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years.
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network attacks. The thesis demonstrates that models that represent network
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attacks using Hidden Markov Models and training on anomalous sequences. We



test several algorithms, apply different rules for classification and evaluate the

relative performance of these. We put emphasis on one particular classification

algorithm that is not dependent on data set properties. Several of the attack
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built following our methods but could not be tested due to lack of data.
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Chapter 1

Introduction

In this chapter we discuss the importance of computer network security and

present the basic types of intrusion detection systems and their main features.

We present an attack taxonomy and explain the terminology used in this the-

sis. Finally we present the motivation for the thesis and outline the remaining

chapters.

1.1 Computer Network Security

With the increased use of networked computers for critical systems, computer

network security is attracting increasing attention and network intrusions have

become a significant threat in recent years. Computer network security is pri-

marily concerned with protecting a particular resource: valuable data or valu-

able information. The number of intrusions is dramatically increasing and

so are the costs associated with them. The number of incidents reported to

Carnegie Melon’s Computer Emergency Response Team/Coordination Center

(CERT/CC) has increased from the range of 2000-3000 in early and mid 1990s

to 9859 in 1999, 21,756 in 2000, 52,658 in 2001 and the data for 2002 indicate
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the number of incidents is in the range of mid 70000s. With an increased under-

standing of how systems work intruders have become more skilled at determining

weaknesses in systems and exploiting them to obtain increased privileges. It is

important to mention that the knowledge necessary to carry out an attack is

decreasing, resulting in a rapid increase of attempted attacks on various systems

and networks. On the other hand, the increasing frequency and complexity of

Internet attacks has raised the level of knowledge required by systems and net-

work administrators to effectively detect intrusions. Another problem that has

appeared in the last couple of years is the appearance of multi-stage attacks that

can be orchestrated to strike multiple targets with different levels of security by

coordinating a number of exploits. An additional difficulty in detecting attacks

is due to the fact that the majority of intruders attacking high profile targets

conceal the true origin of an attack and they rarely indulge in sudden bursts

of suspicious activity that can be easily detected, even by very simple intrusion

detection systems.

The ideal approach to securing the network is to remove all security flaws

from individual hosts, but less expensive and more feasible approaches are used

for securing the computer systems. Most computer systems have some kind of

security flaw that may allow intruders or legitimate users to gain unauthorized

access to sensitive information. Moreover, many computer systems have widely

known security flaws that are not fixed due to cost and some other limitations.

Even a supposedly secure system or network can still be vulnerable to insid-

ers misusing their privileges or it can be compromised by improper operating

practices.

Intrusion detection is based on the fact that an intruder’s behavior will be
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significantly different from that of a legitimate user. A more precise definition

of computer security is based on the realization of confidentiality, integrity and

availability in a computer system. Confidentiality requires that access to infor-

mation is restricted to users authorized for it (encryption, authentication and

authorization). Integrity requires the stored information not to be altered and

availability requires the computer systems to be available when the authorized

users need them.

The primary sources of information for intrusion detection systems are net-

work activity and system activity. Network-based systems look for specific pat-

terns in network traffic and host-based systems look for those patterns in log

files. In general, network-based IDS can detect attacks that host-based systems

can miss because they examine packet headers and the content of the payload,

looking for commands or syntax used in specific attacks. Another advantage of

network-based IDS is that it is easy to manipulate the log files in host-based

systems and cover traces of the attack, but it is not possible to do so in network-

based systems. Also, network-based systems detect rejected attacks, whereas

host-based IDS are not able to do that. On the other hand, host-based systems

can verify success or failure of the attack, detect specific system activities that

a network-based system is not able to detect and are able to detect encrypted

attacks. This leads us to the conclusion that the best IDS is the mixture of host

and network-based systems.

We can group intrusion detection systems into two classes: anomaly detec-

tion systems and signature based systems. Anomaly detection systems attempt

to model the usual or acceptable behavior. They have high false positive rates

and usually have detection delay. Irregular behavior is flagged as potentially in-
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trusive. Misuse detection refers to intrusions that follow well-defined patterns of

attack that exploit weaknesses in the system. Misuse detection techniques have

high detection rate for already known attacks but even the slightest variation

of an attack signature may cause the system not to recognize the attack. More

detailed description of anomaly and misuse detection systems will be presented

in the following chapter.

1.2 Attack planning and execution

To be able to mount a successful attack on the remote system an attacker has

to collect maximum amount of information about the target system and gain re-

mote or local access to the system. In order to gain information about Internet

(domain name, IP addresses of systems reachable via Internet, TCP and UDP

services running, system architecture, system enumeration), intranet (network-

ing protocols used etc.), remote access (phone numbers, authentication mech-

anisms etc.) and extranet (type of connection, access control mechanism), the

attacker has to perform footprinting of the target system [1]. Footprinting has

several stages. The initial stage after determining the scope of activities (whether

he will scan the whole organization, a subdomain of organization etc.) is net-

work enumeration, where the attacker identifies domain names and networks

related to the system he is footprinting. After successfully performing the net-

work enumeration and identifying all the associated domains he performs DNS

interrogation and finally network reconnaissance which allows the attacker to de-

termine network topology of the discovered networks and potential access paths

into the network. Once the attacker has performed network footprinting, scan-
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ning and enumeration, he at least has the information about the system that is

running and most likely more detailed information about programs installed and

therefore by looking at the list of vulnerabilities of the system he can attack the

network or particular hosts. Less skillful attackers will try to exploit already dis-

covered vulnerabilities hoping that the systems have not yet been patched. That

would result in either unsuccessful attacks due to the fact that, for example, the

attacker mounted an attack written for UNIX system to a Windows machine,

or in the successful exploit due to the fact that the attacker found a network

that doesn’t have a patched version of the system/software. This type of attacks

can be prevented by following newly released lists of vulnerabilities and apply-

ing patches on the system. However, more skillful attackers will perform the

full scanning of the system, find out which system is used, find out all potential

vulnerabilities and apply their own, newly created attacks. A special threat for

the security of UNIX computer systems represent stealthy User-to-Root Attacks,

which were included in the 1999 DARPA evaluation data set [4]. The main pur-

pose of stealthy attacks is to avoid creating familiar attack patterns that make

the attacks easy to detect. In order to avoid detection stealthy attacks should

only open and modify files that are accessed frequently, execute only commonly

used programs, not create new shells owned by root, not execute unusual system

calls (or sequences of system calls) or not create unusual traffic. Network traffic

created by an attack can be monitored using tcpdump. According to [2] the

most important guidelines for creating stealthy User-to-Root attacks are:

1. Attack scripts should be camouflaged during transfer using simple forms

of encryption;

2. All attack commands should be encapsulated into one shell script;
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3. The output of an attack should not be displayed;

4. Mail, HTTP and other common services should be used for data transfer;

5. Encrypted attack exploits should be created using common editors or shell

scripts;

6. Attacks should be spread over multiple sessions and time;

7. Attacks should use common commands and network services;

8. The stealthiness of each attack should be confirmed;

9. Probes should be executed slowly, from multiple sources in random order.

In most cases it is possible to detect all or most of known attacks and con-

struct systems that will successfully detect them, but it is a challenging task to

construct a system that would be able to detect new attacks.

1.3 Attack taxonomy

Kristopher Kendall’s thesis [3], based on the 1998 DARPA intrusion detection

evaluation set has a detailed overview of attacks and their classification. With

the taxonomy presented in [3] each attack can be classified as one of the following:

• Action at one level of privilege;

• Unauthorized transition (from a lower privilege level to a higher privilege

level);

• Action at a higher level of privilege, while the user is at the lower privilege

level.
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In order to perform an attack the attacker needs to gain access to the local

host and exploit a vulnerability in the system. Some methods of transition and

exploitation that were used in the 1998 DARPA evaluation are:

• m - Masquerading: an attacker gains access to a system by misrepre-

senting himself;

• a - Abuse of Feature: a user performs extremely high number of legiti-

mate actions that can lead to system congestion or program failure;

• b - Implementation Bug: bugs in programs can lead to compromising

the whole system. Typical examples are buffer overflows and race condi-

tions;

• c - System Misconfiguration: access is gained due to system miscon-

figuration (i.e. when some accounts are left with guest, anonymous or no

password at all);

• s - Social Engineering: access is gained by fooling an authorized user

into providing information that can be used to break into the system.

In summary, using the taxonomy presented in [4] attacks can be classified as

shown on figure 1.1.

1.4 MIT Lincoln Labs Evaluations

In the MIT Lincoln Labs report [4] results of eight different IDS systems ([5, 7,

8, 9, 10, 11, 12]) were compared. Systems [5, 8, 12] used BSM Solaris host audit

data to detect Solaris R2L (Remote-to-Local) and U2R (User-to-Root) attacks.
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remote
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single 
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Technique

standard

stealthy

Figure 1.1: MIT Attack Taxonomy.

Systems [8, 12] produced a combined output from both network sniffer data and

host audit data and used network sniffer data to detect R2L and U2R attacks

against the UNIX victims. System [9] used NT audit data to detect U2R and

R2L attacks against the Windows NT victim and [8, 12] used BSM audit data

to detect Data attacks against the Solaris victim. System [11] used information

from a nightly file system scan to detect R2L, U2R and Data attacks against

the Solaris Victim. Three weeks of training data were used, composed of two

weeks of background traffic with no attacks and one week of background traffic
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with a few attacks. The results showed that many stealthy and new attacks were

frequently missed. When designing stealthy attacks, they tried to avoid obvious

patterns that make those attacks easy to detect. It was shown that detection

rates for U2R and Data attacks are generally low for SunOS and Linux victims

where extensive audit data is not available. They also compared performance

of the best IDS in each category (DoS, Probe, R2L and U2R) for old and new

and for old and stealthy attacks. The detection of new attacks was much worse

than detection of old attacks, especially for DoS, R2L and U2R attacks. The

average detection rate for old attacks was 72% and for new attacks only 19%.

Also, stealthy probes and U2R attacks were much more difficult to detect for

network-based IDS that used sniffing data. U2R attacks against a Solaris victim

were accurately detected by host-based intrusion detection systems that used

BSM audit data. Attacks were not detected for various reasons. Signature-

based systems missed new attacks due to inability to recognize variations of old

attacks or because the system did not have a signature for the new attacks.

Stealthy probes were missed because they are executed during extended periods

of time and the systems were trained to recognize only aggressive probes that

exceeded certain thresholds.

1.5 Terminology

The field of intrusion detection is relatively young and many common terms have

a number of meanings. Therefore, this section presents some basic definitions

used in this thesis to avoid ambiguity if multiple definitions of one term exist.

Audit

9



(1) to examine a system for security problems and vulnerabilities. (2) to record

and analyze system activity for security problems and vulnerabilities [6]. The

first defined audit activity is referred to as static audit. The second definition

refers to the dynamic activity of monitoring the system state as it changes over

time. Throughout the remainder of this thesis the second definition will be used.

Audit trail

A chronological set of records of system activity [6]. In this thesis audit trail is

a record of system activity.

Buffer overflow

Redirection of the flow of execution of a program to perform some chosen activity

by feeding the program with selected input values.

False negative

Intrusion that is not detected by the intrusion detection system and is classified

as normal activity.

False positive (False alarm)

Normal activity that is classified as intrusion.

Intrusion

(1) inappropriate use of a computer system. (2) penetration of a computer

system by an outsider [6]. Throughout this thesis the second definition will be

used.

Intrusion detection

(1) identifying individuals who are using or attempting to use the computer

system without authorization or who have legitimate access but are attempting

to abuse their privileges.

Misuse
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Inappropriate use of the computer system.

Misuse detection

Identification of any attempted improper or inappropriate use of the system.

Normal

There are many definitions of normal. In this thesis normal behavior will be

the behavior that is not intrusive (does not match the training set of intrusive

behavior).

1.6 Motivation

There exists a sustained need for attack detection and in cases when the attacks

do happen we need to classify them. This thesis demonstrates that it is possible

to model attacks with a low number of states and classify them using Hidden

Markov Models with very low False Alarm rate and very few False Negatives.

Current results through our methods and algorithms do not display any False

Negatives, but we cannot claim that False Negatives will not appear in future

applications. The attacks for which we had most instances and associated data

were attacks exploiting buffer overflows and that is the reason why our exper-

imental results and applications of our algorithms presented in this thesis are

for such attacks. We present performance and experimental results for buffer

overflow attacks, while we describe how it is possible to apply our models and

algorithms for detection and classification developed in this thesis to other at-

tacks as well. We also emphasize that the purpose of our algorithms is not only

the detection and classification of buffer overflows, but they are targeted for de-

tecting and classifying a broad range of attacks (like Remote to Local attacks,
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race condition attacks, etc.). We are aware of the existence of tools for static

code checking and their advantages over Intrusion Detection Systems [43, 44, 42].

If implemented correctly and in all programs all buffer overflows would be de-

tected. However, they also have some disadvantages (high false alarms, high

false negatives, cannot detect all network attacks etc.) and are not applied in

all programs. A detailed analysis and comparison is presented in Chapter 3.

1.7 Thesis organization

The first chapter of this thesis provided background on current issues in the field

of intrusion detection, attack taxonomy and attack organization. It also provided

basic definitions that are relevant for this thesis. Chapter 2 discusses previous

work in the field of intrusion detection systems and points out their strengths and

weaknesses. Chapter 3 presents attack representation techniques and description

of U2R and R2U attacks. Chapter 4 presents a short overview of the theory of

Hidden Markov Models and multihypothesis testing. It presents the algorithm

used for detection and classification of intrusions and its application for detecting

buffer overflow attacks. Chapter 5 presents results of applying our algorithm

to monitoring data and Chapter 6 presents the conclusions, contributions and

possible extensions of this work.
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Chapter 2

Literature overview

This section presents some background in the area of intrusion detection. The

first section analyzes anomaly detection systems and their performance. It gives

a short overview of statistical methods for anomaly detection, predictive pattern

generation for anomaly detection and program-based anomaly detection. The

second section presents an overview of misuse detection techniques: language-

based misuse detection, expert systems and high-level state machines for misuse

detection. The third section presents an overview of specification-based ap-

proaches to intrusion detection: process, behavior monitoring and process state

analysis. The last section presents the ”attack tree” approach of modeling at-

tacks.

Each of the subsections gives a short overview of the technique of interest and

then presents the data set used. At the end of each section a table comparing the

main features of all methods is presented. The features presented in these tables

are: approach, database of normal present/not present, profiles, rules, events,

signatures, data set and type of classification.

This overview puts more weight to the approach presented in this thesis since
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it is the first attempt to detect the abnormality and classify it as a specific attack

(ffbconfig, eject, fdformat or ps).

2.1 Anomaly Detection

2.1.1 Statistical Methods for Anomaly Detection

In statistical methods for anomaly detection the system observes the activity

of subjects and generates profiles to represent their behavior, where a profile

includes such measures as activity intensity measures, audit record distribution

measures, categorical measures (the distribution of an activity over categories)

and ordinal measure (such as CPU usage). Two profiles are maintained for each

subject: the current profile and the stored profile. As the records are processed,

the system updates the current profile and periodically calculates a measure of

the activity’s abnormality by comparing the current with the stored profile using

a function of abnormality of all measures within the profile. The stored profile

is periodically updated by merging it with the current profile.

Disadvantages of statistical methods are: some methods can be trained by

a skilled attacker to accept abnormal behavior as normal, it can be difficult

to determine thresholds that balance the likelihood of false positives with the

likelihood of missing intrusive events, need accurate statistical distributions. Not

all behaviors can be modeled using purely statistical methods, most techniques

require the assumption of a quasi-stationary process, which is not always the

case. Models that do not make this assumption are more complex and time-

consuming. (Kumar 95)
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Haystack

Haystack [13] is an example of a statistical anomaly-based IDS. It uses both user

and group-based anomaly detection. It models system parameters as indepen-

dent, Gaussian random variables. Parameters are considered as abnormal when

they fall out of 90% of the data range for the variable. It maintains a database

of user groups and individual profiles. If a user has not previously been detected,

a new user profile with minimal capabilities is created using restrictions based

on the user’s group membership. It is designed to detect six types of intrusions:

attempted break-ins by unauthorized users, masquerade attacks, penetration of

the security control system, leakage, DoS attacks and malicious use.

Bayesian classification

Bayesian classification automatically determines the most probable number of

classes for the data, continuous and discrete measures can be freely mixed. On

the other hand, this approach does not take into account the interdependence of

the measures, it is unclear whether the algorithm can perform classification in-

crementally as needed for on-line processing, suffers from difficulty to determine

thresholds, susceptibility to be trained by a skillful attacker etc.

2.1.2 Predictive Pattern Generation for Anomaly Detec-

tion

Predictive pattern generation for anomaly detection takes into account the rela-

tionship and ordering between events. It assumes that events are not random,

but follow a distinguishable pattern. Such methods learn to predict future ac-
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tivities based on the most recent sequence of events and flag events that deviate

significantly from the predicted.

Machine learning

T. Lane and C. Brodley applied the machine learning approach to anomaly de-

tection in [14]. They built user profiles based on input sequences and compared

current input sequences to stored profiles using a similarity measure. To form a

user profile, the approach learns characteristic sequences of actions generated by

users. For learning patterns of actions the system uses the sequence as the unit

of comparison. A sequence is defined as an ordered, fixed-length set of tempo-

rally adjacent actions, where actions consist of UNIX shell commands and their

arguments. To characterize user behavior they used only positive examples. For

the purpose of classification, sequences of new actions are classified as consistent

or inconsistent in reference to sequence history using a similarity measure. To

classify the attack, they classify the similarity of each input sequence, yielding a

stream of similarity measures. If the mean value of the current window is greater

than the threshold then it is classified as normal.

DATA SET

The data used in the experiments consisted of a set of UNIX shell command

histories from four members of the Purdue lab in a four month period. They

compared the specific user to other users and calculated the similarity measure.

Time-based inductive generalization

Teng, Chen and Lu [15] developed a technique that applies a time-based induc-

tive learning approach to security audit trail analysis. The system developed
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sequential rules. The technique uses time-based inductive engine to generate

rule-based patterns that characterize the normal behavior of users. Each event

is one single entry in the audit trail and is described in terms of a number of

attributes (event type, image name, object name, object type, privileges used,

status of execution, process ID, etc). The events in the audit trail are considered

to be sequentially related. Rules identify common sequences of events and the

probability of each sequence being followed by other events. Rules with a high

level of accuracy and high confidence are kept, less useful rules are dropped.

They define two types of anomaly detection: deviation detection and detec-

tion of unrecognized activities. Low probability events are also flagged, using a

threshold. Anomaly is detected if either deviation or unrecognized activity are

detected.

This method can identify the relevant security items as suspicious rather

than the entire login session and it can detect some anomalies that are difficult

to detect with traditional approaches. It’s highly adaptive to changes, can detect

users who try to train the system, activities can be detected and reported within

seconds. On the other hand, some unrecognized patterns might not be flagged

since the initial, predicting portion of the rule may be matched.

2.1.3 Program-based Anomaly Detection

Program modeling

The program modeling approach (Garth Barbour Ph.D. thesis [16]) presents an

algorithm that efficiently learns the program behavior. The author claims that

the number of false positives never increases with additional training. If there is a

false positive, the representation can learn to accept the run in the future without
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negatively impacting the performance of other runs. He also claims that his

technique can detect novel attacks as they occur, without manual specification

of program behavior or attack signatures. His algorithm learns an approximation

of the program’s behavior. The number of false positives decreases with training

set size. He uses a non-statistical method since statistical methods would miss

minor deviations.

Barbour presents an algorithm that learns program behavior, without any

input parameters presented in addition to his algorithm, which would add more

reliability to his results. Input parameters may add additional reliability to

detection because in programs with significant number of system calls, we may

have different arguments associated with those system calls. If a program with

limited capabilities is observed, it does not generate too many different system

calls and, hence it is easy to detect any misuse of that program. On the other

hand, if we are dealing with a powerful program, it generates a significant number

of system calls and therefore, it is more difficult to detect misuse of that program.

DATA SETS

He initially claimed that his algorithm outperforms other algorithms on DARPA/LL,

UNM and his own artificially generated set. However, the final results do not

show any comparison with the UNM data and DARPA/LL data set shows that

the work of Ghosh [26] outperformed the Program Modeling approach.

Computational Immunology

Stephanie Forrest is investigating anomaly detection on system processes from

the perspective of immunology [17, 18, 19]. In [17] the authors base their ap-

proach on the immunological mechanism of distinguishing self from non-self and

18



use lookahead pairs. They take short sequences of system calls, called n-grams,

that represent samples of normal runs of programs and compare them to se-

quences of system calls made by a test program. If any run has a number

of mismatches that is higher than a certain number (percent), it is flagged as

anomalous. They extended their work to variable length sequences, based on

random generation of examples of invalid network traffic to detect anomalous

behavior. Unlike Barbour [16], where there is no delay in detecting anomalies,

the approach of Forrest has a certain delay due to the fact that the program

computes the percent mismatch to be able to flag or not flag the run as anoma-

lous. Hofmeyr [18] used the rule of r contiguous bits and showed that fixed

length sequences give better discrimination than lookahead pairs.

Christina Warrender [19] modelled normal behavior of data sets described

below using stide, t-stide, RIPPER and HMMs. She compared learning methods

for application to n-grams: enumerating sequences using lookahead pairs and

contiguous sequences, methods based on relative frequency of different sequences,

RIPPER (a rule-learning system) and HMMs. They used RIPPER to learn rules

representing the set of n-grams. Training samples consisted of set of attributes

describing the object to be classified and a target class to which the object

belongs. RIPPER takes training samples and forms a list of rules to describe

normal sequences. For each rule a violation score is established. Each set that

violates a high confidence rule is a mismatch. They created HMMs so that

there is one state for each n-gram. The results showed that HMMs performed

marginally better than other methods. She showed that HMMs performed only

marginally better than other simple and not computationally expensive methods

and concluded that the choice of data stream (short sequences of system calls)
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was more important than the particular method of analysis.

DATA SETS

In [17] and [18] synthetic data sets were used. They were generated in production

environment by running a prepared script. Warrender [19] collected traces of

programs collected during normal usage and used only those programs that run

with privilege due to the fact that misuse of privileged programs does the most

harm to the system. She used lpr, named, xlock, login and ps. Data for

lpr was collected at two universities using different printing environments. The

named normal data consists of a single daemon trace and traces of its subprocesses

and the intrusion against named is buffer overflow. They used two sample traces

of buffer overflow attack. Data for xlock includes 71 synthetic traces and one

live trace. The intrusion used was a buffer overflow. For login and ps they used

two Trojan programs.

Variable-length audit trail patterns

Wespi [23] points out that usage of fixed-length patterns to represent the process

model in [17] has no rule for selecting the optimal pattern length. On the other

hand, Forrest et.al. [18, 19] point out that the pattern length has an influence

on the detection capabilities of the IDS. Wespi et.al. initially were not able to

prove significant advantage of variable-length patterns in [21]. Later, in [23] they

showed that the previously stated method outperforms the method of Forrest

et. al [18, 19]. They use functionality verification test (FVT) suites provided by

application developers to generate a training set based on the normal program’s

specified behaviors. Their system consists of an off-line and on-line part. In the

next step they apply the Teiresias algorithm [22] to generate the list of maximal
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variable-length patterns followed by some pruning during their preprocessing.

During operation, a recursive pattern matching algorithm attempts to find the

best matches for the test run. The measure of anomaly is the longest sequence

of unmatched events (more than six consecutive unmatched events are treated

as an intrusion).

Initial work generated variable-length patterns using a suffix-tree construc-

tor, a pattern pruner, and a pattern selector. ID based on this technique can

detect the attacks but is prone to issue false alarms. Then they used a modified

version of the pattern generator to create variable-length patterns that reduce

the number of false alarms substantially without reducing the ability to detect

intrusions.

The technique presented in the initial paper had the weakness of not having

a model for intrusion. Because of that reason, the advantages of the Teiresias

algorithm were of no use and the performance was only marginally better than

the methods of Stephanie Forrest.

The authors claim that their algorithm performs better than the fixed-length

sequences of Stephanie Forrest, but they compare their algorithm only for the

ftpd process and then claim that their algorithm outperforms algorithms pre-

sented in [17, 18]. This is arguable because it might be the case that they

presented one example where their algorithm outperformed the other algorithms

and did not present the instances where their algorithm failed. Hence, we can

conclude that on that specific process algorithm of Wespi et. al. [23] did out-

perform the algorithm of Forrest et. al. [17, 18] but, on the other hand, that

may or may not be true for other processes.

DATA SET
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Wespi et. al. set up their own test environment and did not use DARPA/LL

data set.

Multiple length N-grams

C. Marceau [20] reviewed the work of Forrest et.al. [18] and their N-gram char-

acterization of sequences of system calls. She proposed an alternative character-

ization in the form of a Finite State Machine whose states represent predictive

sequences of different lengths. An algorithm that constructs an FSM from train-

ing data is presented. In the presented approach the author first constructs a

suffix tree for N-grams of the training data for some value of N that is large

enough (small values of N lead to false negatives and large values of N increase

training time). Then a suffix tree is converted to a DAG by merging equivalent

subtrees. The result is a set of strings of varying length that is equivalent to the

original set of N-grams. The contribution of the paper is that they show how to

derive a FSM implementation of the sliding window algorithm presented in pa-

pers of Forrest et.al. [18] and reduce the size of data sets (177 strings and 1062

symbols from Forrest database are equivalent to 131 strings and 318 symbols

from Marceau database).

DATA SETS

The author used lpr training data and exploits from UNM data set, inetd

training data and exploits from UNM data set and data from the PersonalTracker

applications collected by the CORBA Immune System. The CORBA Immune

System uses the N-gram method to catch malicious programs that masquerade

as legitimate clients.
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Finite Automaton construction

Kosoresow [24] analyzed the structure of system call traces for normal and

anomalous behavior. The audit trail used consists of traces of system calls exe-

cuted by privileged processes. The parameters for each system call are ignored

and the name of the call is replaced with a unique number. From that sequence

they build a database of normal behaviors for each process. He counted the

mismatches within small, fixed-length sections of the trace - locality frames. The

frames were about 20 system calls long. In each position of the frame he counted

the number of system calls that generated the mismatch. He observed that mis-

matches occur close together, which lead him to the conclusion that only short

sequences of system calls are needed for detection. The other observation was

that long sequences of system calls were consistently repeated, which lead him to

use a Deterministic Finite Automaton (DFA) and its corresponding regular lan-

guage. He constructed a DFA using manually selected macros (variable-length

patterns of system calls). He divided the trace into the prefix, main and suf-

fix portion and found the longest common prefixes and suffixes for each of the

categories and looked for frequently occurring strings. He then substituted the

strings for the macros and built a DFA from these letters. After applying this

algorithm, out of 147 sendmail processes only 26 distinct processes were left.

The disadvantages of his approach were that he created DFA using scripts

and by hand, which is not efficient and does not scale well to real systems.

That leads to the conclusion that an exact DFA representation is not possible.

Also, calculating macros based on the minimal description of the normal trace

is potentially NP-hard. The observation that mismatches occur in occasional

bursts does not hold for stealthy attacks.
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DATA SET

Kosoresow used UNM data set.

Fast-automation based method

R. Sekar et.al. introduced a fast-automation based method for detecting anoma-

lous program behaviors [25]. They criticize the approach of Forrest et.al. [17]

because small values of N lead to the possibility of not capturing all behaviors

and missing attacks. They take the Finite State Automaton (FSA) approach

to the problem since an FSA can capture an infinite number of sequences of

arbitrary length using finite storage. The authors claim that their FSA repre-

sentation leads to performance better than the one in Forrest et.al. [17]. Their

approach has the property that it learns faster, has better detection, false posi-

tive rate drops, presents large sets of execution traces in a compact way and has

faster detection. Their learning algorithm is based on tracing the system calls

made by a process under normal execution. In addition to system call names,

they obtain the value of program counter (PC) as well since each value of the

PC corresponds to a different state of the FSA. For each system call they obtain

the corresponding location from where the call was made, check if there exists a

transition from the current state to the new state that is labeled with the system

call name that was intercepted (if not, there is an anomaly) and finally update

the state of the automaton to correspond to the new state. The authors show

that their algorithm converges quickly, false positive rate of the FSA algorithm

is low and space and runtime overhead of FSA-learning is minimal.

DATA SET

Sekar et.al. [25] used ftpd, httpd, nsfd and telnetd programs and compared
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their approach to the N-gram approach on that data set. They compared the

algorithms with respect to convergence of learning, false positive rate, runtime

and space overhead and attack detection efficiency. They also compared the

results using a live Web server. They argue that their system is able to detect

almost all buffer overflow attacks, Trojan Horse and other code changes, mali-

ciously crafted input, dictionary or password guessing attacks and DoS attacks.

The FSA-based approach cannot detect attacks that involve system call argu-

ment values, race conditions (and other attacks that do not change behavior of

attacked program) and certain classes of attacks launched with knowledge of the

intrusion detection techniques being used.

Program Behavior Profiles

The work of Ghosh et. al. [26] is based on the work of the UNM group. The goal

of their approach was to employ machine learning techniques that can generalize

from past behavior so that they are able to detect new attacks and reduce the

false positive rate. The first approach they used was equality matching. The

database used was the normal behavior of programs. Instead of using strace,

they use BSM data to collect the system call information and collect them into

fixed size windows. They used the fact that the attacks cause anomalous be-

havior in clusters, like Kosoresow in [24]. Their decision choice looks for local

clustering of the mismatches. The second model was the feed-forward topology

with backpropagation learning rules. Database was not on per-user basis like

in [14], but they built profiles of software behavior and malicious software be-

havior. During training many networks were trained for each program and the

network that performed the best was selected. The training process consisted
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of exposing networks to four weeks of labeled data and performing backprop-

agation algorithm to adjust weights. They trained Artificial Neural Networks

(ANN) to recognize whether small, fixed sequences of events are characteristic

of the programs in which they occur. For each sequence, the ANN produces an

output value that represents how anomalous the sequence is. The leaky bucket

algorithm was used to classify the program behavior and using leaky bucket they

made use of the rule that two close anomalies have higher influence than when

they are apart. The final approach was Elman network, developed by Jeffrey

Elman, since they wanted to add information about the prior sequences (DFA

approach lacked flexibility and ANNs have the ability to learn and generalize).

In order to generalize they employ a recurrent ANN topology of an Elman net-

work. They train the network to predict the next sequence that will occur at any

point in time. The Elman network approach had the best results, with 77.3%

detection and no false positives and 100% detection and fewer false positives

than in two other cases.

They also tried two approaches in which they used FSMs for their represen-

tation. Audit data was condensed into a stream of discrete events, where events

are system calls recorded in data. Separate automata are constructed for differ-

ent programs whose audit data are available for training. The training algorithm

is presented with a series of n−grams taken from non-intrusive BSM data for

a given program. The audit data is split into sub-sequences of size n + l (n

elements define a state and l elements are used to label a transition coming out

of that state). The second FA-like approach, called a string transducer makes

an attempt to detect subtler statistical deviations from normal behavior. It as-

sociates a sequence of input symbols with a series of output symbols. During
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training they estimate the probability distribution of the symbols at each state

and during testing, deviations from this probability distribution indicate anoma-

lous behavior. They use FA whose states correspond to n−grams in the BSM

data. For each state they also record information about successor l−grams that

are observed in the training data. During training their goal is to gather statis-

tics about successor l−grams. They estimate the probability of each l−gram by

counting.

DATA SETS

They used 1998 and 1999 DARPA/LL datasets. They used twelve weeks of train-

ing data from Lincoln Labs. They also used some additional data from Johns

Hopkins University and they collected data for eject, fdformat and xterm on

their own system. The data contained probes, DoS attacks, unauthorized ac-

cesses and unauthorized privilege elevations. The results show that under 94%

of the attacks were detected. However, they did not include the attacks that did

not misuse existing programs, meaning that the actual detection rate is much

smaller.

2.1.4 Anomaly detection using data mining

The ADAM (Audit Data Analysis and Mining) system [30] is an anomaly de-

tection system. It uses a module that classifies the suspicious events into false

alarms or real attacks. It uses data mining to build a customizable profile of

rules of normal behavior and then classifies attacks (by name) or declares false

alarms. ADAM is a real-time system. To discover attacks in TCPdump audit

trail, ADAM uses a combination of association rules, mining and classification.

The system builds a repository of normal frequent itemsets that hold during
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attack-free periods. Then it runs a sliding window online algorithm that finds

frequent item sets in the last D connections and compares them with those stored

in the normal item set repository. With the rest, ADAM uses a classifier which

has previously been trained to classify the suspicious connections as a known

type of attack, unknown type or a false alarm. Association rules are used to

gather necessary knowledge about the nature of the audit data. They derive a

set of rules in form X → Y , where X and Y are sets of attributes. There are two

parameters associated with a rule: support s and confidence c. The definitions

of s and c are as follows. The rule x → Y has support s in the transition set T if

s% of transactions in T contain X or Y. The rule x → Y has confidence c if c%

of transactions in T that contain X also contain Y. If the item set’s support sur-

passes a threshold, that item set is reported as suspicious. The system annotates

suspicious item sets with a vector of parameters. Since the system knows where

the attacks are in the training set, the corresponding suspicious item set along

with their feature vectors are used to train a classifier. The trained classifier will

be able to, given a suspicious item set and a vector of features, classify it as a

known attack (and label it with the name of attack), as an unknown attack or

a false alarm.

DATA SET

ADAM was one out of 7 systems tested in the 1999 DARPA evaluation. In

overall evaluation it performed about the same as EMERALD and better than

all other systems. It was focused mainly on detecting DoS attacks and probes.

Tables 2.1 and 2.2 represent the main features of the presented techniques.
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2.2 Misuse Detection

2.2.1 Language-based Misuse Detection

Language-based Misuse Detection systems accept a description of the intrusions

in a formal language and use this to monitor for the intrusions. Most languages

for misuse systems, including the one used by NIDES, are low-level and have

limited expressiveness.

ASAX

Habra et. al. define Advanced Security audit trail Analysis for universal audit

trail analysis [32]. ASAX (Advanced Security audit trail Analysis on uniX) uses

RUSSEL, a rule-based language, specifically appropriate for audit trail analysis.

ASAX sequentially analyzes records using a collection of rules that are applied

to each audit record. A subset of rules is active at any time. They define a

normalized audit data format (NADF) as a canonical format of the Operating

System’s audit trail.

2.2.2 Expert Systems

Expert systems use lists of conditions that, if satisfied, indicate that an intrusion

is taking place. The conditions are rules that are evaluated based on system or

network events. These rules are specified by experts familiar with the intrusions,

generally working closely with the developers of the system.
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2.2.3 High-level state machines for misuse detection

The State Transition Analysis Tool (STAT)[33] describes computer pen-

etrations as attack scenarios. It represents attacks as a sequence of actions

that cause transitions that lead from a safe state to a compromised state. A

state represents a snapshot of the system’s security-relevant properties that are

characterized by means of assertions, which are predicates on some aspects of

the security state of the system. The initial state of a transition diagram does

not have any assertions. Each state transition diagram starts with a signature

action that triggers monitoring of the intrusion scenario. Transitions between

states are labelled by the actions required to switch from one state to another.

These actions do not necessarily correspond to audit records. The resulting state

transition diagram forms the basis of a rule-based intrusion detection algorithm.

USTAT [34] is an implementation of the STAT tool developed for Solaris BSM.

It reads specifications of the state transitions necessary to complete an intrusion

and evaluates an audit trail. Two preconditions must be met to use USTAT:

the intrusion must have a visible effect on the system state and the visible effect

must be recognizable without knowing the attacker’s true identity.

STATL [35] is a language that allows description of computer penetrations

as sequences of actions that an attacker performs to compromise a computer

system. The attack is modelled as a sequence of steps that bring a system from

an initial safe state to a final compromised state. An attack is represented as a

set of states and transitions, where each transition has an associated action. The

notion of timers is used to express attacks in which some events must happen

with an interval following some other event (set of events). Times are declared

as variables using the built-in type timer. STAT can detect cooperative attacks
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and attacks that span multiple user sessions, can specify rules at higher level than

audit records, is easier to create and maintain than other rule-based methods,

can represent a partial ordering among actions, can represent longer scenarios

than other rule-based systems. On the other hand, it has no general-purpose

mechanism to prune partial matches of attacks other than assertion primitives

built into the model.

DATA SETS

USTAT and NetSTAT were tested in the 1998 DARPA/LL off-line intrusion

detection evaluation and the 1998 AFRL real time evaluation.

2.2.4 EMERALD

EMERALD (Event monitoring enabling responses to anomalous live distur-

bances) [31] employs both anomaly and misuse detection. It includes service

analysis that covers the misuse of individual components and network services

within a single domain, domain-wide analysis that covers misuse visible across

multiple services and components and enterprise-wide analysis that covers co-

ordinated misuse across multiple domains. They also introduce the notion of

service monitors that provide localized analysis of infrastructure and services.

EMERALD consists of three analysis units: profiler engines, signature engines

and resolver. Profiler engine performs statistical profile-based anomaly detec-

tion given a generalized event stream of an analysis target. Signature engine

requires minimal state management and employs a rule-coding scheme. The

profiler and signature engines receive large volumes of event logs and produce a

smaller volume of intrusion/suspicion reports and send that data to the resolver.

The signature analysis subsystem allows administrators to instantiate a rule set
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customized to detect known problem activity occurring on the analysis target.

2.3 Specification-based approaches to Intrusion

Detection

In specification-based approaches we don’t need to specify signatures for known

attacks, but we can instead specify known properties that should hold true in a

valid execution. This approach is user insensitive, requiring manual specification

of program behaviors.

2.3.1 Specification of legal activities

Ko et.al. [27] developed an approach using specifications of legal activities for

security critical programs to verify program execution. They aim to detect ex-

ploitations of vulnerabilities in privileged programs by monitoring their execu-

tion using audit trails. The monitoring is with respect to specifications of the

security-relevant behavior of the programs. Their approach involves the writing

of specifications of legal activities for privileged programs and the use of these

specifications to verify program execution. The specification language is based

on predicate logic and regular expressions. The language alphabet consists of a

set of operation predicate symbols OP , a set of attribute symbols At for each

type t ∈ T (T is the set of object types) and a set of state variable symbols S.

The body of a program policy specification is a list of rules that characterize

the set of parameter values allowed for each operation.

DATA SETS

Ko et. al. use a few attacks that exploit vulnerabilities in Unix privileged
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programs: rdist, finger daemon and sendmail.

2.3.2 Process Behavior Monitoring

R. Sekar [28] has presented an alternate approach to specification-based intru-

sion detection. This approach uses a domain-specific language called behavioral

monitoring specification language (BMSL). BMSL consists of rules in the form

pat → action, where pat is a pattern on event sequences and actions specifies

the responses when the observed history satisfies pat.

They developed generic specifications (grouped system calls of similar func-

tionality), refined the generic specifications for setuid programs and daemon

processes. Then they developed application-specific specifications for FTP and

telnet servers and added site-specific security policies to these specifications.

DATA SET

1999 DARPA/AFRL online evaluation, 1999 DARPA/LL offline evaluation data

and several locally developed experiments were used. They could detect 80% of

the attacks using specifications that characterized legitimate program behaviors.

They describe how their system was able to detect buffer overflows, ftp-write

attack, warez attack, guess telnet, guest and HTTPtunnel attacks. They claim

that no false alarms were reported by their method on the BSM data.

2.3.3 Process State Analysis

Nuansri et. al. [29] analyzed the pattern of system calls of a process, so that later

the tracing technique could be used for an intrusion detection method. They used

ktrace() system call to trace process activities. The tracing function reports

35



all system calls used in a traced process as well as their arguments and return

values, an error number and an error message (if they exist). They classified the

user attributes into states, where state is described by a 4-tuple: real user ID,

effective user ID, real group ID and effective group ID. States can be normal,

special privileged and superuser states. The authors created a state transition

diagram representing changes in process privilege where illegal transitions were

used to create a set of rules (five rules) for use in intrusion detection.

This intrusion detection technique has a delay in detection because the ktrace()

writes into a file which is then read by the intrusion detection system.

Table 2.3 represents the overview of presented Specification-based techniques.

All classification methods are based on Normal/Abnormal classification.

2.4 Other approaches

2.4.1 Attack graph/tree approach

Automated generation and analysis

Sheyner et. al. [36] adopted the attack graph approach to attack detection. The

whole process has three steps: modeling the network, producing the attack graph

and analyzing the attack graph. They model the network as a FSM, where state

transitions correspond to atomic attacks. They produce the attack graph using

the model checker NuSMV [37]. Since the attack graph produced that way is a

low level state transition diagram they parse the graph and reconstruct the origi-

nal meanings of the state variables as they relate to the network intrusion. They

model the network as a set of facts, each represented as a relational predicate.

The state of the network specifies services, host vulnerabilities, connectivity be-

36



A
u
th

or
s

A
p
p
ro

ac
h

D
at

ab
as

e

of
n
or

m
al

P
ro

fi
le

s
R

u
le

s
E

ve
n
ts

S
ig

n
at

u
re

s
D

at
a

se
t

L
an

gu
ag

e

K
o,

F
in

k
,

L
ev

it
t

S
p
ec

ifi
ca

ti
on

b
as

ed

P
ri
v
il
eg

ed

p
ro

c.

S
p
ec

ifi
ca

ti
on

s
N

O
Y

E
S

A
tt

ri
b
u
te

s
rd

is
t,

fi
n
ge

r

d
ae

m
on

,

se
n
d
m

ai
l

Y
E

S

S
ek

ar
P

ro
ce

ss
b
eh

.

m
on

it
or

in
g

Y
E

S
N

O
Y

E
S

A
ct

io
n
s

N
O

D
A

R
P
A

an
d

ow
n

Y
E

S
-

B
S
M

L

N
u
an

sr
i

S
ta

te
tr

an
s.

d
ia

gr
am

,

p
ro

ce
ss

st
at

e

an
al

y
si

s

Y
E

S
N

O
Y

E
S

-
5

N
O

P
at

te
rn

s

of
sy

s

ca
ll
s

N
O

N
O

S
ek

ar

(D
A

R
P
A

ev
al

u
a-

ti
on

)

In
te

rc
ep

ti
on

of
sy

s
ca

ll
s,

E
F
S
A

Y
E

S
N

O
Y

E
S

Y
E

S
P
at

te
rn

s
ft

p
d
,

te
l-

n
et

d
,
h
tt

p
d

Y
E

S

T
ab

le
2.

3:
O

ve
rv

ie
w

of
S
p
ec

ifi
ca

ti
on

-b
as

ed
In

tr
u
si

on
D

et
ec

ti
on

A
p
p
ro

ac
h
es

.

37



tween hosts and a remote login trust relation. They suppose that the intruder

has knowledge about the target network and its users, such as knowledge about

host addresses, known vulnerabilities, information about running services, etc.

Each node in the attack graph is labelled by an attack ID number (corresponds

to the atomic attack to be attempted next), a flag that indicates whether the

attack is stealthy or detectable and the numbers of the source and target hosts.

As the authors claim, the bottleneck of their approach is the graph creation

procedure since it took two hours to create a graph that had 3 hosts and eight

attacks.

DATA SETS

They modeled sshd buffer overflow, ftp.rhosts, remote login and local buffer

overflow.
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Chapter 3

Attack representation and modelling

In this section we demonstrate that attacks have regular behavior that can be

easily captured in four to five transitions. We present attack trees and their

properties as means to model broad classes of network attacks. Comparing

the transition diagrams of normal and malicious sequences we conclude that

distinguishing among normal and malicious sequences is possible and can be

done using as data sequences of system calls with information about payload

size and shell execution and methods from detection theory.

This chapter presents also applications of attack tree models specifically to

attacks exploiting buffer overflow attacks and of one Remote to Local attack. The

model for ftp-write attack could not be applied for detection and classification

due to lack of data. In this chapter we also present a description of race condition

attacks. From that description we draw the conclusion that it is possible to detect

and classify race condition attacks using our approach. The main goal of this

thesis (as stated earlier) is to present efficient attack models and demonstrate

their use for high performance detection and classification of attacks. Due to

lack of attack data for other attacks we have shown results of application of
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our methods to attacks that exploit buffer overflows. To emphasize again, the

main focus of this thesis is not modelling and detecting of buffer overflows, but

modelling and detecting of broad classes of network attacks.

We are aware of the existence of tools for static code checking that are efficient

in detecting buffer overflows and other attacks [43, 44, 42]. However, those tools

have high false positive rates (up to 75%) and produce some false negatives

(miss some attacks). Those tools are highly efficient if applied during the code

development phase but it is not possible to apply them to already existing codes

(or is very difficult to apply them). They also need implementation of certain

rules and they demand a change in the code itself. Hence, it is possible to use

them in the future and if used consistently they would significantly reduce the

number of attacks that appear. The facts, however, show that only about 15%

of code developers use programs that check code for possible errors like buffer

overflows etc. and that proves that there is a need for dynamic (or on-line)

Intrusion Detection systems now and in the future even for attacks that exploit

buffer overflows. The need for IDS for attacks that exploit buffer overflows would

be greatly reduced if all program developers used both static and dynamic code

testing for buffer overflows.

In [42] the authors present a lightweight static analysis tool for static analysis.

The tool is used for checking codes written in ANSI C. They show that the

program generates both false positives and false negatives, meaning that it misses

some of the attacks and also misclassifies normal behavior for anomalous. Their

tool is based on reporting all suspicious commands like, for example, gets etc.

Finally, the tool they introduced has extremely high false positive rate. Running

the tool on wu-ftpd 2.5 produced 101 warnings. Out of those warnings, only 25
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represented real buffer overflow attacks. Hence, the tool had FA rate around

75%. The authors claim that ”although static analysis is important approach

to security it is not a panacea. It does not replace runtime access controls,

systematic testing and careful security assessments”.

Another paper that presents a technique for detecting potential buffer over-

flows by static analysis was written by David Wagner et. al [43]. Their approach

involves synthesis of ideas from several fields, including program analysis, theory

and systems security. They formulate the buffer overrun detection problem as an

integer constraint problem and they use some simple graph-theoretic techniques

to construct an efficient algorithm for solving the integer constraints. The tool

the authors present produces both false positives and false negatives. The au-

thors define the number of false negatives the tool produces as limitations of the

tool and say that ”a human must still devote significant time to checking each

potential buffer overrun”. Hence, this version of the tool finds many of buffer

overflows in tested programs but also misses some of them and there still exists

a significant need for human presence.

David Wagner and Hao Chen present MOPS - MOdel Checking Programs

for Security Properties in [44]. They identify rules of safe programming practice,

encode them as safety properties and verify whether these properties are obeyed.

The program to be modelled is represented as a pushdown automaton and the

security property is represented as a Finite State Automaton. This tool also has

high false alarm rate. There were no reports of False Negatives in this tool. The

results are obtained on well known applications like wu-ftpd and sendmail.

In summary, if the static analysis tools are used for detection of buffer over-

flows they will detect the majority of attacks, but may also miss them. Every-
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thing is done under a high FA cost (around 75%). Those tools cannot detect

other types of attacks successfully and there emerges a need for use of dynamic

intrusion detection systems. In order to use static analysis tools efficiently all

programmers have to use them when developing the code or re-apply the analysis

tools to their already existing programs. That is infeasible and hence the need

for dynamic intrusion detection systems still exists.

In this chapter we first give the definition of attack trees, then we describe

each of the attack using the attack trees and finally we argue in support of

the claim that attack trees are useful for understanding attacks but may not

be appropriate as a main tool for attack detection. Then we present each of

the attacks in the condensed form, containing only the states, transitions and

parameters that characterize those attacks.

3.1 Attack representation

An attack tree [40, 41] is a Directed Acyclic Graph (DAG) with a set of nodes

and associated sets of system calls for those nodes. Attack trees provide a formal,

methodical way of describing the security of systems, based on various attacks.

They give a description of possible sets of subactions that an attacker needs to

fulfill in order to achieve a goal and bring the network to an unsafe state [41].

We represent attacks against the system in tree structure where the goal is to

compromise the root node. Different ways of achieving the goals are represented

in the form of leaf nodes. Each node/state has some associated memory and

represents a goal towards achieving the final result. The values stored in the

nodes should have the ability to update themselves with the new information
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about attacks. If we associate each edge in the tree with some probability/weight

as weight=f(configuration, attacker profile) then this information should be up-

dated with new attacks. The individual goals can be achieved as sets of OR and

AND sets of actions and subactions. Subactions are actions of the attacker that

he needs to fulfill in order to achieve his goal (for example, in order to create

a stealthy attack the attacker has to interleave some “normal” sequences of ac-

tions). The real challenge in constructing attack trees is that we must assume

different levels of skills of the attackers, try to predict different paths of intru-

sions and evaluate costs of attacks. States are defined as actions performed by an

attacker at a certain time. Transitions are caused by changes to a current state.

We can further describe transitions by the property that transition from state n

to state n+1 corresponds to an attack whose preconditions are satisfied in state

n and whose postconditions hold in state n + 1. Each transition involves the

application of an operation that takes the stored value and input and generates

output and a new value for the stored value. Using this notation we can describe

an attack as a sequence of transitions that ends with the action of the attacker

compromising the security of the system. Each node is a rule or a set of rules

that gives us information about how the intruder can influence the network.

We have a malicious user who executes system calls in certain order to at-

tempt to break in the computer system. The major problem is that in most

cases of high-level attacks those sequences of system calls can be interleaved

within normal system behavior in numerous ways. Our goal is to detect when

a particular sequence of harmful instructions that could compromise security of

our system has been performed. Though the distributed nature of these mea-

surements is very important (as when an attack unfolds), we ignore it at present.
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We need to represent a program as an attack tree, with goals and transition

probabilities, as defined in [41] in the following way:

1. Create an attack tree representation where each node is a subgoal towards

reaching the desired goal and each edge is labeled with the system calls

made by the monitored program.

2. Estimate the attack tree in a probabilistic manner based on system calls

made by the program.

3. Generate a database of actions from the given attack tree and convert

those actions in a set of HMMs, where each HMM is trained to recognize

the attack pattern from which it was generated.

4. Use the current state to rule out actions of the attacker with unmatched

preconditions.

5. The IDS system performs pattern matching of HMMs and possible se-

quences of the attack and produces a score for each of the patterns.

6. Use the obtained scores to find the likelihoods of the attacker’s actions

that were generated.

7. Use the obtained data to determine if the program is being attacked.

The first step in analyzing the tree is to determine the set of states that

are reachable from the initial state and find the unsafe states (paths that lead

to compromising the state of the system). The first transition in the attack

tree picks a subset of attacks that the intruder might use based on the set

of preconditions. Each node in the level lower than the level of the root is a

44



subgraph where another subset of attacks is used etc. This leads to the conclusion

that in order to check every possible subset of attacks we need to run the check

exponential number of times to the number of attacks.

3.2 Attack description and modelling

This section includes description of most commonly exploited categories of at-

tacks and equivalent graphs that represent the flow of execution of those at-

tacks. Finally, we define each attack with a sequence of 4-5 system calls and

corresponding arguments. The studied attacks include four instances of User to

Root attacks that exploit buffer overflows and two instances of Remote to Lo-

cal attacks. The attacks studied are: eject, ps, ffbconfig, fdformat and

ftp-write. The data used for attack detection was MIT Lincoln Labs 1998

data set for eject, ffbconfig, fdformat and ftp-write. Although the MIT

Lincoln Labs attack database indicates that ps attack was detected both in 1998

and 1999, the table that contains attacks detected in 1998 does not contain it.

Hence, the 1999 data was used to create a representation of that attack. The

models for all other attacks were created using 1998 data and were also com-

pared against 1999 data. The resulting models that were created from 1998

data could be used for attack detection from the 1999 data set as well and that

verified the correctness of diagrams for 1998 data set. BSM data did not suffice

for detecting ftp-write attack and for that reason both BSM and tcpdump

data were used. BSM data were sufficient for capturing the behavioral pattern

of exploited programs and tcpdump data were used to check whether the user

initially logged in as root or obtained the root access after login. In the former
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case the privilege abuse was due to poor password or unchanged default root

password and in the latter case it was due to the fact that the legal (non-root,

in most cases anonymous) user used a security hole and obtained the root access

after login process. Certain regularities were captured in behavior of exploited

programs by comparing them against:

1. normal instances of those programs,

2. other instances of attacks detected at different periods of time and

3. by searching for certain events in the behavior of a program that were

expected to happen by using the knowledge about the mechanism of those

attacks and their goals.

All attacks except ftp-write had numerous instances that were performed

throughout every week of data capturing which lead to the conclusion of existence

of regularities in behavior. 13 instances of eject attack were captured, 3 instances

of ps attack, 5 instances of ffbconfig attack, 5 instances of format attack and one

instance of ftp-write attack (containing multiple exploits). All those behaviors

completely matched the expected pattern learned by our theoretical approach.

The process of creating a diagram of attacks consisted of the following actions:

the BSM data for specific days that contained the desired attacks were extracted

in the first step. The second step consisted of extracting instances of those

attacks using the program specially created for that purpose. Once the file with

the attack was extracted, we looked at system calls along with their process

numbers. As long as the critical program with the same process number was

executed, we looked at the recorded system calls. When only system calls were
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not sufficient, we looked at the path of program execution (for example, in ftp-

based attacks).

3.2.1 User to Root Attacks

User to Root exploits belong to the class of attacks where the attacker gains the

access to a normal user account on the system and by exploiting some vulner-

ability obtains the root access. As mentioned before, the special class of those

attacks are stealthy attacks that are more difficult to detect. According to MIT

Lincoln Labs description of attacks, stealthy U2R attacks consist of six stages:

encoding, transport, decoding, execution, actions and cleanup.

The most common User to Root attack is buffer overflow attack. Other,

also commonly exploited attacks are loadmodule attack that exploits programs

that make assumptions about the environment in which they are running, race

condition attacks, etc. Some examples of those attacks are eject, ffbconfig,

fdformat, loadmodule, perl, ps, xterm etc. and some of those attacks are

described later in this chapter.

The following examples show that each attack is characterized with a very

simple distinguishing sequence of system calls and accompanying parameters

(like size, PID, path, etc.), which can be used for recognition and identification

of different attacks.

Buffer overflow attacks

The most exploited type of User to Root attacks is the buffer overflow attack,

which enables the attacker to run personal code on a compromised machine once

the boundary of a buffer has been exceeded, giving him the privileges of the
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overflowed program (which in most cases is root). This type of attacks usually

tries to execute a shell with the application’s owner privileges.

A buffer overflow is the result of passing more data into a buffer than it can

handle. As the stack contains not only the variables of vulnerable functions but

also the return addresses for the points from which the functions were called,

overwriting enough data potentially gives the exploit full control over the process.

To achieve execution of exploit code, in most cases it is sufficient to write a shell

code that spawns a shell. When we write or obtain the shellcode we know it

must be part of the string which we are going to use to overflow the buffer. Also,

the return address must point back into the buffer. After that the attacker is

able to execute all other commands from the spawned shell.

Programs written in C are particularly vulnerable to buffer overflow attacks

because C allows direct pointer manipulations without any bounds checking.

Two categories can be recognized: stack and heap based overflows. The

simplest example of buffer overflow vulnerability is stack smashing ([38]), where

the attacker overwrites a buffer on the stack to replace the return address. When

the function returns, instead of jumping to the return address it jumps to the

address that was placed on the stack by the attacker, making the application

execute some arbitrary code. To provide the attacker with the root access, the

application has to run under an ID that’s different from the user’s ID, like suid

or daemon. To be able to execute a buffer overflow attack the attacker needs

a shellcode. The most exploited function for calling a shell is execve(). If

execve() succeeds, the calling program is replaced with the executable code

of the new program and starts. Since the exploit is inserted in the attacked

program we need to exit it as soon as the exploit code executes, which is done
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by using the exit() function.

The steps in executing a buffer overflow expoit can be summarized as follows:

• Fill the array large string[] with the address of buffer[], which is

where the exploit code will be;

• Copy the shellcode into the beginning of the large string string;

• Next, strcpy() copies large string in the buffer without doing bounds

checking. That action results in overflow of the return address, overwriting

it with the address where our code is now located.

• Once we reach the end of main and it tries to return it jumps to the exploit

code, and executes a shell.

The set of actions that lead to a buffer overflow attack can be graphically

presented as shown on figure 3.1.

Eject attack - U2R

According to eject man pages, eject is used for those removable media devices

that do not have a manual eject button, or for those that do, but are managed by

Volume Management. The device may be specified by its name or by a nickname;

if Volume Management is running and no device is specified, the default device

is used.

The eject attack exploits a buffer overflow vulnerability in eject program.

Due to insufficient bound checking on arguments in the volume management

library, libvolmgt.so.1, it is possible to overwrite the internal stack space of the

eject program. If exploited, this vulnerability can be used to gain root access on

attacked systems.
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Figure 3.1: Buffer Overflow Diagram.

The MIT Lincoln Labs attack database gives some suggestions on how to de-

tect that attack. Assuming that real attackers will not leave strings like “Jump-

ing to address” or similar strings that would make detection trivial we need to

extract certain patterns from traces of eject attack instances and observe all the

regularities. We extracted numerous instances of both normal and anomalous

sequences of eject program and noted regularities in program behavior. We also
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examined one instance of stealthy eject attack and noted the same regularities

in program behavior as in clear instances of that attack. That can be explained

with the fact that the stealthy part of the attack was performed in the login part

and file transport to the exploited machine (i.e. encrypted file, scheduled exploit

execution etc.) The attack traces consist of hundreds or thousands lines of system

calls. However, there are only a couple of system call sequences that are sufficient

to completely define the attack. The resulting state diagram has three states

that uniquely define the attack. There are minor variations in the first stages

of this attack and this resulted in one branch that was added to the diagram.

One transition that enables detection of eject exploit is transition from stat(2)

system call with path /vol/dev/aliases to execve(2), whereas the normal

sequence either does not have the same transition or has transition with valid

path /vol/dev/aliases/DeviceName (for example /vol/dev/aliases/floppy)

to execve(2). The observed path /vol/dev/aliases with no device name af-

ter aliases indicates that the attacker is polling for existence of devices on the

exploited network/machine and the string of stat(2) system calls preceding

execve(2) system call defines the attack. No other attack has this identify-

ing sequence. Another identifying string that characterizes the eject exploit is

usr/bin/eject or existence of string ./ejectexploit or ./eject. Buffer over-

flow is detected by observing large value of header and a sequence of symbols

such as ! @ # $ % &̂ . This may not be the case at all times because a skilled

attacker may use a combination of letters and non-repeating patterns instead of

repeating a short sequence of patterns.

The diagram of eject attack is presented on figure 3.2.

Another serious problem in attack detection is globbing which is used to avoid
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3−>4: stat(2)
4−>5: /usr/bin/ksh
5−>6: pipe, fork

Figure 3.2: Eject attack.

detection of suspicious commands. For example, instead of typing command

/bin/cat/etc/passwd the attacker will use /[r,s,t,b]?[l,w,n,m]/[c,d]?t

/?t[c,d,e]/*a?s*. The shell will replace the glob characters and will find

that the only valid match for this string is /bin/cat/etc/passwd. None of the

attacks from MIT dataset had examples of globbing.

Ffbconfig - U2R

The ffbconfig program configures the Creator Fast Frame Buffer (FFB)Graphics

Accelerator, which is part of the FFB Configuration Software Package, SUNWff-

bcf. This software is used when the FFB Graphics accelerator card is installed.

Due to insufficient bounds checking on arguments, it is possible to overwrite the

internal stack space of the ffbconfig program.

This attack is another example of a buffer overflow attack that has signature

very similar to the signature of eject attack. There is one state less in the equiv-

alent representation than in the state diagram constructed for eject attack. The
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state that does not characterize ffbconfig exploit is stat(2) with undefined pa-

rameters. The sequence that defines this exploit is /usr/sbin/ffbconfig with

oversized -dev parameter and ./ffbconfig or ./ffb or some other sequence

that executes the exploit.

The equivalent state diagram is represented on Figure 3.3.

2 3 4 51

2. Ffbconfig program starts,
    loading libraries

1. Start

3. Buffer overflow finished
4. Shell executed
5. Child process created

exitexecve execve

1−>2: ./ffbconfig
2−>3: large header and

3−>4: shell execution: /usr/bin/ksh

 execution of 
/usr/bin/ffbconfig

4−>5: pipe, fork

Figure 3.3: Ffbconfig attack.

Fdformat - U2R

fdformat attack is another example of buffer overflow attack. The Fdformat at-

tack exploits a buffer overflow in the ’fdformat’ program distributed with Solaris

2.5. The fdformat program formats diskettes and PCMCIA memory cards. The

program also uses the same volume management library, libvolmgt.so.1, and is

exposed to the same vulnerability as the eject program.

This exploit is almost identical to ffbconfig attack. The only differences are

in the path of the attack which is in this case /usr/bin/fdformat and in the file

that is executed (if it is named by the attack) ./formatexploit or ./format.

The equivalent state diagram is represented on Figure 3.4
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1. Start

3. Buffer overflow finished
4. Shell executed
5. Child process created

    loading libraries
2. Fdformat program starts,

exitexecve execve

2−>3: large header and
1−>2: ./fdformat

         creating a child process
4−>5: creating a pipe and
3−>4: shell execution: /usr/bin/ksh

 execution of 
/usr/bin/fdformat

Figure 3.4: Fdformat attack.

Ps attack - U2R

The typical form of ps attack involves both buffer overflow and race condition.

The instances of ps attacks given in the MIT Lincoln Labs data set contain

ps attacks that contain buffer overflow without race condition. This section

contains the description of the ps attack that contains both buffer overflow and

race condition. Finally the ps attack that is executed using only buffer overflow

is described and represented with an equivalent state diagram.

The ps attack takes advantage of a race condition in the version of ’ps’

distributed with Solaris 2.5 and allows an attacker to execute arbitrary code

with root privilege. This race condition can only be exploited in order to gain

root access if the user has access to the temporary files. Access to temporary

files may be obtained if the permissions on the /tmp and /var/tmp directories

are set incorrectly. Any users logged into the system can gain unauthorized root

privileges by exploiting this race condition.

The ps program has to see the information about all processes currently

running on the machine, so the program has to run as root. The first time ps
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is run on Solaris, it looks up the location of the process table inside the kernel

and other details it needs. Searching for this information is time-consuming, it

stores it in a file called /tmp/ps/data, where future invocations of ps can find

it. The assumption was that the user could delete only files that belong to him

in /tmp directory, but that was not the case. Any user was able to delete other

user’s files. The actions ps performs are:

• first put the information in a file called /tmp/ps.XXX ( XXX is the process

ID of ps);

• change the owner of the file to root;

• rename the file to /tmp/ps/data.

The attacker needs to write an exploit program that deletes the /tmp/ps/data

file. That action forces the ps program to create a new file and look in the

/tmp directory for a file starting with ps. When it finds the file, it deletes and

replaces it with a symbolic link to another file. The attacker will probably be

forced to run the exploit many times before a success occurs. When the exploit is

successful the ps will perform chown command on the symbolic link. The result

is that the file the link points to is owned by root.

The ps attack described above is ps race condition attack that does not

include buffer overflow. Ps attack included in the MIT Lincoln Labs data set

is based on buffer overflow and has signature almost identical to previously

described attacks. It can also be detected by looking at large values of header

and path of execution which is /usr/bin/ps in this case.

The resulting diagram is represented on Figure 3.5.
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5. Child process created, 
system compromised

3. Buffer overflow finished
4. Shell executed

1. Start
2. Ps program starts,

loading libraries

system call
processes until exit
creating new child

5−>5: stat, fork:

exitexecve execve

1−>2: ./ps_expl
2−>3: large header,

4−>5: pipe, fork
/usr/bin/ksh

3−>4: executing shell

execution of 
/usr/bin/ps

Figure 3.5: Ps attack.

Although not used in the experiments for attack detection, we present the

description of format string attacks. According to many sources, format string

attacks are much easier to detect than buffer overflows. We also describe race

condition and stealthy attacks.

3.2.2 Format String Attacks

Just like buffer overflows, Format String Attacks are the result of bad program-

ming practices and are widely exploited. They are not as difficult to detect as

buffer overflows, but are dangerous if not detected on time. A typical exam-

ple of possible format string attack is when a programmer uses: printf(str);

instead of printf("%s", str);. Among many possible format commands the

most dangerous from the point of view of format string exploits is %n. The

definition of this command from the printf() man page is: The number of char-
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acters written so far is stored into the integer indicated by the int (or variant)

pointer argument. %n assumes that the corresponding argument to printf is

of type ‘‘int *’’ and writes back the number of bytes formatted so far. If the

attacker carefully chooses the format string then he can use the %n directive to

write an arbitrary value to an arbitrary word in the program’s memory. The

attacker can send a single packet of data to a vulnerable program and obtain a

remote (possibly root) shell. Because %n treats the corresponding argument as

an int * an effective format bug attack must go towards the top of the stack

(by inserting some number of %d directives) until it reaches a suitable word on

the stack. That word is treated as an int * and the attacker uses a %n to

overwrite a word nearly anywhere in the victim program’s address space. The

attacker always provides a format string that does not match the actual number

of arguments presented to printf.

3.2.3 Race condition attacks

By far the most dangerous User to Root Attack is the exploit of race conditions.

Most of race conditions are exploited in cases when setuid to root program

saves data in a file owned by the user executing the program. Three race con-

dition exploits are described in this section: race condition in managing tmp

files, binmail race condition and stealthy ps attack that includes buffer overflow

and race condition attack. The DARPA data set did not have any examples of

ps attack with race condition. The ps attacks presented there had only buffer

overflows that were used to gain root access.
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Race condition in managing tmp files

This is a simple example of race condition in Unix environment. As a result

of this exploit, the attacker obtains access to the passwd file. It exploits the

weakness in some versions of Solaris workstations in which any user can write

and delete files in tmp directory. The same fact is later exploited in a more

developed version of this attack that exploits race condition and buffer overflow.

This simple race condition can be presented in the following steps:

• /tmp/file and /etc/passwd refer to different objects, where file is the

file in /tmp directory;

• The attacker deletes the file from tmp directory before the process makes

the system call which will open the file;

• Hard link for /etc/passwd is created (/tmp/file);

• When open system call wants to open the /tmp/file file it actually follows

the newly created hard link and opens the /etc/passwd file;

• As a result of this exploit, the attacker can alter the password file and gain

access to the system.

The following figure represents the flow graph of race condition attack:

Binmail Race condition

The binmail program delivers mail by writing it into the recipient’s mailbox.

This race condition is exploited in the following way:

• lstat(2) system call is used;
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There is no file
attack failed

to try to access the file
before the attacker
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The attacker deletes
the file in /tmp directory
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write to and delete
from tmp directory

the attacker has
access to the
system as normal
(unprivileged) user

everybody can
write to and delete
from tmp directory

The attacker deletes
the file in /tmp directory

/tmp/F

Successfully creates
hard link/etc/passwd, named

Open accesses the /etc/passwd
file when it opens /tmp/F

Full access to the
passwd file

goes back 
and tries
the same 
thing with
another file

Figure 3.6: Diagram of race condition attack.

• If the mailbox is not a symbolic link append the letter to mailbox as root;

• Attacker deletes the mailbox file;

• The attacker creates a new file with the same name, which is a link to the

system password file;

• The letter will be appended to the password file

The following figure represents the binmail race condition attack:
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Time of lstat system call
                  /

/usr/spool/mail

user X

/etc

passwd

password data

After binmail opens the file
                  /

/etc/usr/spool/mail

user X passwd

user X’s e−mail password datauser X’s e−mail

Figure 3.7: Diagram of binmail race condition attack.

3.2.4 Stealthy Ps Attack - Race condition and buffer over-

flow

The ps attack takes advantage of a race condition in the version of ps dis-

tributed with Solaris 2.5 and allows an attacker to execute an arbitrary code

with root privilege. This race condition can only be exploited to gain root ac-

cess if the user has access to the temporary files. According to the CERT web

page the ps program contains a vulnerability that does not sufficiently check the

arguments passed to it, so it is possible to overwrite the internal data space of

this program (the stack) while it is executing. To gain access to temporary files,

permissions for the /tmp and /var/tmp directories have to be set incorrectly.

When an attacker transfers his shell script to the attacked machine and runs it,

a root shell will be spawned.

The ps program has to see the information about all processes currently

running on the machine, so the program has to run as root. The first time ps is

run on Solaris, it looks up the location of the process table inside the kernel and

other details it needs. Since searching for this information is time-consuming,
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it is stored in /tmp/ directory in file called ps data (hence the full path is

/tmp/ps data), where future invocations of ps can find it. The assumption is

that the user can delete only files that belong to him in /tmp directory, but that

is not the case. Any user is able to delete other user’s files. The actions ps

performs can be described as follows:

• Put the information in a file called /tmp/ps.XXX ( XXX is the process ID

of ps);

• Change the owner of the file to root;

• Rename the file to /tmp/ps data.

The attacker needs to write an exploit program that deletes the /tmp/ps data

file. That action forces the ps program to create a new file and look in the /tmp

directory for a file starting with ps. When it finds the file, it deletes and replaces

it with a symbolic link to another file. The attacker will probably be forced to

run the exploit many times before the success. When the exploit is successful

the ps will perform chown command on the symbolic link. The result is that the

file the link points to is owned by the root.

The following diagram represents a stealthy ps attack that performs a

number of additional actions to ensure the maximum secrecy and to decrease

the probability of detection. Currently it is very difficult to detect stealthy

attacks, especially race conditions because they happen during a long period

of time and use masquerading, delayed execution of commands, encryption etc.

The following figure represents the diagram of Ps attack:
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Figure 3.8: Diagram of Ps attack.

3.2.5 Remote to User Attacks

It has previously been described what Remote to User attacks are and some typ-

ical examples were presented. Some examples of R2U attacks are the Dictionary,

Ftp-Write, Guest, Imap, Named, Sendmail attacks etc.; they exploit abuse of

feature, misconfiguration or bug to obtain access to the local host. Dictionary

and Guest attacks attempt to break into the system either by guessing badly

configured passwords or using the fact that on many systems there are at least a

few guest accounts where the user can login without any password or a password

62



like “guest”, “anonymous” or no password at all. This type of attacks can be

avoided by setting an appropriate threshold that will raise the alarm if there are

unsuccessful attempts of logging into an account.

Ftp-write attack sequences were extracted from the MIT Lincoln Labs data

set using the same procedure as described in the previous section. This is an

attack where the anonymous ftp misconfiguration is abused. If the ftp server

is misconfigured in the way that a remote user can add files, the attacker can

add his own .rhosts file and log in again as user ftp. General sequence of

executions in ftp-write attack is presented on the following diagram:

Disconnect from
the ftp server

Connect back 
as user ftpservice on the

victim machine

Anonymously
log into the ftp

Create .rhosts file

home directory

with the string 
"++" within the 

Figure 3.9: Diagram of Ftp-write attack.

The mechanism of detecting Ftp-write attack is different from the previously

described attacks. The ftp login session can last over a long period of time and

that represents an obstacle in detecting an attack from memory point of view.

However, traces of an ftp-write attack given in MIT Lincoln Labs data set

indicate that the critical points that positively define the attack are observed in

the initial parts of the trace. After the first execve system call the ./rhosts

file is opened for reading, its status is checked, then its opened for writing, a

permission to create a file is set and then a symbolic link is established. After

that the attacker logs out and in the next login session it logs in as root. The

following graph in Figure 3.10 represents general goals for this type of attack:

The login phase of the attack, where the attacker logs in to anonymous ftp
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1 2 3 4

create file login read_hosts exit

Figure 3.10: Ftp-write attack.

server and changes .rhosts file so that it can login as root next time is presented

on Figure 3.11.

1 2 3 4 5 6 7 8
exit

5. File opened for
write, create and truncate

7. Ownership of the
file changed

1. Start
2. Anonymous login succeeded
3. Status of .rhosts file obtained

8. File created

6. Pipe created

2−>3: stat(2) on ftp/.rhosts

4−>5: open(2) ftp/.rhosts
3−>4: stat(2) on /etc/shadow

1−>2: login

5−>6: open for read and write 
/ftp/dev/tcp

6−>7: chown(2)

7−>8: close(2)

Figure 3.11: Ftp-write attack - create file phase.
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Chapter 4

Detection and classification algorithms

for Hidden Markov Models

The main contribution of this thesis is an attempt to detect and classify different

types of network intrusions (attacks). This chapter presents a short overview of

techniques and general models used for HMMs and then it presents one detection

algorithm and several classification algorithms (we emphasized on of these).

4.1 Introduction

We need to recognize a malicious user who executes system calls in certain order

in attempt to break into the computer system. In most cases of high-level attacks,

sequences of system calls can be interleaved within normal system behavior in

numerous ways.

Our goal is to detect when a particular sequence of harmful instructions that

could compromise security of our system has been performed.

The following plan for the recognition of malicious activity is proposed:

1. Generate a database of malicious actions and convert those actions in a
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set of HMMs, where each HMM is trained to recognize the attack pattern

from which it was generated.

2. Use the current state to rule out possible actions of the attacker due to

unmatched preconditions (“and” sets of subconditions are not yet fulfilled);

3. The IDS performs matching of HMMs against possible attack sequences

and produces a score for each of the patterns;

4. Use obtained scores to find the likelihoods of the attacker’s actions that

were generated and construct a vector that consists of probabilities that

the user is performing each of recorded actions, i.e. that the user is actually

the attacker.

There are several approaches that can be applied to the problem and each

of them brings its own difficulties. The specific steps described above may differ

slightly among different approaches. The notation that we are going to use is as

follows. We denote our set of attack models as Λ = λ1, . . . , λm. To recognize an

attack we need to compute the probability of seeing the observation sequence

O = o1, . . . , on given each attack model λi. We consider O = (o1, . . . , oT ) to

be the observed data and the underlying state sequence q = (q1, . . . , qT ) to be

hidden or unobserved.

4.2 Hidden Markov Models

Before proceeding to our problem formulation and proposed solutions we present

the overview of notation used for HMMs. The notation in this thesis corresponds

to the notation used in [39].
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A discrete HMM is specified by the following triple

λ = (A, B, π) (4.1)

A represents the state transition matrix of the underlying Markov chain and is

defined as (where st denotes the state of the Markov chain at time t):

A = [aij ] = [p(st+1 = j | st = i)], i, j = 1, . . . , N.

B is the observation matrix and is defined as (where xt is the output (observation)

at time t):

B = [bij ] = [p(xt = j | st = i)], i = 1, . . . , N ; j = 1, . . . , K.

π is the initial state probability distribution of the underlying Markov states and

is defined as

π = [πi = p(s1 = i)], i = 1, . . . , N.

Given appropriate values of N , K, A, B and π the HMM can be used as a

generator for an observation sequence. In our case we suppose that the number

of states N and alphabet of observations K are finite. The joint probability of

an HMM sequence of length n is

p(s1, . . . , sn, x1, . . . , xn) = πs1

[
n−1∏
t=1

astst+1

][
n∏

i=1

bstxt

]
.

To be able to use the algorithm that is presented next we need to compute the

likelihood of a sequence of HMM observations given λ, P (X | λ), which is done

by using the ”forward variable”. According to definitions in [39] the forward

variable of an HMM is defined as

αt(i) = p(x1, x2, . . . , xt, st = i | λ) (4.2)
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Hence, P (X | λ) is the sum of αt(i)’s. Recalling the solution of the forward part

of the forward-backward procedure [39], αt(i) can be computed recursively. The

initial condition in the forward procedure is

α1(j) = π(j)bj(x1); 1 ≤ i ≤ N (4.3)

and accordingly the recursive step [39] is

αt+1(j) =

[
N∑

i=1

αt(i)aij

]
bj(xt+1); 1 ≤ t ≤ T − 1; 1 ≤ j ≤ N (4.4)

where bj(xt+1) is the conditional density function given the underlying Markov

state at time t is j.

We suppose that we have M HMMs as possible models for the observed data

and we need to test which of the M HMMs matches the incoming sequence. In the

framework of intrusion detection the problem can be formulated as follows: given

M attack models in the form of Hidden Markov Models with known parameters,

detect the one that matches the incoming sequence with the highest probability.

However, in the case of detecting an attack the incoming sequence may or may

not match one of the HMM models of attack. In case it does not match one of

the attack models we need to consider two cases: either the incoming sequence

is not an attack or it is an unknown attack that we don’t have in our database.

In this report we assume that the incoming HMM matches one of M HMMs in

the system.

The problem of M-ary detection is solved with calculating log-likelihoods

for each of the possible models given the observed sequence and finding the

maximum. The model with the maximal log likelihood (closest to zero) wins

and the attack is classified accordingly. In this thesis M=5. The likelihood
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function is calculated as follows:

f(x1, x2, . . . , xt | λl) =

N∑
i=1

αt(i) (4.5)

for l = 1, ..., M . Here N represents the total number of states and the αts are

the forward variables.

4.3 Algorithm

4.3.1 Data set

Experiments are performed using the 1998 and 1999 DARPA/LL offline eval-

uation data. Both data sets had to be used due to the fact that there are no

examples of ps attack in the 1998 data set. Lincoln Labs recorded program

behavior data using the Basic Security Module (BSM) of Solaris. We used BSM

audit records that correspond to system calls. Each record provides information

like name of the system call, a subset of arguments, return value, process ID,

user ID etc. We used the system call information and information about the

payload size associated with each system call.

In order to use the BSM data we had to develop an environment that would

parse the BSM audit logs into a form that can later be used for detection and

classification of attacks. The information about payload size and execution of

an unexpected program was used for attack detection. Hypotheses testing was

used for attack classification.
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4.3.2 Data processing phase

Step one

The initial step deals with the whole BSM file that contains the daily activity

performed on machine pascal and contains both normal and abnormal activity.

Since many of the processes are interleaved, the original BSM file most probably

has attacks interleaved within normal processes and which can be distinguished

only by looking at the process numbers. In the initial step we divide the whole

BSM file into chunks of length of 100 system calls. Each system call is assigned

a number according to the order of appearance in the BSM sequence. The first

couple of lines in the BSM file are system-related and we don’t include them in

any of the chunks.

As the result of phase one we have (total number of system calls in the

BSM sequence)/100 files named WeeknumberDay.bsm.txt.split.i, each of which

contains 100 enumerated system calls. In order to differentiate among abnormal

and normal behavior we ran another algorithm. Denote one randomly chosen

system call number as k. The algorithm observes the payload size associated

with each system call. If the system call has payload greater than 300, the

program outputs 2 ∗ k. Otherwise, it outputs 2 ∗ k − 1. The first step of the

algorithm outputs another file that contains the total number of system calls,

their names and associated numbers. It lists the even numbers that appeared

in the BSM file (even numbers=system calls with high payload). In addition

to observing the oversized arguments, the algorithm also monitors the traces in

BSM files for violations in the form of unexpected program execution (shell). If

both conditions are fulfilled (oversized argument and execution of unexpected
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program) there is an ongoing attack. The testing phase detects the type of the

attack and classifies it.

The outputs of the first run are:

1. Total number of system calls;

2. Total number of different system calls;

3. List of enumerated system calls with shell execution in order of appearance

in the BSM file;

4. List of even numbers in the files (system calls that have payloads greater

than a threshold, in our case 300). We use this information in creating the

B matrix for HMM training in later stages of the algorithm.

Step 2

This step takes the original BSM file as an input and looks for instances of each

attack (if we want to have instances of 4 attacks, we have to run the program

four times to get the result). This step is not computationally intensive as the

previous one. Step one takes from 45min to more than 2h, depending on the

length of BSM file and step 2 takes a couple of minutes to run. It produces

meta-files WeeknumberDay.AttackName.txt containing line numbers of system

calls issued by observed programs and the actual system calls with all parameters

from the original BSM file.

The MIT data provides the information regarding the attack distribution

throughout 5 weeks of training and 2 weeks of testing. The second week of

training was not usable by the detection procedure since it contains only tcp

data. Week 6 contained only ffbconfig and eject attacks. Week 7 could not
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be used since it contained only tcp data. Hence, the only attacks where multiple

hypothesis testing approach was possible were ffbconfig and eject.

Step 3

The last step extracts sequences of system calls of length 100 and labels files that

contain bad sequences (for example, ffb-bad.txt or format-bad.txt) using the files

created in the previous step and the original BSM file. The resulting file contains

system calls issued by the attacked program and some other system calls from

other programs due to the fact that the divided files may (and probably will)

catch parts of other programs.

As a result we have the original BSM file chunked into sequences of length

100 system calls, one file (meta file) for each attack that contains the lines from

BSM file that contain execution of programs of interest (ffbconfig, format, eject

or ps) and meta-files chunked into sequences of 100 system calls. Not all of those

meta-files are bad. To decide which files are going to be used for training we use

information provided by MIT Lincoln Labs that precisely states at what time the

attacks are executed. One potential problem can appear in this approach and

is the only cause of misclassification among different types of attacks. Training

is performed on chunks that start exactly when the attack starts and testing

is performed on sequences obtained by chunking the original BSM file. It may

happen that the testing files (first and last) contain a large portion of normal

sequences, which causes that the structure of training and testing file may sig-

nificantly differ. That problem may be solved by sliding window approach on

training sequences, but on the other hand, this approach increases the number

of staring models and increases the complexity of the model. Two possible solu-
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tions of misclassification among different types of attacks are described in more

detail in the following section.

4.3.3 Training

In this thesis we assume that the attack models are already known. The goal

is to detect and classify the incoming sequence using the models generated on

already known attacks. We trained the HMMs on attack sequences generated

in the third step of the algorithm presented in previous sections. Each of the

sequences is sequentially loaded and parameters are generated using the HMM

toolbox in Matlab. We initially chose to have 5 observations and 10 iterations in

training. B matrix size is 5x2*k and A matrix is 5x5. We initially chose all even

columns of the B matrix to be equal to zero, except the ones that correspond

to the system calls with high payload and all odd columns are greater than zero

and generated by the Matlab funcion mk stochastic (for example if even system

calls that appear in the sequence are execve (92), open (24) and ioctl (88), all

even columns in B matrix except 24, 88 and 92 will be equal to zero). Matrix A

is chosen to be diagonal and is generated by using the mk stochastic function

from the toolbox.

Each attack is represented with 4-6 sequences of length 100 but only one or

two of them contain the actual attack (depends on whether the same sequence

contains oversized argument and shell executions or not).

After sequentially loading the attack sequences and training parameters on

them in 10 iterations we will get 10 different log likelihoods for each model. Since

the initial parameters for A and π matrices are created using Matlab function

mk stochastic and parameters of B matrix are adjusted to the model up to a
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certain point the initial estimation of log likelihood is low (first iteration). After

several iterations the parameters of trained HMM are found and A, B and π

matrices don’t change any more. An example of log-likelihood estimation from

training on eject attack from Week 5 Tuesday is presented in figure 4.1:

The training procedure consists of training each of malicious sequences on

1 2 3 4 5 6 7 8 9 10
−450

−400

−350

−300

−250

−200

−150

Figure 4.1: Procedure of parameter adjustment during HMM training.

the same input parameters Ain, Bin and πin, producing an output HMM with

parameters πi, Ai and Bi that characterize that specific malicious sequence (i

denotes one of possible HMM models and varies in different training sets, but

is usually less than 10). This property of HMMs that each set of parameters

πi, Ai and Bi fits a specific malicious sequence is used in the testing phase for

classification of attacks in two levels: normal/abnormal and attack1/attack2.

Training was performed on MIT Lincoln Labs data from weeks 1 to 5. The

training data used in this thesis is presented in table 4.1.
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Week Day Attack name Variant

1 Monday format clear

1 Monday ffb clear

3 Monday ffb clear

4 Friday ffb add .rhosts, stealthy

4 Friday format stealthy

5 Monday ffb ftp’s over exploit files

5 Monday ffb chmod files

5 Monday ffb executes attack

5 Monday format clear

5 Tuesday eject clear

5 Tuesday eject clear

5 Wednesday eject stealthy

5 Friday eject run self encoded exploit

Table 4.1: MIT Lincoln Labs training data sets
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4.3.4 Detection

We concentrated on four programs: ffbconfig, format, eject and ps. The

attacks on eject, fdformat and ffbconfig exploited a buffer overflow condi-

tion to execute a shell with root privileges. The goal was to create hypotheses

for each of the attacks and classify the attacks in the appropriate category. The

classical rule for hypothesis testing when we set a threshold for each of the hy-

potheses could not be used. The hypothesis testing algorithm is based on the

winning score rule, where winning score is the log-likelihood that is closest to

zero. We denote the winning hypothesis with HWIN . Hence, the hypothesis

testing procedure is as follows:

HWIN =




H1 if loglik1 = maxi{logliki}, i ∈ {1, 2, 3, 4}

H2 if loglik2 = maxi{logliki}, i ∈ {1, 2, 3, 4}

H3 if loglik3 = maxi{logliki}, i ∈ {1, 2, 3, 4}

H4 if loglik4 = maxi{logliki}, i ∈ {1, 2, 3, 4}

(4.6)

The first hypothesis, H0 corresponds to normal behavior and that hypothesis

is not used in the classification algorithm. H0 is used in detection algorithm

using the criterion that is presented in figure 4.2.

As seen from the figure, the detection algorithm loads every sequence i, where

i = {1, . . . , N} and N is the total number of sequences of length 100 in the given

BSM sequence. Then it tests whether the sequence has either shell execution or

oversized argument. In either case, the sequence is classified as anomalous. Oth-

erwise the sequence is normal. When all N sequences are tested, the algorithm

finishes and proceeds to the classification phase, using only sequences extracted

in this phase. The testing in this phase is performed between hypothesis H0,
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load chunk i

has shell
exec?

payload
 >300?

ATTACK NORMAL

i > N?

i++

HT
= H0

HT
= HA

HT
= HAYES (              )

i = 1

NO

NO

NO

YES

EXIT

YES

Figure 4.2: Detection of abnormal sequences.

that corresponds to normal sequence and HA that corresponds to anomalous

sequence. Hence, if the sequence contains either shell execution or has payload

greater than 300, the winning hypothesis is HA and the sequence is processed to

the classification step. Otherwise, the winning hypothesis is H0 and the sequence

is declared to be normal and is not considered in further steps.
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4.3.5 Classification

This section tests on hypotheses Hi, i = {1, 2, 3, 4}, that correspond to different

types of attacks. In case of 4 buffer overflows the hypotheses are: H1 (ffbconfig),

H2 (fdformat), H3 (eject) and H4 (ps). The algorithm is depicted on figure ( 4.3)

and explained in detail in the following sections. However, due to limitations

of the data set, that are going to be explained in later sections, the maximum

number of hypotheses was 3, corresponding to states with no attack, ffbconfig

and eject attack in one case and no attack, ffbconfig and format in another

case. For theoretical purposes we also considered testing of all hypotheses on

one data set that contained only 2 out of 4 attacks.

 an even number
 for each bad model with
 step by building an HMM
 extracted in the previous
Train on bad sequences

   obtained in the previous step
   sequences using parameters
   train each of the testing

DATA PROCESSING

TRAINING TESTING

of a certain attack sequence 

as malicious and classify it
declare the tested sequence 

if the log−likelihood is less than
a certain threshold then the
sequence is normal. If it falls
in the scope of log likelihoods

   sequences as ’bad’
   previous step and mark the
   the sequence obtained in the
   extract the system calls from

   extract the attack sequence
   from the original BSM sequence

    divide the BSM file in sequences
    of length 100 system calls

   mark the system calls with 
   payload >300 with even numbers
   and all others with odd numbers

Figure 4.3: Detection and classification system scheme.

Hypothesis testing was preformed on BSM chunks that contained either shell

execution or large payload. The sequences were loaded into a column matrix

which was used for hypothesis testing. We created a number of HMMs fitted
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to ffbconfig, format, eject and ps testing sequences. Parameters obtained

during training (πi, Ai and Bi) were used as input parameters for testing. We

calculated the log-likelihood for each of testing sequences using each of the mod-

els obtained by training as input parameters. If the tested sequence does not

fit the malicious model, the log likelihood ratio converges to -∞ after the first

iteration. Each sequence that had log likelihood greater than -400 was classified

as corresponding to an attack. Otherwise it was declared to be a false alarm.

The threshold of -400 was chosen based on the observation that the minimum

log-likelihood observed on training sequences was around -300. Any other small

negative value could have been used.

Due to the fact that most of buffer overflows have almost identical structure,

the only distinguishing characteristic among those attacks is usually the program

that is executed during the attack. In most cases of testing an additional criterion

had to be used. If a sequence is classified as both attack 1 and attack 2, two

algorithms can be applied to avoid misclassification among the attacks.

4.4 Algorithm 1

This algorithm uses the property that the more similar two models are, the log-

likelihood ratio is closer to zero. Hence, if a sequence is classified as both attack 1

and attack 2, the testing algorithm compares the log-likelihood of the sequence

when it is classified as attack 1 to the log-likelihood when it is classified as

attack 2. The attack with larger log likelihood wins and the sequence is classified

accordingly. This algorithm performed correct classification in the majority of

cases.
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4.5 Algorithm 2

This algorithm is based on the fact that each tested sequence is named according

to the line where its system call is placed in the original BSM file. The same

program applied in the step 2 of training can be applied for testing since its

only role is to determine the line numbers where each of the programs of interest

is executed. Simply, if sequence W6Thursday.bsm.split.1600.txt is classified as

both attack 1 (attack on program 1) and attack 2 (attack on program 2) and

our program determines that program 1 is being executed at line 1600, this

sequence is classified as attack 1. When we used this criterion there was no

misclassification among the attacks. However, this particular algorithm cannot

be used for detection of any attacks other than buffer overflows. For example, if

we need to classify between a buffer overflow on eject program and some other

type of attack on eject program this algorithm will not be of any use. But if

we determine by the structure of the sequence that the attack is buffer overflow,

this algorithm will have 100% classification rate.
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Chapter 5

Results

All test performed on data sets include hypothesis testing. Only testing among

ffbconfig and eject attacks and ffbconfig and format attacks is performed

using 3 hypotheses: H0 for normal, H1 for ffbconfig and H2 for fdformat and

H3 for eject. In the first case testing was performed on the actual testing data

from Week 6 and in the second case testing was performed on Week 5 Monday due

to the lack of fdformat attacks in testing data. Week 6 Thursday contained 3

ffbconfig and 12 eject attacks. Week 5 Monday contained only one ffbconfig

and one fdformat attack. Because of that, we performed training and testing

on all possible combination of sequences and the results obtained were almost

identical. Hypothesis testing using 5 hypotheses was not possible due to the

fact that the testing data set does not contain any fdformat or ps attacks. For

testing those attacks we trained each of those attacks on data from 2 days and

tested it on data from the third day. For ps attack we used 1999 data.
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5.1 Detection of ffbconfig and eject attacks

Due to already presented difficulties, the hypothesis testing was performed using

3 hypotheses. Hypothesis H0 corresponds to normal sequences, H1 to ffbconfig

attack and H3 to eject attack. Testing was performed only on those sequences

that had shell execution or even number (the sequences that were extracted in

Step 1 of the algorithm). The results obtained in testing phase are first presented

in the form of graphs and tables and then discussed.

Figure 5.1: Ffbconfig and eject tested on Week 6 Thursday.

Input parameters for tested sequences were HMM parameters obtained dur-

ing the training phase. No eject attacks were classified as normal and no ffbconfig

attacks were classified as normal. The only misclassification that happened was

that some sequences were classified as both ffbconfig and eject attacks. There

was a total of 9251 sequences. 9233 were normal, 6 sequences characterized ff-
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bconfig attack and 12 sequences characterized eject attack. When Algorithm 1

was applied to the sequences it led to the misclassification rate of 20% for eject

attacks (8 out of 10 attacks were classified correctly) and 0% misclassification

rate for ffbconfig. When Algorithm 2 was applied it led to misclassification rate

of 0%. There were 0.368% of false positives and no false negatives. Hence, the

only imperfection of the algorithm reflects in misclassification among different

types of attacks, not among normal and anomalous. The results are presented

on figure 5.1 and tables 5.1 and 5.2.

Normal Anomalous

Normal 99.643% 0.357%

Anomalous 0% 100%

Table 5.1: Confusion matrix for the case of testing between 3 hypotheses: nor-

mal, ffbconfig and eject

Normal Ffbconfig Eject

Normal 9200 14 19

Ffbconfig 0 6 0

Eject 0 3 9

Table 5.2: Detection and misclassification rates for the case of testing between

normal, ffbconfig and eject
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5.2 Detection of ffbconfig and format attacks

Since there are no instances of format attack in weeks 6 and 7, we had to use

two weeks from weeks 1-5 for training and one for testing. Applying the same

procedure as in the previous case, the false alarm rate was 0.3% and misclassi-

fication rate was 0% using either of criterions presented in the previous section.

Figure 5.2: Ffbconfig and format detection on Week 5 Monday.

False positive rate was 0.319% and there were no false negatives. No format

or ffbconfig attacks were misclassified. The same results were obtained using

both algorithms.
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Normal Anomalous

Normal 99.68% 0.3198%

Anomalous 0% 100%

Table 5.3: Confusion matrix in case of multiple hypothesis testing

Normal Ffbconfig Format

Normal 99.68% 0.046% 0.24%

Ffbconfig 0 100% 0

Format 0 0 100%

Table 5.4: Detection and misclassification rates in case of detection and classifi-

cation of multiple types of attacks

5.3 Detection and classification of ps attacks

Due to the fact that ps attack appears only in 1999 data, we could not test

detection of ps attacks using any other hypotheses except H0 (normal) and H4

(ps). The false alarm rate was 0.3% and there was no misclassification, all

instances of ps attacks were detected.

Normal Ps

Normal 99.53% 0.47%

Ps 0% 100%

Table 5.5: Confusion matrix for detection of Ps ata7k

There were 0.47% false positives and no false negatives. The results are

presented on figure 5.3 and in table 5.5.
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Figure 5.3: Ps detection.

5.4 Detection of eject attacks

The sequences were trained on three weeks of data and tested on the fourth one.

Like in the previous cases all instances of attack were classified as anomalous

and very low percentage of normal instances were misclassified. The graphical

and tabular representations are presented in figure 5.4 and table 5.6.

Normal Eject

Normal 99.577% 0.433%

Eject 0% 100%

Table 5.6: Confusion matrix for detection of Eject attack
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Figure 5.4: Detection of eject attack.

5.5 Detection of fdformat attacks

Fdformat training was performed on data sets from two weeks and tested on

data set from one week, that contained one attack. All possible combinations of

training and testing data were used and the results were almost identical. The

false alarm rate was low and there were no false negatives, as in the previous

cases. The results are presented in figure 5.5 and table 5.7. As seen in the

table, the confusion matrix is almost symmetric.

Normal Fdformat

Normal 99.685% 0.0.315%

Fdformat 0% 100%

Table 5.7: Confusion matrix for detection of Fdformat attack
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Figure 5.5: Detection of fdformat attack.

5.6 Detection of ffbconfig attacks

Finally the results for detection of ffbconfig attacks are presented in figure 5.6

and the confusion matrix is presented in table 5.8. As we can see, the confusion

matrix is again almost symmetric, the false alarm rate is very low and there are

no false negatives.

Normal Ffbconfig

Normal 99.577% 0.433%

Ffbconfig 0% 100%

Table 5.8: Confusion matrix for Ffbconfig attack
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Figure 5.6: Detection rates for ffbconfig attack.
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Chapter 6

Conclusions and Contributions

This thesis demonstrated that it is possible to model network attacks with models

that consist of small finite number of states. These models can be used for both

detection and classification of attacks. The method presented in this thesis

was applied and tested only to attacks exploiting buffer overflows due to the

non availability of data for testing it on other attacks, like ftp-write or race

condition attacks. We developed models for other attacks and we believe that

they are applicable for detection and classification of other attacks, not only

buffer overflows. The algorithm can also be applied for detecting race condition

attacks since they add additional loops in program behavior, that do not exist in

normal behavior. The method presented in this thesis can be used in combination

with static analysis tools to achieve even higher detection rate and classify the

attacks that the static analysis tools may have missed.

The algorithm presented in the previous chapter is motivated by the attack

models developed in Chapter 3 of this thesis. Due to already mentioned reasons

the results were presented only for buffer overflow attacks. Since we needed uni-

form representation of all attacks with the least amount of additional rules, only
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key features of those models were selected: large header, execution of a specific

program (ffbconfig, eject, etc.) and shell execution. Other specific features of

attacks could be used, like large amount of stat commands in eject attacks. The

feature of all training and testing data sets was that each attack was character-

ized with ksh execution and those were the only appearances of ksh in given

BSM sequences. However, it is uncertain if the ksh execution is a specific char-

acteristic of the MIT Lincoln Labs data set (actually characteristic of machines

that were used for data generation, in our examples machine pascal) or it is a

characteristic of all buffer overflow attacks. There are three different rules for

detection of anomalous sequences that can be applied.

1. If there is a ksh execution in the sequence classify that specific sequence

as anomalous. Otherwise classify it as normal.

2. If there is a sequence that has execve system call with large payload (even

number after Step 1 of my algorithm) followed by a sequence with ksh ex-

ecution classify either of the sequences as an attack. In this rule, “followed

by” does not necessarily mean “immediately followed by”. The sequence

with ksh execution can be separated from the sequence with large payload

with several interleaved sequences.

3. Mark all sequences with shell execution (ksh, sh, bsh etc.) as potentially

dangerous. Build in the information about payload in B matrix of HMM.

Test only on sequences with shell execution and large payload.

The first two algorithms have detection rate of 100%. However, as mentioned

before those rules are limited only to a specific data set. The second algorithm

was proved to be efficient on this particular year from MIT Lincoln Labs Data
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set. This method may not be able to detect many of the attacks in case when

globbing, described in Chapter 3, is performed since the program will observe

only unrelated symbols, but the operating system is going to interpret them,

as ksh execution, for example. Hence, the attack will be misclassified as a

normal sequence and this method may possibly lead to a certain number of false

negatives. The third algorithm has very high detection rate, although not 100%

as the previous ones. The obvious advantage of this algorithm is that it does not

depend on any feature of this specific data set. It is based on general features

of buffer overflow attacks: shell execution (any shell, not only ksh) and large

payload. This method may also miss some shell executions for the same reason as

algorithm 2, but in this case it will still have a sequence with oversized argument

that can be recognized by trained HMMs. This algorithm leads to around 0.1%

to 0.5% of false negatives. Attack detection in this thesis is defined as detection

of at least one sequence of that attack. If sequence number 1000 is classified as

ffbconfig attack, then automatically the whole program with the process ID that

corresponds to sequence 1000 is classified as anomalous ffbconfig program.

The classification rate in most cases is 100% when method 1 described in

the previous section is used (observing values of log-likelihoods) and is always

100% when method 2 is used. This justifies the approach taken in this thesis

and proves that the behavior of attacks can be completely captured by HMMs.

The contribution of this thesis is reflected in the area of classification. There

are a lot of publications that use different models for detection between normal

and anomalous. None of them puts emphasis on automatic classification of

attacks. Some of the publications use HMMs for detection of attacks but there

are no specified methods or algorithms for HMM application or justification for
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using HMMs for detection. All of those approaches used training on normal

sequences which caused high complexity of the algorithm. This thesis uses an

approach that is based on training on anomalous sequences. Hence, each attack

can be represented with 3-4 HMM models. Training is performed very efficiently

since it is not performed on the BSM file with hundreds of thousands of system

calls, but on a couple of files, each of length 100 system calls. Instead of having

either a large number of models for normal sequences or high training time,

we have an efficient algorithm that performs testing using only 3-4 models for

each attack and testing is performed on around 400 to 700 sequences, which

represents around 2-4% of the total number of sequences of the initial data set.

The strength of this approach is that it chooses only potential attacks in both

the training and testing sets.

This approach was applied and tested in the course of work reported here only

for detecting and classifying of buffer overflow attacks. This approach can also be

used for detecting race conditions, since race condition attacks are characterized

with large number of executions of a certain command, for example deletion of

/tmp directory. This will result in a specific construction of abnormal HMM

which will significantly differ from normal ones. However, this method cannot

be applied for detection of race condition attacks that are performed over a long

period of time. The strength of this approach is that the attacker cannot change

the behavior of normal over time by slowly adding more and more abnormal

sequences since we are using anomalous sequences for training.
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6.1 Future work

We plan to apply the same (or similar) algorithm to other types of attacks, not

only buffer overflows since each attack has some characteristic sequences. The

model for ftp-write already exists and we plan to test it for detection of race

condition attacks. The thesis demonstrated that the method is efficient for both

detection and classification. The normal/abnormal detection level is going to

perform on the same high level as when applied on buffer overflows. The mis-

classification of attacks happened mostly in weeks that have both User to Root

and Remote to Local attacks. The weeks that had only DoS attacks and buffer

overflows had very low false alarm rate and no misclassification. Therefore, we

believe that, if rules for detection of other attacks are added, the misclassifica-

tion rate will be reduced even more. Not all of those attacks can be detected

with static checking tools. The most convenient attacks for detection with static

analysis are buffer overflows and most of static analysis tools are targeted to-

wards detection of buffer overflows. We can also use the models developed in

Chapter 3 for classification between different types of attacks, specifically, to

classify whether the attack is buffer overflow or some other type of attack. The

main problem is lack of data since we cannot claim that the algorithm works

if training is performed on one sequence and testing is performed on another

sequence from the same week or by using an attack performed by the same in-

truder. That is the main reason why this extension was not applied during the

work reported here . The attacks that had most instances were buffer overflows

and that is the reason why we applied and tested our method on such attacks.

This algorithm is used for detection of already known attacks. However, it can

always classify the sequence as normal or anomalous. If the sequence is classified
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as anomalous and it does not fit any of the existing models, it can be named

as unknown attack and passed on to another system that will determine if the

attack is an already known attack that has been altered or a completely new

attack.
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