment and power

allocation problems are coupled in that antenna assignment cannot be done without

considering the power settings for the selected downlink buffers and vice versa. Thus

these two problems must be considered together to achieve high profit.

In short, the resource allocation problem can be stated as follows:

For each burst period in one round, we want to select downlinks to be served and

allocate associated transmission power to them within the constraint of total available

power, so that under various weather condition distributions, the aggregate profit is

maximized and the fairness requirement is satisfied.

2.3 Problem Formulation

In this section, we will give the mathematical formulation of the resource

allocation problem.
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2.3.1 Notation

First, we introduce the notations that will be used in the remainder of the thesis.

N                    number of antennas;

M                   number of downlink spots (buffers);

L                     number of bursts in a round,

NML /= ;

R                   number of transmission power levels for every downlink spot;

totP                 total available power for each burst;

mrw             transmission power of level r for downlink m, with higher r

indicating higher power level.

,,,2,1 Mm �=  Rr ,,2,1 �= ;

mrd                 number of packets that can be transmitted in  downlink m in one

burst time using transmission power mrw  under current rain

condition.

,,,2,1 Mm �=  Rr ,,2,1 �= ;

mrp                 priority sum of the first mrd  packets in buffer m,

,,,2,1 Mm �=  Rr ,,2,1 �= ;

lmrx                 indicator of whether the mth downlink spot with power level r is

allocated to the lth burst,

Ll ,,2,1 �= , Mm ,,2,1 �= , Rr ,,2,1 �= ,




=
..0

1

WO

lburstinputisrlevelpowerwithmspotif
xlmr
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The following constraints regarding the above parameters and variables are

satisfied in practice:

(1) NM >> and M is integer divisible by N.

(2) Consider the power matrix as follows:









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
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=

MRMM

R
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The differences of mrw , Mm ,,2,1 �=  inside each column are much smaller

than the differences of mrw , Rr ,,2,1 �=  inside each row.

(3) ∑∑
==

<<
M

m
mRtot

M

m
m wLPw

11
1 . As we mentioned in Subsection 2.1.2, the total system

power is enough to provide standard power (which is higher than the

minimum power 1mw ) to every downlink in a burst, while it cannot supply

everybody with the highest power mRw  (which is higher than the standard

power).

2.3.2 Mathematical Formulation

The coupled resource management problem of antenna scheduling and power

allocation is formulated as follows: given the rain fade condition of every downlink spot

and the BER requirement,

maximize ∑∑∑
= = =

L

l

M

m

R

r
mrlmr px

1 1 1

,

subject to ∑∑
= =

≤
M

m
tot

R

r
mrlmr Pwx

1 1

, Ll ,,2,1 
= , (1)
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Nx
M

m

R

r
lmr ≤∑∑

= =1 1

, Ll ,,2,1 �= , (2)

1
1 1

=∑∑
= =

L

l

R

r
lmrx , Mm ,,2,1 �= , (3)

}{ 1,0∈lmrx , Ll ,,2,1 �= , Mm ,,2,1 �= ,

Rr ,,2,1 �= .

The first constraint ensures that the system power is enough to serve the selected

spots with their respective power in each burst. The limit of antenna number is

represented in constraint (2). Constraint (3) guarantees fairness among downlink spots by

serving every spot once and only once in a round.

All the numbers mrp , mrw , N and totP  are positive integers. And also the objective

functional and the constraints are linear in lmrx , thus the above problem falls into the

class of (linear) integer programming. In particular, it has the similar structure as the

well-known 0-1 knapsack problems, which we will discuss in detail in the next two

chapters.
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Chapter 3: Knapsack Problems: Some Background

3.1 Introduction to Integer Programming

A linear program is a mathematical model designed to find a set of decision

variables to maximize (or minimize) a linear objective function while satisfying some

linear constraints. If the restriction that decision variables must take integer values is

added, we have a (linear) integer program (IP) [9], [10], [11].

An integer programming problem can be formulated as:

maximize cx ,

subject to bAx ≤ ,

0≥x ,

and x integer,

where A is an m by n matrix, c an n-dimensional row vector, b an m-dimensional column

vector, and x an n-dimensional column vector of decision variables. And if all variables

are further restricted to 0-1 values, we have a 0-1 or binary integer program (BIP):

maximize cx ,

subject to bAx ≤ ,

nx }1,0{∈ .

A wide variety of practical problems can be formulated as or converted to integer

programs. Included in these are scheduling, planning, location, network, cutting and

selection problems that arise in industry, military, education, health, and other
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environments. In the past ten years, there has been a remarkable advance in the integer

programming field due to improved modeling, faster computers, new cutting plane

theory, branch-and-cut and other advanced algorithms. So more complex problems can

be modeled and solved using integer programming in a reasonable computing time [9].

3.2 Overview of 0-1Knapsack Problems

An important class of binary integer programming problems is the family of 0-1

knapsack problems (KP). The name is in reference to packing a knapsack (or knapsacks)

by choosing a subset of the given n items such that the corresponding profit sum is

maximized without exceeding the capacity of the knapsack(s). The decision variable xj is

either 1 (item j is selected) or 0 (item j is not selected).

Knapsack problems have been extensively studied during the last three decades

with a rich literature (see Pisinger [14], Martello and Toth [12] and Lin [13] for great

surveys). The KP family is one of the widely discussed topics in integer programming

mainly because of the following two reasons:

•  Their immediate applications in industry and financial management

such as budget control, project selection, cargo loading, and cutting

stock.

•  They appear as sub-problems in various integer programming

algorithms. Many complex combinatorial optimization problems can be

reduced to knapsack problems and they benefit from improvements in

the field of knapsack problems.
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Different types of 0-1 knapsack problems occur while various distributions of the

knapsacks and items arise: In the 0-1 Single Knapsack Problem (SKP) only one knapsack

needs to be filled and each item may be chosen at most once; Special case of Subset-sum

Problem arises when for each j, the profit jc equals the weight ja ; If the items should be

chosen from disjoint classes and exactly one item from each class, we obtain the

Multiple-choice Knapsack Problem (MCKP); The Multiple Knapsack Problem (MKP)

occurs when several knapsack of (maybe) different capacities are to be packed

simultaneously.

The generalizations of 0-1 knapsack problems include the Bounded Knapsack

Problem, Unbounded Knapsack Problem and Bin-packing Problem. If the amount of

items chosen from each item type is unlimited or bounded by a finite number, we get the

Unbounded or bounded Knapsack Problem respectively. The Bin-packing problem,

which is designed to pack all items into minimum number of equally sized bins, is an

example of minimization problem.

The most general form of a knapsack problem is the Multidimensional Knapsack

Problem, also known as Multi-constrained Knapsack Problem. While it has the

formulation of general integer programming, all the coefficients in the object function

and constraints are required to be nonnegative.

All Knapsack problems belong to the NP-hard family (see Garey and Johnson

[15]), therefore it is very unlikely that polynomial time algorithms can be devised for

them. The only way to get an exact solution is an enumeration in the solution space. If the

enumeration is complete, unacceptable solving time is expected. Fortunately, several
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effective enumerative techniques have been developed during the past decades of

research to save quite a lot of efforts [9], [16], [17]:

•  Branch and bound: build an enumeration tree, and remove the nodes

which cannot produce improved solutions by using bounds derived from

the integrality, nonnegativity, and other constraints. This is also called

implicit enumeration.

•  Preprocessing: before solving the program, quickly check the

“sensibility” of the formulation, detect and eliminate redundant

constraints and variables, and tighten bounds where possible.

•  Dynamic programming: calculate the optimal solution recursively from

the optimal values of slightly different problems.

•  State space relaxation: Scale the coefficients by a fixed value. In this

way the time and space complexity of an algorithm may be considerably

decreased, at the loss of optimality. Several efficient algorithms arise

from state space relaxation.

In the next several sections, we will give more detailed descriptions of some well-

developed knapsack problems which are most related to our work.

3.3 0-1 Single Knapsack Problem

The most fundamental knapsack problem is the 0-1 single knapsack problem

(SKP). Given n items, each with weight jw and profit jp , and a knapsack with capacity

c, the problem is to fill the knapsack so that the profit sum of the chosen items is
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maximized and the weight sum of these items does not exceed the knapsack capacity. 0-1

single knapsack problem can be described mathematically as:

maximize ∑
=

=
n

j
jj xpz

1

,

subject to cxw
n

j
jj ≤∑

=1

,

where 


=
..0

1

WO

selectedisjitemif
x j nj ,,2,1 �= .

Without loss of generality, we make the following assumptions about the

coefficients ,, jj wp and c:

(1) All coefficients are nonnegative integers; fractional case can be transformed

by multiplying some factor.

(2) 0>jp : Otherwise it can be removed from the item set.

(3) cw j <<0 : 0-weight item can be directly put into the optimal solutions and

items with weight exceeding c can be deleted.

(4) ∑
=

<<
n

j
jwc

1

0 : We can get trivial solutions by setting all 0=jx  for case

0=c  and all 1=jx  for case ∑
=

≥
n

j
jwc

1

.

SKP is representative of many industrial situations such as budget control, cutting

stock and project selection. It also appears as a sub-problem in many algorithms of other

integer programming and knapsack problems: the multiple knapsack problem, to mention

an example.
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SKP is NP-hard, but it can still be solved in pseudo-polynomial time. The

problem has been intensively studied since 1966 due to its wide applicability and

theoretical interest. See Dudzinski and Walukiewicz [18] (the theoretical framework of

exact algorithms), Martello and Toth [12] (elaboration and implementations of these

algorithms) and Gerasch and Wang [19] (parallel computing methods) for thorough

reviews.

3.4 Multiple Knapsack Problem

The multiple knapsack problem (MKP) deals with packing m distinct knapsacks

with n given items. The m knapsacks have (maybe) different capacities mici ,,2,1, �= .

Each item has a profit jp  and the associated weight jw , and the problem is to choose m

disjoint subsets from the n items, such that the total profit sum of the selected items is

maximized while the weight sum of subset i does not exceed the capacity of knapsack i,

for each },,2,1{ mi �∈ . The multiple knapsack problem thus can be formulated as:

maximize ∑∑
= =

=
m

i

n

j
ijj xpz

1 1

,

subject to i

n

j
ijj cxw ≤∑

=1

, mi ,,2,1 �= ,

1
1

≤∑
=

m

i
ijx , nj ,,2,1 �= ,

where



=
..0

1

WO

iknapsacktoassignedisjitemif
xij

mi ,,2,1 �= , nj ,,2,1 �= .
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Without loss of generality, we will make similar assumptions as in single

knapsack problems to avoid trivial cases:

(1) All the coefficients ,, jj wp and ic  are positive integers.

(2) },,2,1max{
1

micw i

n

j
j �

=>∑
=

. This avoids the trivial solution of putting all

items in one knapsack.

(3) },,2,1max{ micw ij �
=≤  for nj ,,2,1 �= . This ensures that every item can

fit into at least one knapsack as otherwise it can be removed from the item set.

(4) },,2,1min{ njwc ji �
=≥ for mi ,,2,1 �= . The knapsack violating this

assumption can be taken out as it cannot contain any item.

MKP has an immediate application in cargo loading problems, e.g., loading m

vessels/container with an optimal plan such that maximum benefit is achieved.

MKP is NP-hard in the strong sense, thus dynamic programming approaches

cannot be applied to MKP. As a result, most reported algorithms in the literature focused

on branch and bound techniques: Hung and Fish [20], Martello and Toth [12], and

Pisinger [14] to mention a few examples. Among these, the algorithm presented in

Pisinger [14] is more efficient for large problem instances and is selected to solve MKP

in our work (see Chapter 5).

3.5 Multiple-choice Knapsack Problem

The last well-known knapsack problem we will describe here is the multiple-

choice knapsack problem (MCKP). We consider the problem of packing items from k
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disjoint sets kNNN ,,, 21 �
 into some knapsack of capacity c. Each item j in class iN  has

profit ijp  and weight ijw . We want to select exactly one item from each set to pack in the

knapsack such that the total profit sum of the chosen items is maximized, and the weight

sum does not exceed the knapsack capacity. The multiple-choice knapsack problem thus

may be formulated as:

maximize ∑ ∑
= ∈

=
k

i Nj
ijij

i

xpz
1

,

subject to cxw
k

i Nj
ijij

i

≤∑ ∑
= ∈1

,

1=∑
∈ iNj

ijx , ki ,,2,1  = ,

where 


=
..0

1

WO

selectedisiclassinjitemif
xij

ki ,,2,1 != , iNj ∈ .

Similarly, we make the following assumptions:

(1) All coefficients ,, ijij wp and c are positive integers.

(2) The k classes are mutually disjoint with size in , ki ,,2,1 "= .

(3) .}max{}min{
11

∑∑
==

∈<≤∈
k

i
iij

k

i
iij NjwcNjw This avoids infeasible situations

or trivial solutions.

MCKP has many applications: capital budgeting, menu planning, etc. An

application in KP theory is transform of nonlinear KP to MCKP.

MCKP is also NP-hard since it contains SKP as a special case: each item in SKP

can be viewed as a two-element class by adding a dummy item (p,w)=(0,0). However,
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due to its special structure, Dudzinski and Walukiewicz [18] showed that MCKP is

solvable in pseudo-polynomial time.  The problem has been intensively investigated

during the last two decades and a number of algorithms were presented in literature. We

mention several here as examples: Nauss [20], Sinha and Zoltners [21], Dyer, Riha and

Walker [22], and Pisinger [14], among which we use the minimal algorithm in [14] to

solve the MCKP in our work.
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Chapter 4: Formulation of Resource Allocation as Knapsack Problems

4.1 Multi-choice Multiple Knapsack Model

In Chapter 2, we described the resource allocation problem we want to investigate

and gave the mathematical formulation as follows:

maximize ∑∑∑
= = =

=
L

l

M

m

R

r
mrlmr pxz

1 1 1

,

subject to ∑∑
= =

≤
M

m
tot

R

r
mrlmr Pwx

1 1

, Ll ,,2,1 #= ,

Nx
M

m

R

r
lmr ≤∑∑

= =1 1

, Ll ,,2,1 $= ,

1
1 1

=∑∑
= =

L

l

R

r
lmrx , Mm ,,2,1 %= ,

where 


=
..0

1

WO

lbursttoassignedisrlevelpowerwithmspotif
xlmr ,

Ll ,,2,1 &= , Mm ,,2,1 '= ,

Rr ,,2,1 (= ,

L, M, R, and N are the numbers of bursts in a round, downlink spots, transmission power

levels, and antennas, respectively, mrw  stands for the transmission power of level r for

downlink spot m and mrp  denotes the corresponding priority, and totP  is the total

available power for each burst.
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This problem is a binary integer program (BIP) as we defined in Section 3.1. We

can further relate it to the family of knapsack problems by making the following

observation:

L bursts can be viewed as L knapsacks with the same capacity totP , and every

downlink spot with its different power levels and associated priorities as individual item

class. To be specific, each item r in class mN   (downlink spot m) has a profit mrp  and

weight mrw . Thus the problem is to choose exactly one item from each class to pack in L

knapsacks, such that the profit sum is maximized without exceeding any knapsack’s

capacity. From the above discussion, the resource allocation problem is equivalent to a

non-standard knapsack problem, which we shall call Multi-choice Multiple Knapsack

Problem (MCMKP). The “multi-choice” part is responsible for selecting an appropriate

power lever for each spot, so this accounts for the power allocation aspect; while the

“multiple knapsack” part corresponds to picking at most N spots for every burst in the

round, so it accounts for the burst scheduling aspect. The resource allocation problem is

thus reformulated as multi-choice multiple knapsack problem in the following form:

maximize ∑∑ ∑
= = ∈

=
L

l

M

m Nr
lmrmr

m

xpz
1 1

,

subject to tot

M

m Nr
lmrmr Pxw

m

≤∑ ∑
= ∈1

, Ll ,,2,1 )= ,

1
1

=∑ ∑
= ∈

L

l Nr
lmr

m

x , Mm ,,2,1 *= ,

Nx
M

m Nr
lmr

m

≤∑ ∑
= ∈1

, Ll ,,2,1 += ,
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where 


=
..1

0

WO

lknapsacktoassignedismclassinritemif
xlmr ,

Ll ,,2,1 ,= , Mm ,,2,1 -= , mNr ∈ .

All the assumptions for knapsack problems listed in Chapter 3 are naturally

satisfied by this problem’s engineering background described in Subsection 2.3.1.

MCMKP subsumes MKP and MCKP as two special cases: setting1=L and

NM =  results in MCKP; while letting 1=R  reduces MCMKP to MKP (with slight

modification). As we mentioned in Chapter 3, MKP is NP-hard in the strong sense, so is

MCMKP. Therefore it rules out the existence of pseudo-polynomial algorithms or fully

polynomial approximation schemes. There has been little effort devoted to the particular

structure like MCMKP in the literature. The best algorithms published up-to-date take

about a fraction of second to solve relatively large MKP instances and pseudo-

polynomial time for MCKP. MCMKP is a combination of these two problems, thus it is

very unlikely that an exact algorithm with a reasonable computing time (like seconds)

can be devised based on today’s techniques of integer programming. Since our work is

more “engineering” rather than “theoretical”, we are more interested in finding a feasible

sub-optimal solution than a time-consuming optimal solution.  Therefore, we will adopt

some appropriate reductions and simplifications to the original problem and make it

easier to solve.

In the next two sections, we will provide two schemes for solving the problem,

which may be viewed as modifications of the above MCMKP model. In Section 4.2, we

introduce and discuss Birmani’s work [4], where he modeled the problem as MKP. In

Section 4.3, we first state the performance measures for resource allocation schemes in
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Ka-band satellite systems, then we present our new approach of MCKP, which is the

main contribution of the thesis.

4.2 Multiple Knapsack Model

In his master thesis, Birmani proposed a set of schemes to solve the resource

allocation problem for Ka-band satellite systems. The system configuration in his thesis

is very similar as that in this thesis except that the transmission rate for downlink spots is

fixed to some standard rate rather than tunable as in our setting. As a consequence, there

is only one power level associated with each downlink under certain rain condition.

Compared to the MCMKP model formulated in last section, this simpler configuration

“removes” the items with non-standard transmission rates from each item set, eliminates

the multiple-choice part of MCMKP, and reduces the problem to MKP structure which is

more tractable. We will elaborate this below.

 Birmani investigated allocation schemes for the two limited resources, power and

antenna, separately. In consideration of different weather and traffic conditions, he

discussed two cases, namely stable load condition and unbalanced load condition

respectively, and proposed different burst scheduling and power allocation algorithms for

each load condition.

4.2.1 Stable Load Condition

By Birmani’s definition, stable load condition means that the transmission system

on the satellite can serve all the traffic arriving at the satellite without overfilling the

buffers and the whole system is stable.
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By this stability assumption, the total system power is enough to meet the

demand. So the power allocation scheme is very simple:  allotting the appropriate power

to the downlinks so that they can maintain the standard transmission rate under their rain

conditions.

For burst scheduling, Birmani utilized one of the simplest generalized processor

sharing schemes, which is a variant of Weighted Round Robin (WRR). The weight

associated with a downlink queue is defined to be the priority sum of packets in that

queue up to a search depth, which is equal to the number of packets that can be sent out

in one burst by an antenna with the standard transmission rate. As soon as the weight of

every queue is determined, all the queues can be ranked in the decreasing order of

weights and the antennas will serve these queues in a round robin manner.

WRR and the “power-on-demand” described above formed Birmani’s resource

allocation scheme under stable condition. This scheme has two obvious advantages: (1)

simple to implement; (2) effective in allocating power and antennas to downlinks under

stable load condition. But the disadvantage is also obvious: the system capacity is not

fully used. As we mentioned before, the satellite systems are usually designed to carry

extra power in addition to that required by downlinks under the clear weather condition.

So under stable condition, the extra backup power is wasted.

4.2.2 Unbalanced Load Condition

Unbalanced load condition, on the other hand, refers to the situations whenever

stable load condition is not satisfied. In this case, the system cannot provide sufficient

capacity to transmit all the arriving traffic and overflows in buffers occur.
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Under this load condition, the total system power is not enough to assign every

downlink what they want. Either the requirements of some spots for more power are

denied, or some other spots are sacrificed to gain more aggregate profit depending on the

scheduling criterion.

The objective of Birmani’s burst scheduling is to maximize the weight sum of the

selected spots in a round time without exceeding the available system power for each

burst. Here the weight of a downlink is defined as in the previous subsection. Each spot

has a weight jp  and associated power requirement jw . The total power available is totP .

The problem is thus formulated as:

maximize ∑∑
= =

=
L

i

M

j
ijj xpz

1 1

,

subject to ∑
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j
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≤∑
=

L

i
ijx , Mj ,,2,1 /= ,

where 
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=
..0

1
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iknapsacktoassignedisjitemif
xij ,

Li ,,2,1 0= , Mj ,,2,1 1= .

Compared with the definition of multiple knapsack problem in Section 3.4, it is

straightforward to realize that this burst scheduling formulation is exactly the same as

MKP and thus much simpler than the MCMKP model in Section 4.1.

This simplification benefits from the simpler transmission configuration: either

serve the spots with standard transmission rate or provide no service at all. The multi-

choice part of MCMKP thus degenerates to simplest 0-1 choices. In other words, the
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power allocation aspect is separate from the burst scheduling aspect and the coupled

resource allocation problem is decomposed into two sub-problems, making the problem

easier to solve.

  As soon as downlink spots are selected for each burst, the power allocation is

straightforward: allocate power only to these “lucky” downlinks so that they are served

with the standard transmission rate.

The MKP scheduling and “power-after-selection” constitute Birmani’s resource

allocation scheme under unbalanced load condition. Moreover, MKP algorithm

dominates the effectiveness of the whole scheme.

Birmani tried two algorithms for MKP in his thesis: Martello and Toth [12] exact

algorithm and Martello and Toth [23] approximation algorithm. The exact algorithm is

most suitable for small input sizes and uncorrelated items, which are not satisfied in our

problem and he concluded that the exact algorithm would be unable to generate results

within the desired time for this application. Then the approximation algorithm was

implemented to give a close to optimal solution in a reasonable time.

Birmani proposed the MKP model for scheduling the antenna bursts and thus

achieved a more efficient utilization of limited power when the system could not

guarantee sufficient service to every downlink. More profit is achieved at the price of

some downlinks getting no service, i.e. some power is taken from lower weight spots to

higher weight spots during the allocation procedure. This is not quite consistent with the

criterion of fairness within downlink spots. Also, although the computing time of the

approximation algorithm is reasonable, it is still not fast enough to provide near real time
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response to the condition changes. In the next section, we will propose our resource

allocation scheme, which emphasizes the multi-choice aspect of the MCMKP model.

4.3 Multiple-choice Knapsack model

As we analyzed before, the MCMKP model combines the two resource allocation

problems together and is unlikely to be solved in a reasonable time. Thus some reduction

must be made to the MCMKP model to simplify the problem. The most straightforward

reduction is to remove either the multi-choice or multiple knapsack part in some way,

thus decompose the original coupled problem into two separate problems: the power

allocation problem and the burst scheduling problem. In Birmani’s approach, the multi-

choice part was removed and thus a complete MKP formulation arose. In the following,

we will discuss the other possible approach: removing the multiple knapsack part from

the MCMKP model. The resulting formulation has a complete MCKP structure

corresponding to power allocation problem, while a heuristic algorithm using the seeding

theory is proposed for the burst scheduling part.

Before presenting the new scheme, we will first discuss the performance measures

for various resource allocation strategies, i.e., what objectives we want to achieve through

the resource management.

4.3.1 Performance Metrics

For a resource allocation problem like the one we discuss in this thesis, here are

the three metrics we think the most important when judging various approaches:

•  Fairness
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•  Efficiency

•  Computing time

By fairness, in general, we mean that every customer sharing the resource(s) is

served in a fair way according to some criterion. In our particular application, we say a

scheduling plan is fair if every downlink spot is served once during each round.

 Efficiency is another consideration. High efficiency is interpreted here as high

profit gain. In particular fully utilization of available resource(s) will lead to high

efficiency.

Fast computation speed is desirable in real time applications. Computing time

depends on the complexity of the algorithms, the programming techniques and the speed

of the computing device etc, among which we will pay most attention to the first one.

These three factors are actually closely related. Sometimes fairness is guaranteed

at the cost of efficiency, while higher efficiency may benefit from more complex

formulation or finer granularity, which means more computing time. There are always

some tradeoffs for researchers to make.

4.3.2 A New Multiple-choice Knapsack Scheme

In this subsection, we will describe a new resource allocation scheme based on the

analyses we have done so far. This work is motivated by Birmani’s research and is aimed

at providing a more fair, more efficient and faster solution to power and antenna sharing

problem in Ka-band satellite systems.

Fairness is the first consideration. In the MKP scheme, under unbalanced load

condition, some downlink spots may be out of service for one or even more rounds just

because some higher priority downlinks are covered by rain and need rain fade
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compensation. This is unfair in terms of our definition of fairness. The MKP setting is

unable to tackle this problem. However, it can be circumvented by using the variable

transmission rate service in our satellite transmission configuration. To guarantee

fairness, every spot will get a base service for each round under whatever condition. The

base service itself will vary with different load conditions. More detailed description of

base services in different cases will be given later on.

We also notice that in Birmani’s scheme, the two resources did not get fully

utilized in either of the two conditions. To be specific, under stable load condition, the

extra power is wasted; under unbalanced load condition, some antennas stay idling.

Therefore efforts toward efficiency improvement would be rewarding.

Before elaborating our MCKP scheme, we will give a brief introduction to the

seeding theory widely applied in tournaments. We will adopt the idea behind the seeding

theory in the burst scheduling.

Seeding Theory

In the sports world, elimination tournament, also called knockout tournament, is a

widespread form of competition. In an elimination tournament, teams (or individual

competitors) play head-to-head matches with the loser eliminated from further

competition and the winner progressing to the next round of competition. How should the

organizer match the teams and schedule all the rounds of competitions? Obviously, the

organizer wants to make a “fair” seeding to promote the spectator interest and thereby

earn lots of television money. The situations such as the two strongest teams are paired in
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the first round of competition should definitely be avoided. Schwenk showed two axioms

of tournament seeding in [24]:

•  Axiom DC: Delayed Confrontation. Two teams rated among the top j2

shall never meet until the field has been reduced to j2  or fewer teams.

•  Axiom SR: Sincerity Rewarded. A higher-seeded team should never be

penalized by being given a schedule more difficult than that of any lower

seed.

A standard seeding schedule is given for a 16-team tournament in Figure 4.1.

Stronger teams are given smaller numbers.

Figure 4.1: The standard method for seeding a tournament with 16 teams

In the round of size r2 , numbers of each pair of opponents satisfy 12 +=+ rji .

Actually, the pairings in the rounds except the first one will not necessarily occur. This

figure just indicates the predicted pairings. This method clearly satisfies Axioms DC and

SR.
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Seeding theory can be used in many situations other than tournaments, for

example, grouping students into classes, assigning people to different projects, etc.

Similar idea is applicable to our burst scheduling problem.

Now we are ready to present the resource allocation scheme. In the following

discussion, we will divide the entire scenario space into two cases: (1) the extra power is

enough to compensate all the downlinks that are suffering from rain fades and thus the

satellite system can provide at least standard service to everybody; (2) whenever case I is

not satisfied, i.e., standard service cannot be guaranteed to every downlink. Case 1 and

Case 2 here can be viewed as corresponding to the stable load condition and the

unbalanced load condition respectively, in Birmani’s thesis. But our classification is more

straightforward and case identification is easier.

Our scheme will treat these two cases separately. In both cases, the primary steps

of the assignment procedure are very similar, which are listed below:

•  Step 1: Base service assignment

•  Step 2: Burst scheduling through seeding

•  Step 3: MCKP power allocation

The detailed implementation for each case, however, is different.

Case I: Rain fade area less than or equal to 10%

In this scenario, the total system power can provide standard transmission rate to

every downlink. So the base service assigned to every downlink in Step 1 is based on the

standard rate transmission, i.e., virtually assigning every spot whatever power they need
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to keep the standard transmission rate under current weather condition. Assignment in

Step 1 is not really implemented, and it is only for conceptual illustration. The final

power really assigned to every downlink, which is never less than that required for

standard rate transmission, will be determined in Step 3.

 In Step 2, downlink buffers are first sorted in a non-increasing order of their

average priorities per packet. Afterward the ordered downlink spots are assigned to bursts

in the following manner: the first spot goes to the first burst, the second one to the second

burst, 2 2 2 4 5 7 9 Lth buffer to the Lth burst, then the 1+L st spot to the Lth burst, the 2+L nd

spot to the 1−L st buffer, and so on. This scheduling plan is illustrated in Figure 4.2. The

arrows indicate the order in which spots are filled into bursts.

Figure 4.2: Illustration of burst scheduling

Seeding theory is applied here. Downlink buffers inside the same burst will

compete for the total available transmission power. When packing downlinks into L

L bursts

N antennas
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bursts, we certainly do not want to group all the highest weighted buffers together and

grant additional power to few of them, while leave the additional power in other bursts to

some lower weighted buffers. The underlying reason is very straightforward: same power

can gain more profit when it is granted to buffers with higher priorities than to those with

lower priorities. We shall name this burst scheduling scheme as seed burst scheduling in

this thesis.

Intuitively, the seed burst scheduling scheme distributes the total profit that we

want to maximize in MCMKP model into L bursts (nearly) evenly. Thus the original

problem (MCMKP) is transformed to the problem of maximizing the profit of each burst,

which, as we will discover shortly, is a multiple-choice knapsack problem. In short, the

original complex MCMKP model is decomposed into L multiple-choice knapsack sub-

problems, which are much easier to solve, thanks to the seed burst scheduling.

Step 3 is to allocate the power inside each burst. Since the problem is exactly the

same for each burst, without loss of generality, we will focus on the first burst. Let’s

assume in Step 1, the nth downlink buffer in the first burst was assigned power 
nnrw ,

where Rrn ≤<1 . Then each of the N buffers can be considered as an item set consisting

of 1+− nrR  items ),(,),,( nRnRnrnr wpwp
nn ;

, where , ,nr np r r R≤ ≤  is the priority of

item r in the n-th item set nS  and nrw  is the associated power. Given a knapsack with

capacity totP  and N item sets NSSS <,, 21 , the problem is to select exactly one item from

each item set to pack in the knapsack. This is a standard multiple-choice knapsack

problem and thus can be formulated as:

maximize ∑ ∑
= ∈

=
N

n Sr
nrnr

n

xpz
1

,
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subject to tot

N

n Sr
nrnr Pxw

n

≤∑ ∑
= ∈1

,

1=∑
∈ nSr

nrx , Nn ,,2,1 == ,

where
1

0 . .
n

nr

if item r in set S is selected
x

OW


=  ,

Nn ,,2,1 >= , nSr ∈ ,

and },,{ RrS nn ?
= .

This formulation guarantees the base service to every item set (buffer) by

providing at least 
nnrw  to buffer n, while distributing the remaining power among higher

priority buffers to gain more profit.

Case II: Rain fade area more than 10%

In this scenario, the total rain fade is so severe that it cannot be completely

compensated by the extra power the system has prepared. As a consequence, we can not

guarantee every downlink buffer to be served at the standard transmission rate. In this

case, the base service provided to buffer n in Step 1 is thus based on the lowest power

level 1nw , which is also called base power and is always lower than the standard power.

In Step 2, buffers are ordered and assigned to bursts using the seed burst

scheduling, as we have done in Case I.

Power allocation in this case is also formulated as multiple-choice knapsack

problem, as we have done in the previous case. The only difference is that, now we have
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more items in each item set: ),(,,),( 11 nRnRnn wpwp @  in set nS . Thus we should change

the definition of nS  in Case I to

},,2,1{ RSn A
= .

Base service assignment, seed burst scheduling and MCKP power allocation

constitute our new Multiple-choice Knapsack Scheme (MCKS) for resource allocation in

Ka-band satellite systems. This scheme has the following advantages:

•  Fair: Under any condition, every downlink spot will be guaranteed certain

base service.

•  Efficient: High profit is expected from the fully utilization of power and

antennas in this scheme.

•  Fast: MCKP is much easier than MCMKP or MKP and can be solved in

pseudo-polynomial time. Also, in our particular application, the size of

MCKP ( RN × ) is much smaller than the size of MCMKP ( RLM ×× ) or

MKP ( LM × ), which further reduces the computing time.

These advantages will be demonstrated by the simulation and computation results

in the next chapter.
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Chapter 5: Simulation and Results

In this chapter, we describe the OPENT models used to simulate the Ka-band

satellite network scenarios and resource allocation schemes, and present the results of

simulation. In particular, performance of our MCKP scheme is compared with that of

Birmani’s MKP scheme. Algorithms for solving the relevant knapsack problems are

provided in Appendix A.

5.1 OPNET Simulation Model

Simulation is a very useful tool for performance evaluation of protocols or

schemes in network systems. When the system to be characterized is still at the design

stage, simulation provides an easy and quick way to predict a new scheme’s performance

or compare performances of several alternative schemes.

In this work, the OPNET simulator is selected to build the network simulation

models. OPNET simulator is event-driven and operates at three hierarchical levels to

describe and control the network to be analyzed. These are the network level, the node

level and the process level. The network level consists of network nodes connecting each

other by links. The node level comprises different function modules inside each network

node, for example, traffic generator, packet queue and processor. The actual operations,

algorithms or schemes are implemented in the process level.

Figure 5.1 shows the network level OPNET model used to simulate the system

and resource allocation strategies discussed in previous chapters.
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Figure 5.1: OPNET simulation model

The leftmost two nodes, BurstData and WebLoad, are responsible for generating

various types of uplink traffic.  The Satellite node simulates the functions of the satellite:

receiving packets from uplinks, onboard switching and scheduling, and transmission of

packets to downlinks. The resource allocation schemes designed for NOCC are also

simulated onboard the satellite to make the simulation model easier. The Downlink node

collects the packets and simulation results.

5.2 Traffic Models

Traffic modeling plays an important role in the design and simulation of

communication networks [25]. Since the traffic models describe the statistical patterns of

the information the objective network is expected to carry, accurate and practical traffic

modeling is fundamental to successful network design and capacity planning. This is

even more crucial for broadband satellite networks because the diversified types of

applications that will access the satellite channels: from single home user to Internet

backbone nodes, from very low data rates to gigabits per second, from bursts of a few



49

milliseconds to long duration calls, from best-effort delivery to fully guaranteed high-

priority data forwarding. Therefore, the traditional Poisson model is no longer applicable

to our broadband satellite network simulation. Modern traffic models are required to

make the results more meaningful and credible.

In this work, we consider two typical traffic models:

•  Weibull-lognormal model for Web and bulk data transfer workload traffic;

•  Markov-Modulated Poisson Process (MMPP) model for connectionless

bursty data traffic;

5.2.1 Web and Bulk Data Transfer Workload

The World Wide Web (WWW) and bulk data transfer traffic constitutes the

majority of the current Internet traffic volume. Barrett [26] has found that this type of

traffic can be modeled at the connection level by fitting statistical distributions to two key

traffic variables: connection interarrival times, and connection transmission (“download”)

sizes. Also he showed that Weibull distribution is the best fit for the interarrival time,

while transmission size can be well characterized by the log-normal distribution.

Weibull distribution

Weibull distribution is a popular heavy-tailed distribution in network traffic

modeling.  Its probability density function is:

β

αβ

αα
β )(

1))(()(
x

e
x

xf
−−= , 0,0, >> xβα .

And the distribution function is

β

α
)(

1)(
x

exF
−

−= .

The Weibull samples can be generated in two steps:
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(1) generate a sample uniformly distributed in (0,1), i.e. )1,0(~ Uu ;

(2) obtain Weibull sample x using inverse of  the Weibull distribution function:

βα
1

)]1ln([ ux −−= .

Log-normal distribution

Log-normal distribution is one of the early non-exponential distributions applied

to network traffic modeling. The definition of the log-normal distribution is based on the

normal distribution: given that )log(XY =  is normally distributed ),(~ 2σµNY , the

random variable X shall be called log-normal distributed. Its density function takes the

form:

  
2

2

2

))(ln(

2

1
)( σ
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−
−

=
x

e
x

xf , 0>x .

And its mean and variance are:

2

2

][
σµ+

= eXE ,

 )1(][var
222 −= + σσµ eeX .

The log-normal samples can also be generated in two steps:

(1) generate a normally distributed sample ),(~ 2σµNy ;

(2) obtain the log-normal sample x by transforming y via the relation:

yex = .

OPNET implementation

The connection level simulation is accomplished by dynamic process. At the

beginning of simulation, a parent process is entered, and it will invoke a child process
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each time a new connection starts. The operations of parent and child processes are as

follows:

•  Parent Process: generate a Weibull distributed interarrival time t, wait for

an amount of time t and create a new child process, generate another t and

repeat the above operations until the simulation ends.

•  Child Process: as soon as it is invoked, it randomly picks a log-normal

transmission size and divides the total size into packets. It then sends out

these packets and closes itself after that.

5.2.2 Connectionless Bursty Data

The connectionless bursty data type includes a large number of relatively less

interactive traffic sources. It can be simulated by MMPP model [27].

MMPP model

A general n-state MMPP is completely determined by two matrices: the state

transition rate matrix Λ  and the arrival rate matrix A, as shown below [28]:
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The corresponding Markov-modulated Poisson process has following

characteristics [29]:

•  The time iT  the underlying Markov chain will stay in state i is exponentially

distributed with parameter 
iiλ

1
.

•  In each state i, events arrive according to a Poisson process with rate ia .
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•  As the time iT  expires, the underlying Markov chain jumps from state i to

state j ( ji ≠ ), with probability ijp  given by

∑
≠

=

ik
ik

ij
ijp

λ
λ

 .

Let ),,( 1 nPPP F= denotes the vector of the steady-state probabilities for the

underlying Markov chain, it should satisfy the following equations:

PP =Λ  and .121 =+++ nPPP G

And the mean arrival rate of MMPP is given by

∑
=

=
n

i
iiaP

1

λ .

OPNET implementation

A two-state MMPP model is implemented in our simulation as in Figure 5.2.

Figure 5.2: Two-state MMPP OPNET model

The green color stands for forced state, which means that the visit to this state can only be

transitory, while the orange color stands for unforced state. The operations of these three

states are described below:

END_OF_STATE1

State 1 State 2Init State

END_OF_STATE2

PACKET_SEND PACKET_SEND
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•  Init State: This state is only entered once at the beginning of simulation. It

sets parameters and initializes variables, then goes into State 1.

•  State 1: There are three types of events in this state: (1) if this is the new

entrance of State 1, determine the exponential end time 1T  of State 1. (2)

generate an exponential interarrival time t, if t is earlier than 1T , schedule

the next packet generation. (3) if 1T  expires, transfer to State 2.

•  State 2: This state’s operation is similar to State 1 with different

distribution parameters.

5.3 Resource Allocation Schemes

Figure 5.3 shows the onboard processor model in Satellite node. The state arrival

is responsible for queuing received packets in downlink buffers according to their

destination addresses. Each time the satellite receives Weather Change message, it will

update its information in state weather.   The resource allocation schemes are

implemented in state burst, where they are called when the next burst is coming.

A polynomial-time approximate algorithm MTHM proposed by Martello and

Toth [23] was used in Birmani’s work [4]. But computational experiments [12] indicated

that MTHM works better for uncorrelated items and dissimilar capacities, which is not

case in our problem.

Pisinger presents a new exact algorithm MULKNAP for MKP in [14], which is

specially designed for solving large problem instances. This MULKNAP algorithm is
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much faster than the MTHM approximation algorithm, so it is used in our simulation as

an alternative to MTHM to solve the MKP.

     Figure 5.3: Satellite onboard processor OPNET model

The algorithm MCKNAP we used in our work to solve MCKP was also proposed

by Pisinger [30].  MCKP is NP-hard, but it is much easier compared to MKP, which is

NP-hard in the strong sense. As a result, the MCKP algorithm is much faster than the

MKP algorithms.

Pseudo-codes of these three algorithms are listed in Appendix A. Table 5.1 below

compares their computing times for same data instances. We can see that the approximate

MKP algorithm MTHM is much less efficient than the exact MKP algorithm

MULKNAP. Therefore we adopt MULKNAP for solving MKP, and MCKNAP for

solving MCKP respectively in the OPNET simulation.

WEATHER_CHG

idleInit State

PACKET_ARRVL

BURST

burst

arrival

weather
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Table 5.1: Computing time in seconds of three algorithms

Rain Area 0 2% 5% 8% 10% 12% 15% 18%

MTHM 13.170 12.899 13.670 13.770 13.459 13.738 13.677 13.840
MULKNAP 0.110 0.281 0.279 0.317 0.289 0.309 0.277 0.292
MCKNAP 0.012 0.010 0.012 0.013 0.012 0.011 0.012 0.012

5.4 Simulation Results

In this section, we compare the performances of our MCKP approach and

Birmani’s MKP approach in Ka-band resource allocation.

Eight different scenarios in terms of rain fade area are simulated: no rain, rain

fade area 2%, 5%, 8%, 10%, 12%, 15% and 18%. 10% rain area is the critical case,

beyond which we cannot guarantee standard rate service to every downlink. Since fade in

heavy rain is more severe than that in light rain, one downlink in heavy rain will be

counted as two downlinks in light rain when we consider the extra power entailed by the

rain fade.  To be precise, when we say “rain fade area”, we always mean the “equivalent”

fade area due to light rain. In our implementation, when a rain fade area, say 5%, is

given, the distribution of light rain spots and heavy rain spots will be generated randomly.

In the simulation, we have 700 downlinks and 20 antennas, thus each round

consists of 35 bursts. For each scenario, we run 50 rounds. To compare the MCKP

scheme and the MKP scheme, exactly the same traffic flow is fed into the MCKP

algorithm and the MKP algorithm, and the two schemes will run independently. We will

compare the aggregate priorities gained in each round and call them dynamic results. We

use the term “dynamic” in consideration of the fact that, under each scheme, the system

behaves continuously like a dynamic system, and we are comparing the long-term
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behaviors of these two systems. It should be noted that, if we look at the data for both

schemes in a particular round, they might be different for all rounds except for the first

one.

The static results are also furnished to provide a different view of comparison.

The static results are obtained by applying both schemes to exactly the same traffic data

in every round. To be specific, we run the system under the MCKP scheme continuously

for 50 rounds; at the beginning of each round, the current data in downlink buffers is fed

into the MKP scheme. The meaning of “static” is now evident: the time horizon for

performance comparison is a round, as opposed to a long time period in the dynamic

case. The computation of static results was carried out outside the OPNET environment

although the data was taken from the OPNET simulation. All the computation results

reported in the thesis were done in SUN Ultra10 workstations.

In the following subsections, we will compare the two schemes in terms of the

aggregate priority in each round, computation time, power utilization, antenna utilization,

and service missing for downlinks in each of the scenarios. These results are closely

related to the performance metrics we discussed in Section 4.3.

5.4.1 Aggregate Priority

Figures 5.4-5.11 show the aggregate priority comparison between the MCKP and

MKP schemes under various rain conditions. In each figure, the first two plots illustrate

the dynamic simulation results, while the other two show the static simulation results.
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   (a) Dynamic results

    (b) Static results

Figure 5.4: Aggregate priorities under no rain condition
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   (a) Dynamic results

    (b) Static results

Figure 5.5: Aggregate priorities with rain fade area 2%
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   (a) Dynamic results

    (b) Static results

Figure 5.6: Aggregate priority with rain fade area 5%
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   (a) Dynamic results

    (b) Static results

Figure 5.7: Aggregate priority with rain fade area 8%
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   (a) Dynamic results

    (b) Static results

Figure 5.8: Aggregate priority with rain fade area 10%
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   (a) Dynamic results

    (b) Static results

Figure 5.9: Aggregate priority with rain fade area 12%
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  (a) Dynamic results

    (b) Static results

   Figure 5.10: Aggregate priority with rain fade area 15%
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(a) Dynamic results

(b) Static results

Figure 5.11: Aggregate priority under 18% rain condition
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By averaging the advantage of MCKP over MKP in all rounds for each scenario,

we obtain Figure 12, which reflects the information contained in Figures 4-11 in a

compact way. The following observations can be made:

•  MCKP outperforms MKP in both dynamic case and static case.

•  The advantage of MCKP over MKP decreases with rain fade area when

rain fade area is below 10%, vanishes at 10%, starts to increase beyond

10% and gets saturated around 15%. This can be explained as follows:

when there is no rain, MKP wastes all the extra power while MCKP fully

utilizes the power all the time; with increase of the rain fade area, MKP

begins to make use of more and more extra power; when rain fade area

reaches 10%, both MKP and MCKP use up the extra power and their

performances coincide; beyond 10%, MKP drops some downlinks to save

power for higher priority ones and the power will not be used exactly in

full until the rain fade get much worse like around 15%.

•  In each scenario, the patterns for trajectories of MCKP and MKP are

similar in the static case, while they can be quite different in the dynamic

case. This follows from the different ways of obtaining dynamic and static

results, as discussed earlier.



66

Figure 5.12: Advantage of MCKP over MCP vs. rain area

5.4.2 Computing Time

Table 5.2 gives the average computing time of MCKP and MKP algorithms under

various rain conditions. In the MCKP scheme, all downlinks are first ordered according

to their average priorities, when the Sorting time is taken, then each burst is considered as

a knapsack and MCKNAP is called to solve it in a Single MCKP time. The total 35 bursts

in one round add up to the 35 MCKP time. Summing Sorting and 35 MCKP results in the

Total time.
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As we analyzed in previous chapters, MCKP is easier than MKP in itself, and in

our application, the MCKP has much smaller size than the MKP. These factors lead to its

much faster computation speed than that of MKP, as one can see from Table 5.2.

Table 5.2: Computing times of MCKP and MKP

MCKP (ms)Rain Area
Sorting Single MCKP 35 MCKP Total

MKP (ms)

0 0.61 0.34 11.84 12.45 109.80
2% 0.62 0.36 12.58 13.20 281.40
5% 0.61 0.32 11.33 11.94 279.39
8% 0.65 0.33 11.44 12.09 283.01
10% 0.62 0.33 11.47 12.09 287.06
12% 0.60 0.33 11.66 12.26 317.87
15% 0.61 0.35 12.26 12.87 631.56
18% 0.63 0.35 12.33 12.96 275.61

5.4.3 Resource Utilization

Table 5.3 shows the utilization of power and antenna for both schemes. The

MCKP scheme utilizes almost all the available resources under any weather condition, as

one would expect from the design of the scheme. The MKP scheme fails to make full use

of the resources (either power or antenna) except when rain fade area is 10%, as we

analyzed in Subsection 4.3.2.

Table 5.3: Resource utilization and service missing

Power Utilization Antenna Utilization Service MissingRain Area
MCKP MKP MCKP MKP MCKP MKP

0 99.8% 96.6% 100% 100% No No
2% 99.8% 97.3% 100% 100% No No
5% 99.8% 98.2% 100% 100% No No
8% 99.8% 99.2% 100% 100% No No
10% 99.8% 99.4% 100% 100% No No
12% 99.8% 99.4% 100% 99.6% No Yes
15% 99.8% 99.5% 100% 98.9% No Yes
18% 99.8% 99.4% 100% 98.3% No Yes
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5.4.4 Service Missing

From Table 5.3, we can also see that, with the MCKP scheme, every downlink

will get service in any round; while with the MKP scheme, service missing occurs when

rain fade area is greater than 10%. This conflicts with our criterion of fairness. Figures

5.13-5.16 give a closer view of the service missing situation with the MKP scheme. We

collect the data in 50 rounds.
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Figure 5.13: Number of out-of-service downlinks vs. rain area

Figure 5.13 shows the number of downlinks who were out of service at least once

in 50 rounds under several rain conditions. The no rain, light rain, heavy rain legends

denote the downlinks that were suffering no rain fade, light rain fade and heavy rain fade,

respectively. It can be seen that the total number of downlinks being missed at least once

increases with the rain area.

In Figures 5.14, 5.15 and 5.16, we show the number of downlinks that

experienced various extents of service missing under different rain conditions. We notice
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that when the rain area is 18%, about 10 downlinks got no service in more than 25 rounds

out of 50 rounds, which is unacceptable in many applications.
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Figure 5.14: Histogram of number of missed rounds (12% rain area )
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Figure 5.15: Histogram of number of missed rounds (15% rain area)
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       Figure 5.16: Histogram of number of missed rounds (18% rain area)
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Chapter 6: Conclusions and Future Work

6.1 Conclusions

With the fast growth of the Internet, the Ka-band satellite system has gained more

and more interests for its huge bandwidth in recent years. Rain fading presents one of the

most challenging problems in utilization of Ka band. Several compensation approaches

were proposed in the literature. In this thesis, we have presented a new compensation

mechanism for downlink transmission through the dynamic resource allocation.

The resources considered include power and antennas on board the satellite. We

mathematically formulate the problem in the framework of the Knapsack Problems. The

objective is to maximize the aggregate priority of transmitted packets as well as maintain

the fairness among downlinks. We have shown that the coupled power and resource

allocation problem can be described as a Multi-choice Multiple Knapsack Problem

(MCMKP), which is unlikely to solve in reasonable time.

To make the original problem tractable, we decouple the power allocation and the

burst scheduling problems. First the bursts are scheduled using the seeding theory, which

divides the “multiple-knapsack” into separate “single knapsacks”. Then power allocation

in each knapsack is modeled as a Multiple-choice Knapsack Problem (MCKP), which is

much easier to solve than MCMKP.

The Multiple Knapsack Problem (MKP) approach proposed by Birmani is also

introduced in this thesis for comparison. Performances of these two schemes are

demonstrated through OPNET simulations. Comparisons of aggregate profit, computing
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time and resource utilization have shown that the MCKP scheme outperforms the MKP

scheme in terms of fairness, efficiency and computation speed.

6.2 Future Work

Future work in this area includes more practical and quantitative metrics which

might be more closely related to the industrial interest. Also, more specific traffic models

for the interested system can be used in designing allocation schemes.

Uplink rain compensation approaches, such as Uplink Power Control (UPC), can

be integrated with the downlink rain compensation approaches to obtain more efficient

resource allocation and rain fade mitigation schemes.

Joint consideration of coding rate change, power control and transmission rate

adjustment is another possible and interesting research direction.

Other valuable approaches may include the parallel computing of the KP

algorithms, joint consideration of congestion control on board the satellite and accurate

rain fade prediction in NOCC.
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Appendix A: Algorithms for Solving Knapsack Problems

A.1 Approximation Algorithm for MKP

A polynomial-time approximate algorithm proposed by Martello and Toth [23]

was used in Vineet’s approach. It works as follows. The items are first sorted so that

n

n

w

p

w

p

w

p
≥≥≥ H

2

2

1

1  .                                                               (A.1)

Then the following procedure MTHM applies.

procedure MTHM:

input: )(),(),(,, ijj cwpmn ;

output: )(, jyz ;

begin

1. [initial solution]

0=z ;

for ntoj 1=  do 0=jy ;

for mtoi 1=  do

begin

ii cc = ;

call GREEDYS;

end;

2. [rearrangement]
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0=z ;

for mtoi 1=  do ii cc = ;

1=i ;

for 1tonj =  do if 0>jy  then

begin

let l be the first index in }1,,1{},,{ −∪ imi II  such that lj cw ≤ ;

if no such l then 0=jy  else

begin

ly j = ;

jll wcc −= ;

jpzz += ;

if ml <  then 1+= li  else 1=i

end

end

for mtoi 1=  do call GREEDYS;

3. [first improvement]

for ntoj 1=  do if 0>jy  then

for ntojk 1+=  do if jk yy ≠<0  then

begin

},max{arg kj wwh = ;

},min{arg kj wwl = ;
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lh wwd −= ;

if }0:min{ =≥+≤ uuyy ywdcandcd hl  then

begin

}0:max{arg dcwandypt hyuuu +≤== ;

tyy wdcc hh −+= ;

dcc ll yy −= ;

ht yy = ;

lh yy = ;

tl yy = ;

tpzz +=

end

end

4. [second improvement]

for 1tonj =  do if 0>jy  then

begin

jy wcc j += ;

Φ=Y ;

for ntok 1=  do

if cwandy kk ≤= 0  then

begin

}{kYY ∪= ;
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kwcc −= ;

end

if jYk k pp >∑ ∈
 then

begin

for each Yk ∈  do jk yy = ;

cc jy = ;

0=jy ;

jYk k ppzz −+= ∑ ∈

end

end

end

procedure GREEDYS:

input: ijjj ciyzwpn ,),(,),(),(, ;

output: )(, jyz ;

begin

for ntoj 1=  do

if ijj cwandy ≤= 0  then

begin

iy j = ;

jii wcc −= ;
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jpzz += ;

end

end.

A.2 Exact algorithm for MKP

Pisinger presents a new exact algorithm for MKP in [14], which is specially

designed for solving large problem instances. The main algorithm MULKNAP and the

recursive branch and bound algorithm are briefly described as follows.

procedure MULKNAP( cxwpmn ,,,,, ):

Order the capacities mccc ≤≤≤ J21 ,

for ntoj 1=  do

1=jd ;

for mtoi 1=  do 0=ijx ; 0=ijy ; rof;

rof;

0=z ;

MULBRANCH (0,0,0, mcc ,,1 K
);

procedure MULBRANCH ( mccWPh ,,,,, 1 L
):

Tighten the capacities ic  by solving m  Subset-sum problems defined on nh ,,1 M+ .

Solve the surrogate relaxed problem with capacity ∑ =
= m

i icc
1

. Let ’x  be the

solutionot this problem, with objective value u.

if )( zuP >+  then
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split the solution ’x  in the m knapsacks by solving a series of Subset-sum

problems defined on items with 1’=jx . Let ijy  be the optimal filling of ic

with corresponding profit sum iz .

Improve the heuristic solution by greedy filling knapsacks with i

n

hj ijj cyw <∑ += 1
.

if )(
1

zzP
m

i i >+∑ =
 then copy y to x, set ∑ =

+= m

i izPz
1

. fi;

fi;

if )( zuP >+  then

reduce the items by using some upper bound tests, and sway the reduced items to

the first positions, increasing h.

let I be the smallest knapsack with 0>ic  . solve an ordinary 0-1 knapsack

problem with icc =  defined on the free variables. The solution vector is ’x .

Choose the branching item l as the item with largest profit-to-weight ratio

among items 1’=jx .

Swap l to position 1+h  and set 1+= hj .

Let 1=ijy ; {assign item j to knapsack i}

MULBRANCH ( mjijj cwccwWpPh ,,,,,,,1 1 NN

−+++ );

Let 0=ijy ; {exclude item j from knapsack i}

Set jdd =’ ; 1+= id j ;

MULBRANCH ( mccWPh ,,,,, 1 O

);

Find j again, and set ’dd j = .

fi;
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A.3 Exact Algorithm for MCKP

The algorithm we used in our work to solve MCKP was also proposed by Pisinger

[30]. The main algorithm MCKNAP and partitioning algorithm PARTITION are

sketched here.

procedure MCKANP:

Solve LMCKP through the partitioning algorithm.

Determine gradients }{}{ −−++ == ii LandL λλ  for aiki ≠= ,,,1 P .

Partially sort +L in decreasing order and −L  in increasing order.

)(;}{;1;1;0 aCa NsreduceclasYNCtsz ===== ;

repeat

reduceset( CY ); if ( Φ=CY ) then break; fi;

;1; +== − ssLN si { choose next class from −L }

if ( iN  is not used) then

)( ii NsreduceclasR = ;

if ( 1>iR ) then add( iC RY , );

fi;

forever;

Find the solution vector.
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procedure PARTITION:

Step 0. Preprocess. For all classes ki ,,1 Q=  let ii and βα  be indices to the items

having minimal weight (resp. maximal profit) in iN . In case of several items

satisfying the criterion, choose te item having largest profit for iα  and

smallest weight for iβ . Set W=P=0, and remove those items ij β≠  which

have 
iiij ww β≥  and 

iiij pp β≤ , since these are dominated by item iβ . If the

class iN  has only one item left, save the LP-optimal choice iib β=  and set

iibwWW += , 
iibpPP += , then delete class iN .

Step 1. Choose median. For M randomly chosen classes iN  define the

corresponding slope )/()()/(
iiii iiiiiii wwppwp αβαβδδλ −−== . Let

)/( wp δδλ =  be the median of these M slopes.

Step 2. Find the conclusion. For each class iN  find the items which maximize the

projection on the normal to ),( pw δδ , i.e. which maximize the determinant

wppwpwpw ijijijij δδδδ −=),,,det( . We swap these items to the beginning

of the list such that they have indices },,1{ il
R  in class iN .

Step 3. Determine weight sum of conclusion. Let ii hg ,  be the lightest (resp.

heaviest) item among },,1{ il
S  in class iN , and let "’ WandW  be the

corresponding weight sums. Thus ∑ =
+= k

i igi
wWW

1

’  and

∑ =
+= k

i ihi
wWW

1

" .



81

Step 4. Check for optimal partitioning. If "’ WcW ≤≤  the partitioning at ),( pw δδ

is optimal. First, choose the lightest items from each class by setting

ii ibibii pPPwWWgb +=+== ,, . Then while cwwW
ii ihig ≤+−  run

through the classes where 1≠il  and choose the heaviest item by setting

ii hb = , 
ii ibig wwWW +−= , 

ii ibig ppPP +−= . The first class where

cwwW
ii ihig >+−  is the fractional class aN  and an optimal objective value

to LMCKP is λ)( WcPzLMCKP −+= . If no fractional class is defined, the LP-

solution is also the optimal IP-solution. Stop.

Step 5. Partition. We have one of the following two cases: 1) if cW >’  then the slope

λ  was too small. For each class iN  choose iβ  as the lightest item in

},,1{ il
T  and delete items ij β≠  with 

iiij ww β≥ ; 2) If cW <"  then the slope

)/( wp δδλ =  was too large. For each class iN  choose iα  as the heaviest

item in },,1{ il
U  and delete items ij α≠  with 

iiij pp α≤  (item j with

iiij ww α≤  are too light, and items with 
iiij ww α> , 

iiij pp α≤  are dominated).

If the class iN  has only one item left, save the LP-optimal choice iib β=  and

set 
iibwWW += , 

iibpPP += , then delete class iN . Goto Step 1.
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