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In networks without centralized control (e.g. ad-hoc or peer-to-peer networks)

the users cannot always be assumed to follow the protocol that they are supposed to.

They will cooperate in the operation of the network to the extent that they achieve

their own personal objectives. The decision to cooperate depends on the trust

relations that users develop for each other through repeated interactions. Users who

have not interacted directly with each other can use direct trust relations, generated

by others, in a transitive way as a type of recommendation. Network operation and

trust generation can be affected by malicious users, who have different objectives,

and against whom any proposed solution needs to be robust.

We model the generation of trust relations using repeated games of incomplete

information to capture the repetitive operation of the network, as well as the lack

of information of each user about the others’ objectives. We find equilibria that

provide solutions for the legitimate users against which the malicious users cannot

improve their gains. The transitive computation of trust is modeled using semiring



operators. This algebraic model allows us to generalize various trust computation

algorithms. More importantly, we find the maximum distortion that a malicious

user can cause to the trust computation by changing the reported trust value of a

trust relation.
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Chapter 1

Introduction

Networks are built with the expectation that the entities participating in them

will follow a predefined protocol. The protocol determines the behavior of the

network entities and it is a way to share common resources to achieve a network-

wide benefit. However, in networks without centralized control, the entities cannot

be forced to follow the protocol. The entities are (or are controlled by) users with

personal objectives that will not coincide, in general, with the network-wide ones.

Since each user’s benefit depends on how the other members of the network behave,

it is useful for him to form an expectation about what the others will do.

We define trust as the expectation of the behavior of others, e.g., other users

in a network. As an example, consider that the routing protocol in a communication

network has found shortest path routes that the packets are supposed to follow. Will

the other users agree to forward your packets, or will they drop them? In a peer-to-

peer, or a wireless ad-hoc network each user is assumed to be a potentially selfish,

or even malicious, individual who cannot be counted on to follow any protocol.

The notion of trust, as a network security rather than a philosophical concept,

will for our purposes correspond to a set of relations among entities that participate

in a protocol [21]. These relations are based on the evidence generated by the

previous interactions of entities within a protocol. In general, if the interactions have
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been faithful to the protocol, then trust will “accumulate” between these entities.

Exactly how trust is computed depends on the particular protocol (application).

The application determines the exact semantics of trust, and the entity determines

how the trust relation will be used in the ensuing steps of the protocol. Trust

influences decisions like access control, choice of public keys, etc. It could be useful

as a complement to a Public Key Infrastructure (PKI), where an entity would accept

or reject a public key according to the trustworthiness of the entities that vouch for

it (i.e. have signed a certificate for it) – this is the idea behind PGP’s Web of

Trust [61]. It can also be used for routing decisions: Instead of the shortest path,

we could be looking for the most trusted path between two nodes (this has been

already proposed in P2P networks [37]).

We will be focusing on infrastructureless networks, in the sense that no infras-

tructure should be required for the trust mechanisms to operate. It is, usually, in

such networks that the users cannot be enforced to abide by the protocol. In par-

ticular, ad-hoc wireless networks will be a running example of the type of network

that we are considering.

Ad Hoc networks are envisioned to have dynamic, sometimes rapidly-changing,

multihop topologies which are composed of bandwidth-constrained wireless links.

The nodes themselves form the network routing infrastructure in an ad hoc fash-

ion [16]. Based on these characteristics, we are imposing the following three main

constraints on our scheme:

First, there is no preestablished infrastructure. The computation process can-

not rely on, e.g., a Trusted Third Party. There is no centralized Public Key Infras-
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tructure, Certification Authorities, or Registration Authorities with elevated privi-

leges.

Second, evidence is uncertain and incomplete. Uncertain, because it is gen-

erated by the users on the fly, without lengthy processes. Incomplete, because in

the presence of adversaries we cannot assume that all friendly nodes will be reach-

able: the malicious users may have rendered a small or big part of the network

unreachable.

Third, the trust metric cannot impose unrealistic communication/computation

requirements. We are looking for a scheme that would lend itself to an efficient imple-

mentation. In other words, it should be as light as possible since it is a complement

to the real operation of the network.

We will be distinguishing between two types of trust: direct and indirect.

Direct trust is generated from the interactions between the network users. Indirect

trust between two users is computed in a transitive fashion based on the available

direct trust information. For instance, if there exist direct trust relations between

users A and B, and also between users B and C, then A can use these two relations

to compute an indirect trust relation between himself and C. This computed indirect

trust relation can then be used for, e.g., deciding whether to provide to C access to

some of A’s resources.

A high level view our general model is shown in Figure 1.1.

Our review of the work on trust has uncovered two omissions in the literature.

First, the lack of a model for how trust is generated based on the interactions of the

users. Secondly, the lack of a common platform that can enable comparisons between
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Figure 1.1: System operation

trust computation algorithms and protocols. Closely linked with this second point

is that a comparison between two trust computation algorithms should definitely

take into account the difficulty or otherwise that a malicious user would have in

leading the computation astray.

Our contribution is the design and analysis of two formal models, one for direct

trust generation, and one for indirect trust computation. Both models are expressive

enough to allow reasonable flexibility for various specific applications and protocols.

On top of their expressive power, both models enable us to analyze their properties.

In particular, a major benefit is that we can find guarantees of robustness in the

presence of malicious users. We can quantify and bound the maximum manipulation

or damage that the attackers can achieve.

The direct trust generation model is based on game theory. The users are

modeled to have certain actions at their disposal from which they can choose in

order to maximize a payoff function. The objective function of each user is what

distinguishes the different classes of users (selfish or malicious). Modeling selfish

users as payoff maximizing players is very natural, and, in different forms than ours,
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has been done before. However, the modeling of malicious users using game theory

is a novelty of our work. The notion of Nash equilibrium, the usual solution concept

in game theory, allows us to bound the payoff that the malicious users can achieve.

The indirect trust generation model is based on algebra, and, in particular, on

the algebraic structure called semiring. Semirings capture the essence of the path-

based nature of the indirect trust computation. The algebraic modeling viewpoint

that we use is general enough to accommodate various algorithms, and to formulate

axioms that all algorithms should satisfy. More importantly, within the framework

of semirings we can quantify the effect of malicious users manipulating the trust

relations reported by the other users.

A general requirement for our models to be applicable, as for all trust models,

is that there has to be a way to associate actions with user names or user identities.

In other words, we cannot have complete anonymity, because that would imply

complete unaccountability. Note that this requirement does not mean that our

models are susceptible to the Sybil attack [19]. Users can change identities, as long

as they have some identity.

A more specific requirement, which applies to the game theoretic model of trust

generation, is that we need network users to interact repeatedly. If the network is an

ephemeral network, i.e., the user interactions are too short-lived, then there is not

enough time to generate trust. In that case, the direct trust values would have to

be externally imposed, e.g., in the form of digital certificates, or some kind of quick

challenge-response protocol. Externally imposed trust is not naturally modeled by

our game theoretic framework. However, it can certainly be used as input to the
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algebra based indirect trust computation model.

This dissertation is functionally separated into two parts. The first part, con-

sisting of chapters 2, 3, and 4, introduces and applies the game theoretic model

for direct trust generation. Chapters 3 and 4 give two specific instantiations of the

model, where the actions, payoffs, and equilibrium strategies of the users are spec-

ified. Chapter 3 models a scenario in resource constrained networks, where users

want to forward their packets, but they also want to conserve their energy. Chap-

ter 4 models a scenario where malicious users are trying to maximize their payoff

before being discovered and isolated from the network. The second part, chapters

5, 6, and 7, is about indirect trust computation. In chapter 5, we present the al-

gebraic operators used for the computation, and describe various algorithms in the

literature from the algebraic point of view. Chapter 6 introduces our own model of

semirings, together with two instantiations, and chapter 7 analyzes the robustness

of semiring-based algorithms to attacks. Chapter 8 addresses practical issues for

trust applications.
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Chapter 2

Game Theoretic Modeling of Trust Generation

In this chapter, we describe the game theoretical framework that we will use for

the generation of trust. We will model different types of users (good and malicious)

by assigning them different payoffs that they try to maximize. We will use graphical

games to emphasize the dependencies of a user’s payoff to other users’ actions.

Incomplete information will be used to reflect the lack of knowledge of good users

for the types of other users. Repeated games will be used to capture the duration

of the network operation and the associated interactions between users, as well as

the updating of the knowledge of the good users that comes from the accumulated

history of observations of other users’ actions. Trust will quantify the knowledge of

the good users about the other users’ types.

2.1 Introduction to Game Theory

In this section we give a short introduction to game theory. After describing

the basic notions, we will focus on some definitions relevant to the specific areas

of game theory that we will use in this dissertation. These areas are graphical

games, incomplete information games, and repeated games. Highly recommended

textbooks on game theory are: Osborne and Rubinstein [47], Myerson [44]. Very

popular is also Fudenberg and Tirole [25].
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2.1.1 Game Theory Fundamentals

Game theory studies situations where two or more individuals choose among

actions so as to maximize their own welfare, knowing that everybody’s actions affect

everybody’s welfare. Individuals are called players; a tuple of actions, one for each

player, is called an outcome; and each player’s welfare is represented with a real-

valued utility function, which, as a general intuition, assigns larger numbers to

outcomes that are preferred.

A simple way to describe a game is to use the strategic form representation.

A game in strategic form is a tuple Γ of the form

Γ = (N, (Ai)i∈N , (ui)i∈N) (2.1)

where N is the non-empty set of players, which is usually identified with {1, . . . , n};

Ai is the non-empty set of actions available to player i, which can be discrete or

continuous; ui : ×j∈NAj −→ R is the utility function of player i, which assigns a

real number to every outcome.

Players in strategic form games choose their actions simultaneously, and then

each one receives a payoff determined by the outcome that was realized and his utility

function. The players are allowed to randomize among their actions, which turns

the outcome into a random variable, called a lottery over outcomes. The received

payoff is then also a random variable, but the players are assumed to receive its

expected value. The variance of the payoff is never taken into account. The utility

function is chosen so that its expected value reflects the players’ preferences over

any lotteries, not only over deterministic outcomes.
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Game theory tries to find which outcomes are compatible with the assumptions

about the users, that is, that the users are trying to maximize their utility function,

and that they know that the outcome is affected by the other players who are also

trying to maximize their own utility. All players have all the information about the

game, including the utility functions of the other players. The most popular way to

find such outcomes was proposed by Nash [46], and the corresponding outcomes are

called Nash equilibria. A Nash equilibrium is a tuple of actions, one for each player,

such that each action is a best response to the other players’ actions: Given that

all the other players will choose the action dictated by the equilibrium, no player

can gain a larger payoff by deviating from his own equilibrium action. The action

dictated by the equilibrium can also be a randomization between actions. In that

case, we speak of a mixed strategy Nash equilibrium, as opposed to a pure strategy

Nash equilibrium, which is when the equilibrium actions are deterministic.

As an example of a strategic game, consider the Prisoner’s Dilemma. There

are two players, each of which has two actions at his disposal. The payoffs are as

shown in Figure 2.1. The name of this game comes from the following story [47],

which also explains the payoffs: Two suspects are placed in different cells. If they

both confess, each will be sentenced to three years in prison. If only one of them

confesses, he will be freed, but his confession will be used to convict the other one

to a four year imprisonment. If neither confesses, they will both receive a one year

sentence due to some minor offense. The payoffs can be seen as the number of years

that each player avoids spending in prison, out of a maximum of four. One player

chooses a row and receives the left payoff in the appropriate box, the other one
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Don’t Confess Confess

Don’t Confess 3, 3 0, 4

Confess 4, 0 1, 1

Figure 2.1: The Prisoner’s Dilemma. A 2-player, 2-action game in strategic form.

The only Nash equilibrium is (Confess, Confess), although both players can do

simultaneously better by playing (Don’t Confess, Don’t Confess).

chooses a column and receives the payoff on the right in each box.

The paradox in this case is that whatever a player does, the other one is better

off confessing. This implies that the only Nash equilibrium is (Confess, Confess),

which gives a payoff of 1 to each player. However, they can both do better by playing

(Don’t Confess, Don’t Confess). This is a pure strategy Nash equilibrium, and

there are none other, either pure or mixed.

2.1.2 Graphical Games

Graphical games were introduced by M. Kearns, M. Littman, and S. Singh

[31], as a more compact representation of strategic form games, where the payoff

of a player depends only on a few other players’ actions, presumably many fewer

than the total number of players. The n-player graphical game is described by an

undirected graph G = (V, E) with |V | = n vertices, one for each player. An edge

(i, j) ∈ E ⊆ V × V means that i’s payoff depends on j’s action and vice versa.

Although there are no self-loops in the graph, it is assumed that a player’s payoff

depends on his own action. Also, a trivial generalization of a graphical game is when
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the graph is directed, with a directed edge (i, j) implying that j’s payoff depends

on i’s action.

2.1.3 Incomplete Information Games

Incomplete information games are games where some players initially have

private information about the game that other players do not know. The private

information that a player has is called the type of the player. The type is a payoff

function and a probability distribution on the possible types of other players. The

set of all possible types of player i is denoted Ti, and a member of Ti is denoted by

ti. The probability distributions on the type of i that other players have need not

be common: each player can believe different things about the type of player i.

In the case of two player games, we can distinguish two classes of games

according to the information that each player receives. If neither player has any

information about the other’s type, we have the symmetric information case. If

only one player has no information, but the other one has complete information

about both players’ types, then we have the asymmetric information case. In this

latter case, the first player is called uninformed, and the other one is called informed.

The notion of the Nash equilibrium now changes to a Bayesian-Nash equilib-

rium, in which the uninformed player (or players) plays against a mixture, defined

by his probability distribution, of the possible types of the other player (or players).

In particular, such an equilibrium assigns to each type ti of each player i a random-

ized or deterministic action that is optimal for i given ti’s probability distribution
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Player 1

Player 2 - A

T S

T 2, 1 0, 0

S 0, 0 1, 2

Player 1

Player 2 - B

T S

T 2, 0 0, 2

S 0, 1 1, 0

Figure 2.2: Incomplete information game. Player 1 has one type, player 2 has two

types (A and B). The (subjective) probability that player 1 places on player 2 being

of type A is p (1− p for type B).

on the types of the other players and the actions that the equilibrium assigns to

those types.

Consider the following two player incomplete information game with asym-

metric information. Player 1 has only one possible type, but player 2 has two, say

A and B. According to player 1, player 2 is of type A with probability p, and of

type B with probability 1− p. Each player has two actions at his disposal: T and

S. The payoff functions of player 1, and of the two types of player 2 are shown in

Figure 2.2.

Each equilibrium for this game will be represented with a triplet (a, b, c), corre-

sponding to the probabilities with which each of player 1, player 2-A, player 2-B will

play T . We will use a similar notation, with a pair instead of a triplet, for the equi-

libria of the two constituent games with player 1’s probability always shown first.

The equilibria of the incomplete information game depend on the probability p. For

example, it is expected that as p approaches 1, that is, player 1 is more and more

certain that player 2 is of type A, the equilibria of the game will assign to player
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1 the same actions that are assigned to him by the equilibria of the game between

player 1 and player 2-A. There are three equilibria in the game player 1 vs player

2-A: (1, 1), (0, 0), and the mixed strategy equilibrium (2
3
, 1

3
). Conversely, when p ap-

proaches 0, we expect the equilibrium to be somehow related to the (unique) mixed

strategy Nash equilibrium of the game between player 1 and player 2-B: (1
3
, 1

3
).

The Bayesian-Nash equilibria for the game of Figure 2.2 are shown below for

the various value of p. We can see that there could be from one up to three equilibria,

depending on the value of p. We can also verify that the equilibria for p −→ 0, 1

resemble the equilibria of the constituent games.

Values of p Equilibria

0 ≤ p ≤ 1
3

(1
3
, 0, 1

3(1−p)
) xxx xxx xxx

1
3
≤ p ≤ 2

3
(1

3
, 0, 1

3(1−p)
) (2

3
, 1

3p
, 0) (1, 1, 0) xxx

2
3
≤ p ≤ 1 xxx (2

3
, 1

3p
, 0) (1, 1, 0) (0, 0, 1)

2.1.4 Repeated Games

In repeated games, the same game (called the stage game), is repeatedly played

in rounds, and the players remember what has happened in the past. So, their

actions may depend on the accumulated history of past actions. The duration of

the game may be finite or infinite. We will be focusing on the infinite case. The

payoff of the repeated game is a function of the sequence of payoffs of the stage

games. It is not usually chosen to be the sum, because many sequences of payoffs

may have an infinite sum, so comparison would be meaningless. We will concentrate
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on two repeated game payoff functions: The limit of means payoff

Ri = lim
T→∞

1

T

T
∑

t=1

Rt
i, (2.2)

and the δ-discounted payoff

Ri = (1− δ)
∞

∑

t=1

δt−1Rt
i, (2.3)

where {Rt
i, t = 1, . . .} are the realized payoffs of player i at rounds t = 1, . . .,

and the parameter δ, 0 < δ < 1 can be interpreted as the patience of a player. If δ is

small, then only payoffs in the early rounds count; if δ is large, then payoffs of later

rounds count, too. In the limit δ −→ 1, the δ-discounted payoff becomes equal to

the limit of means payoff.

2.1.5 Putting it all together

Our model in what follows will be a repeated graphical game with incomplete

information. The users will be associated with nodes on a graph, which will be

called the game graph, joined by edges denoting dependencies of payoffs on actions

of other users. Each user will have a type, known to himself, but some users will be

informed about everybody’s types, while other users will only know their own. The

game will be played repeatedly, and one of the main issues will be the acquisition of

knowledge on the part of the uninformed players through the repeated interactions.

This acquisition of knowledge will be reflected in the probabilities p that each user

uses as estimates of the types of his neighbors on the game graph. Overall, the

probabilities will affect what actions the players will play next, and the actions will

affect how the probabilities will be updated.
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2.2 Modeling Protocol Interactions of Network Users

We model networks consisting of users who try to maximize a personal benefit

through their participation in the network. Associated with the network, there is a

protocol that describes the available actions that each user has at his disposal. The

protocol also defines a behavior that is expected of each user. However, there is no

centralized control of the users’ decisions, so each user is free to choose his action.

The payoff of each user reflects the benefit he derives from being part of the

network, typically in terms of the services that the rest of the network provides to

him through the operation of the protocol. In general, the level of service that a

user receives may depend on many or all other users of the network; we model these

dependencies as a graphical game. For example, if the protocol is about packet

forwarding, then all users on the path from the source to the destination can affect

the level of the service. However, the users may not want to follow the protocol,

since that will entail certain responsibilities on their part. These responsibilities

usually amount to resource consumption of some sort, such as energy consumption

in the case of packet transmission in wireless networks. The cost associated with

following the protocol is also reflected in the payoff, as a decrease in the derived

benefit.

The users can have varying degrees of selfishness. Selfishness can be quantified

as the level of service that a user desires from the network before he decides to

follow the protocol himself. In the examples that we will analyze later, we will only

consider users who are equally selfish, but we will point out how different degrees of
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selfishness can be incorporated. Nevertheless, we will make an important distinction

between selfish users, who care about the level of service they receive, and malicious

users. More precisely, we can model malicious users as users whose payoff does not

depend at all on the level of service that they receive. Our choice is to model them

as playing a zero-sum game against good players, i.e., their objective is directly

opposed to whatever the objective of the good users is.

In short, we distinguish different types of players (selfish or malicious) through

their different payoffs, and we assume that all players choose their actions so as

to maximize their payoff. This is in contrast to various game theoretic models

in the literature that assign identical payoffs to all users, and then distinguish,

e.g., malicious users through the different strategy that they follow. The problem

with distinguishing users through assigning different strategies is that the strategy

assigned to malicious users may not be a payoff maximizing strategy. This runs

contrary to the rationality assumption for game theoretic players. Actually, if all

players have the same payoff but follow different strategies, some players will be

following suboptimal strategies, barring degenerate cases.

A crucial modeling decision is to make the payoff matrix of each user known

only to himself. This reflects the lack of knowledge that users have for each other in

a network without centralized control. To enhance the capabilities of the malicious

users, we will assume that they know the payoffs of everybody. That is, they know

who is malicious and who is only selfish. This is a game of incomplete information,

and the information is asymmetric, since malicious users know the types of everyone,

but each selfish user only knows his own payoff.
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Since the network operates for a long time, the users choose actions repeatedly.

We assume time is discrete, and users choose their actions simultaneously in rounds,

which exactly follows the repeated games framework. At each round, users remember

the past history of their own actions and of the actions of the users that affect their

payoff. They can use this history to help them choose their action in the next

round. Given the incomplete information assumption, repeated interactions can

help increase the knowledge of non-malicious users regarding who is malicious and

who is not. This increase in knowledge is quantified through the beliefs of users for

each other’s type.

In general, if we want a user i to form beliefs about other users based on their

actions, these actions have to be observable by user i. Therefore, if the users who

affect i’s payoff are not among his one-hop network neighbors, then either there

has to be a mechanism that can make observations “at a distance”, or the model

has to be extended to, e.g., imperfect observation games. We do not consider such

extensions in this work.

2.2.1 Formal description of the model

The network is modeled as an undirected graph G = (V, L), where each node in

V corresponds to one user. An edge (i, j) ∈ L means that there is a communication

link between the users corresponding to nodes i and j. The set of neighbors of user

i, denoted Ni, is the set of users j such that there exists an edge (i, j):

Ni = {j ∈ V |(i, j) ∈ L}. (2.4)
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The neighbors of user i are also called adjacent nodes to i, and the links that

share a node are called adjacent links. Since the graph is undirected, the neighbor

relationship is symmetric: j ∈ Ni ⇔ i ∈ Nj . The assumption for an undirected

graph can be dropped, in order to model asymmetric links, but we believe the

extension to be straightforward. We denote the set of Bad users by VB, and the

set of Good users by VG. It holds that VB ∩ VG = ∅ and VB ∪ VG = V . The

type ti ∈ {G, B} of a user i denotes whether he is Good or Bad. The Good users

correspond to the selfish users of the previous section.

The graph of the game is identified with the graph of the network. There-

fore, the payoff of a user is only affected by his one hop network neighbors, whose

actions are also directly observable. Users have a choice between two actions: C

(for Cooperate), and D (for Defect). When all users choose their actions, each user

receives a payoff that depends on his own and his neighbors’ actions, and his own

and his neighbors’ types. Observe that the user is playing the same action against

all neighbors. As an extension, a user’s actions could be different for different links.

The whole issue is about how much granularity of control each user has. If all the

user can (or wants to) do is turn a switch ON or OFF, then the only model that

can be used is a single action for all neighbors.

The payoff is decomposed as a sum of payoffs, one term for each adjacent link.

Each term of the sum depends on the user’s own action and type, and the action of

his neighbor along that link. It may also depend on the type of his neighbor along

that link, but in that case the separate terms of the sum are not revealed to him.

Only the total payoff (sum of all link payoffs) is revealed to the user, otherwise he
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would be able to discover immediately the types of his neighbors.

The payoff of user i is denoted by Ri(ai|ti), when i’s action is ai and i’s type

is ti. We extend this notation to denote by Ri(aiaj |titj) the payoff for i when j is

a neighbor of i and j’s action and type are aj and tj. So, the decomposition of i’s

payoff along each adjacent link can be written as

Ri(ai|ti) =
∑

j∈Ni

Ri(aiaj |titj), (2.5)

or, when i’s payoff does not depend on the types of his neighbors,

Ri(ai|ti) =
∑

j∈Ni

Ri(aiaj |ti·). (2.6)

We assume there are no links between any two Bad users. The Bad users are

supposed to be able to communicate and coordinate perfectly; hence, there is no

need to restrict their interaction by modeling it in these terms. Moreover, the Bad

users know exactly both the topology and the type of each user in the network.

Good users only know their local topology, e.g., how many neighbors they have and

what each one of them plays, but not their types.

Since there are no links between Bad users, the two games that can appear are

Good versus Good, and Good versus Bad. The payoffs in matrix form are shown

in Figure 2.3, where i is the row player, and j is the column player. For instance,

Rj(DC|BG) is the payoff of the column player j when he plays D, his type is B,

the row player plays C, and the row player’s type is G.

The payoff of a Bad user is the opposite of the payoff of the Good user. That

is, the Good versus Bad game is a zero-sum game. Also, the Good versus Good
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Good

Bad

C D

C Ri(CC|GB), Rj(CC|BG) Ri(CD|GB), Rj(DC|BG)

D Ri(DC|GB), Rj(CD|BG) Ri(DD|GB), Rj(DD|BG)

Good

Good

C D

C Ri(CC|GG), Rj(CC|GG) Ri(CD|GG), Rj(DC|GG)

D Ri(DC|GG), Rj(CD|GG) Ri(DD|GG), Rj(DD|GG)

Figure 2.3: The two games that can take place on a link: Good versus Bad and

Good versus Good. The payoffs are shown in their most general form.

game obviously needs to be symmetric. These two observations allow us to simplify

the presentation of the payoff matrices as shown in Figure 2.4.

The game is played repeatedly with an infinite horizon, and time is divided

in rounds t = 1, 2, 3, . . .. Actions and payoffs of user i at round t are denoted with

superscript t: at
i and Rt

i. Each Good user i remembers his own payoff and action at

each past round, and the actions of his neighbors at each past round. The n-round

history available to user i is defined to be the collection of all this information from

round 1 up to and including round n:

H1...n = {∀j ∈ Ni, ∀t ∈ {1, . . . , n} : at
j} ∪ {∀t ∈ {1, . . . , n} : at

i, R
t
i}. (2.7)

User i then uses the n-round history to decide what his action will be in round

n + 1. In particular, the history is used to form estimates about actions expected
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Good

Bad

C D

C r1,−r1 r2,−r2

D r3,−r3 r4,−r4

Good

Good

C D

C s1, s1 s2, s3

D s3, s2 s4, s4

Figure 2.4: The two games that can take place on a link: Good versus Bad and

Good versus Good. The payoffs have been simplified to reflect that the Good versus

Bad game is zero-sum, and the Good versus Good game is symmetric.

of i’s neighbors at round n + 1. The estimates can either be directly about the

neighbors’ actions, or indirectly through first estimating their types and then the

probability that given their type they will play a certain action. The expected

payoff of user i for round n + 1 will be as follows (all the probabilities are implicitly

conditioned upon the n-round history):E[Rn+1
i ] = Pr(an+1

i = C)Rn+1
i (C) + Pr(an+1

i = D)Rn+1
i (D), (2.8)

where Rn+1
i (C) is the expected round n + 1 payoff for user i, given that he plays

C at round n + 1, which we compute below. A similar definition and computation

holds for Rn+1
i (D).
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Rn+1
i (C) =

∑

j∈Ni

Ri(CC|GB) · Pr(an+1
j = C|tj = B) · Pr(tj = B)

+
∑

j∈Ni

Ri(CC|GG) · Pr(an+1
j = C|tj = G) · Pr(tj = G)

+
∑

j∈Ni

Ri(CD|GB) · Pr(an+1
j = D|tj = B) · Pr(tj = B)

+
∑

j∈Ni

Ri(CD|GG) · Pr(an+1
j = D|tj = G) · Pr(tj = G)

(2.9)

Then, user i will choose the action (C or D) that gives him the largest expected

payoff. After all players choose their actions, they receive their payoffs and observe

their neighbors’ actions. They incorporate that information in their history, and

update the probability estimates accordingly.

In the next two chapters, we will give specifics of two models that instantiate

the general model we just described. The difference will be, first and foremost, in

the way that Good users treat collaboration with Bad users. In the next chapter,

collaboration with Bad users will be identical to collaboration with Good ones, that

is, the costs and benefits will be the same in both cases. In the chapter after that,

the assumption will be that a Good user prefers to collaborate with Good users, but

receives a negative payoff when collaborating with Bad users. So, he will be able to

detect that Bad users are among his neighbors, but he will not immediately know

which ones are the Bad ones. There, the interest will be in how soon the Good user

discovers which the Bad neighbors are. Additionally, upon discovering a Bad user,

a Good user will be able to break the link that joins them, thus altering the game

graph.
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2.3 Related work

Repeated games with incomplete information were introduced by Aumann and

Maschler [6]. The 2-person case is also discussed by Myerson [44], and, at greater

depth, by Zamir and Forges [5].

The most relevant piece of game theoretic literature is the work by Singh, Soni,

and Wellman [54]. There they deal with the case of tree games with incomplete in-

formation, i.e., the graph of the game is a tree, the players have private information,

but there is no history (the game is not repeated). They provide algorithms for

finding approximate Bayes-Nash equilibria. Their algorithm does not generalize to

non-tree graphs in an obvious way.

Game theoretic considerations have been applied to trust computation before,

but on completely different models of interaction. Kreps and Wilson [32] address

the chainstore game, in which there is one player who plays everybody else in turn.

A notion of reputation of this so-called “long run” player is developed, which corre-

sponds to the expectations of the “short term” players whose turn has not come yet.

This introduces a fundamental asymmetry among the players which is non-existent

in our model.

Morselli et al. [41], and similarly Friedman et al. [24], assume that there is a

network of users who are playing a game repeatedly. However, their model proceeds

in a completely different direction than ours. They assume that users are paired

at random and play a 2-person game (their example is Prisoner’s Dilemma). In so

doing, they do not incorporate any notion of topology (users playing against their
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neighbors). Moreover, they either assume that “the system” can see what everyone

is doing, as well as give this information to everybody [24], or that each player broad-

casts his experience after each round (what his partner did) [41]. For the networks

that we are considering (resource-constrained, and without a centralized authority)

such luxuries are prohibited. Moreover, we are taking the different approach of sep-

arating the problem of building up trust values for one’s neighbors based on direct

interactions from the problem of computing indirect trust values which are based

on neighboring users’ recommendations for the rest of the users.

In the literature for inducing cooperation among network users, mostly selfish

users have been studied. The work by Blanc, Liu, and Vahdat [11] is an example of

providing incentives for users to cooperate (another example is Buttyán and Hubaux

[15]). However, they are modeling Malicious Users as “Never Cooperative”, without

any further sophistication, since their main focus was discouraging selfish free-riders.

There is no degree of selfishness that can approximate the behavior of our Malicious

Users. For example, Félegyházi, Hubaux and Buttyán [23] assume that the payoff

function of a user is non-decreasing in the throughput experienced by the user. Our

Bad users do not care about their data being transmitted. For the same reason,

the model proposed by Urpi, Bonuccelli, and Giordano [60] does not apply (as the

authors themselves point out).

In other related work, Srinivasan, Nuggehalli, Chiasserini, and Rao [56] are

using a modified version of Generous Tit For Tat (for an early famous paper in

the history of Tit for Tat see [7]), but they have no notion of topology and, conse-

quently, of neighborhoods. In their setting, each user is comparing his own frequency
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of cooperation to the aggregate frequency of cooperation of the rest of the network.

Altman, Kherani, Michiardi, and Molva [4] proposed a scheme for punishing users

whose frequency of cooperation is below the one dictated by a certain Nash equi-

librium. Aimed particularly against free-riding in wireless networks is the work

by Mahajan, Rodrig, Wetherall, and Zahorjan [36], and also the one by Feldman,

Papadimitriou, Chuang, and Stoica [22].

Malicious users and attacks have been mostly considered from a system per-

spective for particular protocols or algorithms (e.g. securing Distributed Hash Ta-

bles [55], or from a cryptographic viewpoint: key exchanges, authentication, etc.).

For a summary from the perspective of P2P networks, see Ref. [17].

To the best of our knowledge, there has been no game theoretic modeling of

malicious users as we describe them here. Moscibroda, Schmid, and Wattenhofer

[42] have modeled malicious users in a game theoretic setting, but in a different way.

The game they are considering is a virus inoculation game, in which selfish users

decide whether to pay the cost for installing anti-virus software (inoculation), or

not pay and risk getting infected. The malicious users declare that they have been

inoculated, when in fact they have not, so as to mislead the selfish ones. After the

selfish users have made their decisions, the attacker chooses an uninoculated user,

uniformly at random, and infects him. The infection propagates to all unprotected

users that can be reached from the initially infected users on paths consisting of

unprotected users (the malicious ones are equivalent to unprotected). One major

difference is that in this model the selfish users are assumed to know the topology of

the network (a grid, in particular), whereas in our model they only know their local
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neighborhood topology. Another difference is that the notion of Byzantine Nash

Equilibrium that they consider is restricted to the strategies of the selfish users

alone.
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Chapter 3

Collaboration in the Face of Malice

3.1 Introduction

In this chapter, we follow the general framework described in Chapter 2. We

use repeated graphical games of incomplete information to model the effect of ma-

licious users on the operation of a network. There are two salient points introduced

and used in this chapter. First, Good users do not care if they cooperate with

other Bad users. They get the same costs and benefits in either case. Second, the

Good users’ indifference to the other players’ type implies that Good users only care

about estimating their neighbors’ potential future actions. They estimate a neigh-

bor’s next action through the fictitious play process, explained in the next section.

In brief, this means that each user assumes that each neighbor plays an action with

the same probability independently at every round. This probability is estimated

as the empirical frequency of past observations of that action.

3.2 Malicious and Legitimate User Model

For the purposes of this section, we define a game with the payoffs shown in

table form in Fig. 3.1 for the two pairs of types that can arise (Good versus Good,

and Good versus Bad). Using the R-notation, the payoffs for a Good player would
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Good

Bad

C D

C N − E, E −N −E, E

D 0, 0 0, 0

Good

Good

C D

C N − E, N − E −E, 0

D 0,−E 0, 0

Figure 3.1: The two games that can take place on a link: Good versus Bad and

Good versus Good.

be as follows, independent of the type of the opponent:

Ri(CC|G·) = N − E (3.1)

Ri(CD|G·) = −E (3.2)

Ri(DC|G·) = 0 (3.3)

Ri(DD|G·) = 0, (3.4)

while for a Bad player they would be as follows, keeping in mind that Bad players

only play against Good ones, not against other Bad:

Ri(CC|B·) = E −N (3.5)

Ri(CD|B·) = 0 (3.6)

Ri(DC|B·) = E (3.7)

Ri(DD|B·) = 0. (3.8)
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We explain the payoffs as follows: In the example of a wireless network, a C

means that a user makes himself available for communication, that is, forwarding

traffic of other nodes through himself. A link becomes active (i.e., data is exchanged

over it) only when the users on both endpoints of the link cooperate, that is, play C.

Playing C is in line with what Good users want to achieve – good network operation

– but it costs energy, since it means receiving and forwarding data. So, when both

players on a link play C, the Good player (or both players, if they are both Good)

receives N (for Network) minus E (for Energy) for a total of N − E. We assume

N > E > 0, otherwise no player would have an incentive to play C. On the other

hand, when a Good player plays C and the other player D, then the Good player

only wastes his energy since the other endpoint is not receiving or forwarding any

data. For this reason, the payoff is only −E. In general, the values of E and N

provide a way to quantify the selfishness of Good users, if we allow these values to

vary across users. That is, values Ei and N i, instead of E and N , would signify

user i’s personal cost of spending energy, and his personal benefit from activating

an adjacent link. The larger the ratio Ei

N i , the more selfish the user.

The Bad user’s payoff is always the opposite of the Good user’s payoff. In

particular, we do not assume any energy expenditure when the Bad users play C.

In a peer-to-peer network, a C would mean uploading high quality content

(as well as, of course, downloading), and a D would be the opposite (e.g. only

downloading). The benefit of cooperation is the increased total availability of files.

The cost of cooperation E could be, for instance, the hassle and possible expense

associated with continuing to upload after one’s download is over. In a general social
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network, edges would correspond to social interactions, a C would mean cooperating

with one’s neighbors toward a socially desirable objective (like cleaning the snow

from the sidewalk in front of your house), and a D would mean the opposite of a C.

The cost E and benefit N are also obvious here.

In repeated games, as we have discussed, the players are allowed to have full

or partial memory of the past actions. Here, we allow the Bad users to have all

information about the past (their own moves, as well as everybody else’s moves

since the first round). On the other hand, the Good users follow a fictitious play

process [13], that is, they assume that each of their neighbors chooses his actions

independently and identically distributed according to a probability distribution

with unknown parameters (Bernoulli in this case, since there are only two actions

available: C and D). So, at each round they are choosing the action that maximizes

their payoff given the estimates they have for each of their neighbors’ strategies.

For example, if player i has observed that player j has played c Cs and d Ds in

the first c + d rounds, then i assumes that in round t = c + d + 1, j will play C

with probability c
c+d

and D with probability d
c+d

. We denote by qt
j the estimated

probability that j will play C in round t+1, which is based on j’s actions in rounds

1, . . . , t.

We choose the average payoff as our repeated game payoff function:

Ri = lim
T→∞

1

T

T
∑

t=1

Rt
i. (3.9)

Let us now calculate the expected payoff for each of the two actions of a

Good user. We assume that t rounds have been completed, and Good user i is
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contemplating his move in round t + 1. The following equation is an instantiation

of the generic payoff equation (2.9) for the specific payoffs shown in (3.1).

Rt+1
i (C|G) =

∑

j∈Ni

{

qt
jRi(CC|G) + (1− qt

j)Ri(CD|G)
}

=
∑

j∈Ni

{

qt
jN −E

}

= N ·
∑

j∈Ni

qt
j − |Ni| · E

Rt+1
i (D|G) = 0.

(3.10)

So, in order to decide what to play, user i has to compare the expected payoff that

each action will bring. Action C will be chosen if and only ifERi(C|G) ≥ ERi(D|G),

that is, iff

∑

j∈Ni

qt
j ≥ |Ni|

E

N
. (3.11)

Therefore, the Good user will add the estimates for his neighbors and compare

to the quantity |Ni|
E
N

to decide whether to play C or D. This makes the imple-

mentation of the Good user behavior particularly simple, since they only need to

keep track of one number for each neighbor, as opposed to the whole history of

actions observed. Our main aim in this chapter is to see what the Bad users can do

against this strategy. On the one hand, perhaps they can exploit its simplicity to

gain the upper hand against the Good users. On the other hand, the fact that the

Bad users have full knowledge of the history and can achieve perfect coordination

in their actions may not be very useful here. The reason is that Good users only

care about the frequencies of the actions that they observe (see Eq. (3.11)), and the

Bad users will achieve nothing by more elaborate strategies. This point is worth
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repeating: The only relevant decision that the Bad users can make is to choose the

frequency of their Cs and Ds. Nothing more elaborate than that will be noticed by

the Good users. So, we will be assuming that the Bad players can only choose a

fixed probability with which they will be playing C.

The choice of payoff that we made (Eq. (3.9)) implies that only the steady

state matters when discussing the sequences of actions of the users. In particular,

it allows us to talk about frequencies instead of probabilities, since frequencies will

have converged in the steady state. Initial (a priori) estimates will not matter. What

does matter, however, is our assumption that the Good users start out by playing

C. If that is not the case, the game will in general converge to an equilibrium where

all users are playing D.

As a justification for the choice of fictitious play as the process that the Good

users follow, we note that very similar behavior assumptions have been done when

computing trust and reputation values. In this chapter, a user’s reputation corre-

sponds to the probability that he plays C. An example is the work by Buchegger,

and Le Boudec [14], who, in summary, are assuming that a user can misbehave

with an unknown probability θ. This probability is then estimated by gathering

observations and updating a prior distribution (a Beta distribution) through Bayes’

law. The Beta distribution function has also been used in Ismail and Jøsang’s work

[28]. It is particularly useful because it can be used to count positive and negative

events, which are often used to represent a user’s behavior in a network, and then

compute the user’s reputation as the mean value of the Beta distribution.
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3.3 Searching for a Nash Equilibrium

In game theory, as we have discussed, the solution concept we are dealing

with most frequently is the Nash Equilibrium. The Nash Equilibrium is a tuple

of strategies, one strategy for each player, with the property that no single player

would benefit from changing his own equilibrium strategy, given that everybody else

follows theirs. In our case, we have already restricted the Good players’ strategies

to fictitious play, as shown in Eq. (3.11), so the Nash Equilibrium will be restricted

in this sense.

More formally, the Nash Equilibrium in our case would be a vector ~q ∈ [0, 1]|V |,

where qi is the frequency with which user i plays C. The subvector ~qG corresponding

to the Good users will contain only 0s and 1s, according to whether Eq. (3.11) is

false or true, respectively. For example, if Eq. (3.11) is false for user i, then the

ith element of ~q will be zero. The subvector ~qB corresponding to the Bad users will

contain values in [0, 1] such that no other value of qi would increase the payoff of

Bad user i. The payoff of Bad user i when he is playing C with frequency qi is
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computed as follows:

Ri(qi|B) =
∑

j∈Ni:qj=1

{qiRi(CC|B) + (1− qi)Ri(DC|B)}

+
∑

j∈Ni:qj=0

{qiRi(CD|B) + (1− qi)Ri(DD|B)}

=
∑

j∈Ni:qj=1

{qi(E −N) + (1− qi)E}

+
∑

j∈Ni:qj=0

{qi · 0 + (1− qi) · 0}

= (E −Nqi)|{j ∈ Ni : qj = 1}|

(3.12)

Note that since a Bad user only has Good neighbors, and Good users only play

always C or always D, the qj (j ∈ Ni) will all be either 0 or 1.

The problem with the equation we just wrote is that it is not immediately

obvious what the cardinality of the set {j ∈ Ni : qj = 1} is. This set contains the

neighbors of a Bad user that play C. In general, what a Good user plays will be

affected by the choice of frequencies by all the Bad users. Actually, it will not just be

affected: it will be completely determined. Given a choice of frequencies ~qB by the

Bad users, we describe an algorithm (see Fig. 3.2) to compute the optimal responses

of the Good users, which will in turn determine the payoffs for every user (Good or

Bad). Our purpose in presenting this algorithm is to show how Good users’ actions

would affect one another and Ds would propagate through the network. It is not

claimed to be the most efficient to compute what the equilibrium is.

In a few words, the algorithm starts by assuming that all Good users play C.

Then, they check the validity of Eq. (3.11), and some start playing D. Then, the

ones who started playing D may cause their Good neighbors who are still playing C
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to also start playing D. The set S contains these users who still need to (re)check

Eq. (3.11), since its validity may have changed.

Equilibrium(G, ~qB)

� All Good users are initialized to playing C,

� i.e., ~qG contains only 1s.

� S contains users that may switch from C to D.

1 S ← VG

2 while S 6= ∅

3 do i← Remove(S)

4 if Sum(i) < E
N
|Ni|

5 then

6 qi ← 0

7 S ← S ∪ {j|j ∈ Ni ∧ j ∈ VG ∧ qj = 1}

Figure 3.2: The algorithm Equilibrium computes the optimal actions (C or D) for

the Good users, given the subvector ~qB of the Bad user frequencies. The procedure

Sum(i) returns the sum of the frequencies of i’s neighbors. Since a Good user

switching from C to D could cause other Good users to switch from C to D, the

while-loop needs to run until there are no more candidates for switching.

In general, a change in the frequency qi of a Bad player i will affect the payoffs

of other Bad players, too, since it will change the optimal responses of Good users

that could, e.g., be common neighbors of i and other Bad users. So, the definition of

the Nash Equilibrium we gave earlier could be expanded to regard the Bad players
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Figure 3.3: Single Bad user maximizes his own local payoff.

as a team that aims to maximize the total payoff, rather than each Bad user trying

to maximize his own individual payoff. In Section 3.3.1, we will see a case when

local maximization by each Bad user is equivalent to maximization of the sum of all

the Bad users’ payoffs. In Section 3.3.2 we will examine more closely why the two

objectives are in general different and will describe a heuristic for the general case.

3.3.1 The Uncoupled Case

Let us look at the case of a single Bad player in the whole network. Since no

other Bad players exist, the choice of the Bad user will only affect his own payoff.

We will see what he has to do (i.e., with what frequency to play C) in order to

maximize his payoff, in a tree topology where the Bad player is at the root of the

tree. In Figure 3.3 we see the root (Bad user) and the one-hop neighbors only.

Assume that the Bad user – labeled user 0 – has k neighbors, labeled 1, . . . , k.

We also assume that all the Good users will start by playing C, and will only change

to D if they are forced by the Bad user. Applying Eq. (3.11) for each neighbor, we

see that each expects to see a different sum of frequencies from his own neighbors
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in order to keep playing C. User i expects to see a sum of frequencies that is at

least E
N
|Ni|. Since all of i’s neighbors except user 0 are Good, they will at least start

by playing C, so user i will see a sum of frequencies equal to |Ni| − 1 + q0 (q0 is

the frequency with which the Bad user 0 is playing C). So, in order to make user i

continue playing C, the Bad user should play C with frequency

q0 ≥
E

N
|Ni| − (|Ni| − 1) = 1− |Ni|(1−

E

N
) ≡ ti, (3.13)

which is decreasing with |Ni|, since E < N . We call this quantity the threshold ti:

Definition. The threshold ti of a Good user i with g Good neighbors is the sum

of frequencies of Cs that his |Ni| − g Bad neighbors need to play, so that he keeps

playing C. We assume that all his Good neighbors play C.

ti = max

{

E

N
|Ni| − g, 0

}

(3.14)

Without loss of generality, we assume that the Bad user’s neighbors are labeled

in increasing order of ti. So, t1 < t2 < . . . < tk. By choosing q0 = tk, the Bad user

guarantees that all his neighbors will be playing C. The payoff that he receives

by playing q0 = tk can be calculated using Eq. (3.12) to be equal to R0(tk|B) =

k(E −Ntk). In general, the following holds:

R0(tj|B) = j(E −Ntj). (3.15)

It does not make sense for the Bad user to choose any value for q0 other than

one of the tj , since it would not make any difference to the Good users; it would

only reduce the payoff of the Bad user. So, the aim of the Bad user is to find the
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value of tj that maximizes the payoff. Note that as j increases, the first term of

the product increases, but the second term decreases. This gives a bound on the

acceptable values that q0 can take. It cannot be higher than E
N

, since that would

make the payoff negative, when the Bad user can always guarantee a payoff of at

least 0 by choosing q0 = 0. In order to find the optimal tj we compare the payoffs

for all values of j, and pick the maximum. For two values of q0, say tl and tm with

l < m, the comparison boils down to:

R0(tl|B) > R0(tm|B)⇔ l(E −Ntl) > m(E −Ntm)

⇔ tm >
l

m
tl + (1−

l

m
)
E

N

(3.16)

When the Bad user chooses a value for q0, some of his neighbors will play C

and some D. The ones who play D may cause their own neighbors to start playing

D, and so on, in a spirit similar to the algorithm described in the previous section.

However, the Ds cannot, by propagating, influence other neighbors of the Bad user:

That is a consequence of the tree topology that we have assumed, since the only

path that goes between two one-hop neighbors of the Bad user, goes through the

Bad user.

What happens when there are multiple Bad users in a general topology? We

will examine the circumstances under which the maximization of the total sum of

Bad users payoff is achieved through the local maximization of each Bad user’s

payoff. This local maximization is done as we have just described in Eq. (3.16). We

call “Uncoupled Case” the situation described by these circumstances.

We will find it useful to define the notion of the tolerance of a Good user.
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Definition. The tolerance of a Good user is the largest number of his one-hop

neighbors that can play D, before he starts playing D himself.

The tolerance of a Good users is a function of E
N

. To compute the tolerance of

user i, assume that n of his neighbors play D, and |Ni|−n play C. From Eq. (3.11),

for user i to play C the following needs to hold:

|Ni| − n ≥ |Ni|
E

N
⇔ n ≤ |Ni|(1−

E

N
) (3.17)

The tolerance is the largest integer n for which this equation holds, i.e., nmax =

⌊|Ni|(1−
E
N

)⌋.

To show that local maximization is equivalent to global maximization, we

need to make sure that Good players who start playing D do not cause, recursively,

“too many” other Good users to play D so that the payoffs of other Bad users

are affected. Going back to the algorithm Equilibrium, we can see that this will

happen if and only if the nodes that play D because of a Bad user B1 are separated

by at least two nodes (three hops) from the nodes that play D because of any

other Bad user. In other words, there needs to be a layer of nodes at least two

nodes deep that have large enough tolerances so that they will not start playing D

themselves. Since, for a fixed E
N

, the tolerance of a user depends only on the number

of his neighbors, nodes with a high degree that are connected to each other would

provide the highest resistance to playing D. In graph theoretical terms, the greatest

“aggregate” tolerance is achieved, for a given number of nodes, when the nodes are

connected in a clique (maximum connectivity).

We now apply these considerations to a specific example, shown in Fig. 3.4.
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Figure 3.4: The Uncoupled Case. Shown next to each node is its threshold: The

frequency of Cs it expects to see from the neighboring Bad user. It is equal to

E
N
|Ni|− (|Ni|−1), since each Good user happens to have at most one Bad neighbor.

There are two Bad users, labeled B1 and B2, and eleven Good users. Shown in

the picture are the thresholds of the Good users who are neighbors of a Bad user.

Remember that the threshold of a Good user is the frequency of Cs that the Bad

neighbor should play if the Good user is to play C, assuming that all the other

neighbors of the Good user play C.

The thresholds of B1’s neighbors are, in ascending order: 4 E
N
−3, 3 E

N
−2, 2 E

N
−

1, E
N

. These, along with the value 0, are the options that B1 has for choosing his

qB1
. To keep things simple, we assume that E

N
is such that all the above thresholds

are positive. In particular, this translates to E
N

> 3
4
.

The table below shows the choices that B1 can make and the associated payoffs.
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The thresholds are computed using Eq. (3.14), and the payoffs using Eq. (3.12).

frequency payoff

0 0

4 E
N
− 3 3(N − E)

3 E
N
− 2 6(N − E)

2 E
N
− 1 5(N − E)

E
N

0

So, to maximize his own payoff, B1 should play C with frequency 3 E
N
− 2. On the

other hand, the maximizing frequency for B2 is 4 E
N
− 3, which brings him a payoff

of 3(N − E).

How will the Good users react to these choices? In effect, we will now go

through what the algorithm Equilibrium in Fig. 3.2 would do. Users 5,6, and 9

will play C, and users 1,2, and 10 will play D because B1’s choice is above or below

their thresholds, respectively. User 4 will play C because of B2’s choice.

For the two-hop neighbors of the Bad users, we will have the following: User

8 will obviously play C, since both his neighbors (5 and 9) play C. For users 3 and

11, the situation is identical: They have five neighbors each (hence they need to see

a sum of frequencies equal to 5 E
N

to play C), and exactly one of their neighbors is

playing D (2 and 10, respectively). So, each sees a total sum of frequencies equal to

4, and they will play C if 4 > 5 E
N
⇔ E

N
< 4

5
. Although we have constrained E

N
to be

greater than 3
4
, there is still a range of values for E

N
, namely 3

4
< E

N
≤ 4

5
, for which

users 3 and 11 will play C. The only remaining user is user 7, who will obviously

play C, since all his neighbors are playing C.
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So, to recapitulate, we have verified that the individual maximization of each

Bad user’s payoff results, in this case, in the global maximization of the sum of the

payoffs of the Bad users.

3.3.2 The General Case and a Heuristic Solution

In this section, with the help of Fig. 3.5, we will see that local maximization

of Bad user payoffs does not always correspond to maximization of the sum of their

payoffs. This case particularly applies when a Good user has two or more Bad

neighbors.

The situation for Bad user B1 has not changed compared to Fig. 3.4. The

maximizing frequency is still 3 E
N
− 2, and the payoff is still 6(N −E). As far as B2

is concerned, we can see that the maximizing frequency is also 3 E
N
− 2, which will

bring him a payoff of 4(N −E). However, if we apply the algorithm of Fig. 3.2, we

will find that if B1 sets qB1
= 3 E

N
− 2 and B2 sets qB2

= 3 E
N
− 2, then things will

not go “as planned” by the Bad users. Namely, user 2 will start playing D, because

his threshold is not satisfied. As a result, user 3 will see a total sum of frequencies

equal to 0 + 1 + 3 E
N
− 2 = 3 E

N
− 1, which is lower than the total sum of 3 E

N
that he

expects, and so he will start playing D. Therefore, B2’s payoff will be diminished. If

we carry the calculations further, we will see that, after 3 starts playing D, neither

user 6 sees the total sum of frequencies he needs to keep playing C – he only sees

0 + 1 + 1 + 3 E
N
− 2 = 3 E

N
< 4 E

N
. So user 6 will also start playing D, which will

diminish B1’s payoff, too. Eventually, all Good users except 5,8, and 9 will play D.
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Figure 3.5: The General Case. Shown next to each node is its threshold: The

frequency of Cs it expects to see from the neighboring Bad user. It is equal to

E
N
|Ni|− (|Ni|−1), since each Good user happens to have at most one Bad neighbor.

One could argue that a Malicious User would be happy with a situation like

that, i.e., when most of the Good users are playing D. In that case, the network

ceases to operate, which is supposed to be what a Malicious User wants. However,

by playing D, the Good users do not use up their energy. Remember that another

aim of the Bad users is to deplete the energy of the Good ones. Although we have

not incorporated this in our model, we could set a finite limit on the amount of

energy that the Good users can use. Then, it makes more direct sense for the Bad

users to try and deplete the Good users energy, which seems to be infinite in our

current model. Moreover, we could constrain the life of the Bad users to some finite

(or probabilistic) length of time (after which they get caught, for example, and the

network operates smoothly). Then, again it would make more direct sense for the

Bad users to “hurry up” and waste the energy of the Good users, so that the network

will not be able to operate for very long, even after the Bad users are caught. Even
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in a non-wireless network, where energy is not a concern, Bad users would still try

to exploit the cost of cooperation. Remember that the cost of cooperation is a

fundamental characteristic of the situations we are modeling.

We now look at what the Bad users should do, in order to maximize the sum

of their payoffs. We keep referring to Fig. 3.5. In general, either one of two options

is likely to achieve the optimal sum: Either one of the two nodes sacrifices his

own payoff to a small or large extent, so that the other one can keep playing his

maximizing frequency, or they both sacrifice a part of their individually maximum

payoffs, in such a way that the sum of payoffs is maximized.

We observe that the Bad user B2 has two choices for his frequency: either 0,

or 3 E
N
− 2, which do not coincide since 3 E

N
− 2 > 33

4
− 2 > 0 (we keep assuming, as

previously, that E
N

> 3
4

). If B2 plays 0, then both his neighbors (3 and 7) will start

playing D, and so B2 will get a zero payoff. As a result, user 2 will expect a total

sum of frequencies equal to 2 E
N

from B1, which is more than the absolute maximum

frequency of E
N

that a Bad user needs to play in order to keep his payoff positive.

So, user 2 would also play D. Moreover, because of users 3 and 7 playing D, user 6

would need a larger frequency of Cs from B1. We could continue this analysis, but

it has become clear that the Bad users are worse off with this choice of B2.

If B2 chooses 3 E
N
−2, then both 3 and 7 will play C, if they are not affected by

the choice of B1. The payoff for B2 would then be 4(N −E). We have already seen

that if B1 chooses his maximizing frequency 3 E
N
− 2, then many users will end up

playing D, thus ruining the payoffs of the Bad users. So, we turn to the next best

local option for B1, the frequency 2 E
N
− 1, which gives him a payoff of 5(N − E).
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We see that this keeps all neighbors of B1 at C except user 1. Therefore, the rest of

the network is not affected, and everybody keeps playing C. The sum of payoffs for

the two Bad users is now 5(N −E)+ 4(N −E) = 9(N −E), which is the maximum

sum that can be achieved (remember that the sum of the two individual maximum

payoffs is 6(N − E) + 4(N − E) = 10(N − E), and we have seen that this payoff

cannot be achieved in a stable equilibrium).

We now propose a heuristic for finding a payoff as close as possible to the

maximum sum of payoffs. The heuristic maximizes the payoff of the “most promis-

ing” Bad users first. In other words, the idea is to find the node whose maximum

individual payoff is the largest among all individual payoffs and let him play his

maximizing frequency. Then, re-evaluate the individual payoffs attainable by all

other Bad users in the new situation, and again choose the “most promising” one.

Finally, repeat this process until no other Bad users are left. In effect, this sacrifices

the payoffs of the “least promising” Bad users for the sake of the “most promising”

ones. Note that in the uncoupled case, this heuristic performs optimally.

In the topology depicted in Fig. 3.5, our heuristic would choose B1 as the

most promising Bad user, since his maximum individual payoff is 6(N − E), for a

maximizing frequency of 3 E
N
−2. That would cause Good users 1, 2, and 10 to play D

because their thresholds would not be satisfied. Now, we come to what B2 can do in

the new situation. as we have already seen, he cannot play his individual maximizing

frequency. The heuristic would make B2 play whatever frequency is necessary to

prevent the Ds from spreading to other Good users. For instance, to prevent user

3 from playing D, B2 will need to play the maximum possible frequency (qB2
= 1),
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despite the fact that B2 would incur a negative payoff by doing that. Then, user 3

would see a total sum of frequencies of 2, and, if his expected sum of frequencies,

3 E
N

, is lower than that, then he would play C. So, we see that the performance of

the heuristic depends on the value of E
N

. It can be shown that the lower that value

is, the better the heuristic performs. If E
N

is low enough, we get the uncoupled case,

for which we know that the heuristic coincides with the optimal solution.
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Chapter 4

Detecting Malicious Users

4.1 Introduction

In this chapter, we still follow the general framework of Chapter 2 about

repeated graphical games with incomplete information. The general scenario that

we want to capture is the following: Good users want to cooperate with other Good

users, but not with Bad users. Bad users, on the other hand, want to cooperate

with Good users. The Good are unaware of who is Good and who is Bad, but

since the game is played repeatedly they can gradually detect the Bad ones. We

will explore strategies that the Good users can follow to detect and isolate the Bad

ones. It resembles an intruder detection framework in the following sense: There is

a mechanism to detect the existence of malicious users in a user’s neighborhood, but

cannot identify exactly which the malicious users are. They may be eavesdroppers

who monitor traffic (through cooperating in the network operation) and try to learn

and then leak sensitive information. The mechanism is then supposed to be able to

detect the leak. As a result, the existence of malicious users would be deduced, but

not their identity. Alternatively, they may inject malformed packets in the network

(worms, etc.).

Note that we will not be assuming collusion among the Bad users, although

this can be an extension of our model. Also, our model for the Bad users means that
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they benefit from cooperating for as long as possible without getting caught. So, we

do not cover situations where a single cooperation between a Bad and a Good user

is enough, e.g., to destroy the whole network.

The rest of the chapter is organized as follows: In section 4.2, we give a detailed

presentation of our model of the network and the specifics of the game played. After

that, we analyze in section 4.3 the strategies and corresponding outcomes that can

appear in the game. Section 4.4 shows some indicative simulations and compares to

the analytical approach of section 4.3.

4.2 System Model

The network operates in rounds t = 1, 2, . . ., and at each round t each user i

chooses an action at
i: C (for Cooperate) or D (for Defect). Playing C corresponds to

making oneself available for communication (e.g. sending/receiving data). Playing

D corresponds to shutting down all communications to and from the user. After

all users have chosen an action, each user learns his neighbors’ actions (i.e. which

neighbor played which action), and his own payoff for that round, which depends

only on his own action and these of his neighbors. Note that a user’s payoff is known

only to him, and is never reported to others. If a Good user is able to tell that a

particular neighbor of his is Bad, then he can sever the link that joins them, so as

not to be affected by that neighbor’s actions in the future. In Section 4.3, we will

discuss how Good users can detect Bad ones.

At round t, the payoff Rt
i of a Good user i who played C equals the number of
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Good

Bad

C D

C −1, +1 0, 0

D 0, 0 0, 0

Good

Good

C D

C +1, +1 0, 0

D 0, 0 0, 0

Figure 4.1: The two games that can take place on a link: Good versus Bad and

Good versus Good.

Good neighbors who played C minus the number of Bad neighbors who played C.

This reflects the preference of Good nodes to cooperate with other Good nodes and

not with Bad ones. A Good user who played D receives a zero payoff regardless of

the actions of the neighbors. This means that he risks no losses, but he has no gain,

he learns nothing about his neighbors, and his neighbors learn nothing about him.

The payoff of a Bad user who plays C is equal to the number of his Good neighbors

who played C (remember that a Bad user has only Good neighbors). So, it is the

negative of Rt
i.

We can translate the above considerations to payoffs. The payoffs for the two

possible games (Good versus Good and Good versus Bad) are shown in Figure 4.1.

4.3 Analysis

To simplify the analysis, we will concentrate on a star topology network, where

the central node is a Good user, and his neighbors are N Good users and 1 Bad

(Fig. 4.2). We assume that the central node knows that he has exactly one Bad

neighbor, but he does not know who that is. Note that the star topology assumption
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is not unrealistic, since this is exactly the situation (from the point of view of the

central node) even in a general network. We will also see that the assumption that

only one Bad user exists can be removed without significant conceptual change in

the analysis.

Figure 4.2: Star topology. Bad user is shaded.

Note from the System Model discussion that Good users only learn the total

payoff they receive after each round, and not the per-link payoffs they receive due to

their interactions with individual neighbors. So, they cannot immediately tell which

of their neighbors are Good and which are Bad, but they do get some information

about the types of their neighbors. In what follows, we will describe strategies for

the Good and Bad players that form a Nash equilibrium. For the most part, we

will be seeing things either from the central Good user’s point of view, or from the

point of view of the Bad user. Since in a general network all Good nodes will see

themselves in the role of a central node in a (local) star topology, we are looking for

strategies that are symmetrical with respect to Good nodes. That is, we want all

the Good nodes to follow the same rules when choosing what to play.
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Assume that the central Good user i has memory of the past history (own and

neighbor moves, as well as received payoffs). Let CN t
i (resp. DN t

i ) be the subset

of i’s neighbors that play C (resp. D) at round t. We assume that i plays C at

round t, so i’s payoff at round t is |CN t
i | if the Bad user played D, or |CN t

i | − 2 if

the Bad user played C (Remember that a C from a Good user gives +1, whereas

from a Bad user it gives −1.). So, just by looking at his payoff, the central Good

user i can deduce whether the Bad user played C or D at round t. The Bad user is

then known to be either in the set CN t
i or in DN t

i . Without loss of generality, let’s

assume that the Bad user played C.

In the next round (t+1), if the Bad user plays C again, then i can deduce that

he is in the intersection CN t
i ∩ CN t+1

i . If he plays D, then he is in CN t
i ∩DN t+1

i .

This sequence of sets (the sequence of hiding sets, the initial of which is Ni) is non-

increasing, but the Bad user will only be detected if it converges to a singleton set.

If the behavior of the Good users is deterministic, then the Bad user can imitate

a Good user, and he will never be discovered. However, if the Good nodes choose

their actions in a randomized manner, they are no longer predictable.

We will look at the simplest possible randomization: each Good user plays C

with probability p independently at each round. We want to compute the probability

p that maximizes the central Good user’s payoff. We will use the δ-discounted payoff:

Given an infinite sequence of round payoffs {Rt
i, t = 1, 2, . . .}, the game payoff for

user i is Ri = (1− δ)
∑∞

t=1 δt−1Rt
i. In our case, δ could correspond to how long the

users think that the network will keep operating. To be precise, δ could be seen as

the probability that the network will collapse at time t + 1, given that it has been
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operating up to and including time t.

To compute the payoff, we split the network evolution into two stages: pre-

detection and post-detection of the Bad user. In the pre-detection stage, the Good

users start by playing C with probability p, and we assume that the Bad user always

plays C. We will see that this is the best that the Bad user can do. We again

use the generic payoff equation (2.9) with the specific payoffs shown in Figure 4.1.

Moreover, we know that there is exactly one Bad neighbor, so for each j ∈ Ni the

probability that j is Bad is Pr(tj = B) = 1
Ni

. Finally, the Bad users always play C,

so Pr(at+1
j = C|tj = B) = 1. The expected round t + 1 payoff for the central Good

user i is

Rn+1
i (C) =

∑

j∈Ni

Ri(CC|GB) · Pr(an+1
j = C|tj = B) · Pr(tj = B) (4.1)

+
∑

j∈Ni

Ri(CC|GG) · Pr(an+1
j = C|tj = G) · Pr(tj = G) (4.2)

=
∑

j∈Ni

(−1) · 1 ·
1

Ni
(4.3)

+
∑

j∈Ni

(+1) · p ·
Ni − 1

Ni

(4.4)

= p(Ni − 1)− 1, (4.5)

when he plays C, and

Rt+1
i (D) = 0, (4.6)

when he plays D. Recalling that Ni − 1 = N is the number of Good neighbors, the
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overall expected payoff for user i at round t + 1 is

Rt+1
i = Pr{at+1

i = C}Rt+1
i (C) + Pr{at+1

i = D}Rt+1
i (D) (4.7)

= p(pN − 1) (4.8)

After the Bad user has been detected, the link to him is severed and the Good

nodes are free to play C forever. So, the central Good user’s payoff is N from then

on (+1 from each one of the N Good neighbors). Assuming that the Bad user is

caught after the actions of round t0, the total game payoff for i is

Ri(δ, p, N) = (1− δ){
t0

∑

t=1

δt−1p(pN − 1) +

∞
∑

t=t0+1

δt−1N} (4.9a)

= (1− δt0)p(pN − 1) + δt0N (4.9b)

= δt0(N − p(pN − 1)) + p(pN − 1) (4.9c)

We will now calculate the expected value of t0 with the following argument.

Since the Bad user is always playing C, his hiding set after t rounds is Ni ∩ CN1
i ∩

CN2
i ∩ · · · ∩ CN t

i . Since the Good users are playing C with probability p at every

round, the size of the hiding set is reduced by a factor of p every round. Since t0 is

the detection time, it has to be that

pt0(N + 1) = 1⇒ t0 = − logp(N + 1). (4.10)

In this calculation, however, we have neglected the fact that the central Good user

also plays C with probability p. When he plays D he will not be able to make any

observations about his neighboring nodes, so the D-rounds will be wasted as far as

detection is concerned. The above calculated t0 is the number of observations that
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Figure 4.3: Expected number of rounds until detection.

are needed to detect the Bad user. A C will be played once every 1
p

rounds, so the

correct expected time of detection will be

t0(p) =
1

p
· (− logp(N + 1)) = −

logp(N + 1)

p
, (4.11)

shown in Fig. 4.3 for N = 5. We can calculate that the expected number of rounds

to detection is minimized for p = 1
e
. It is then equal to t∗0 = e ln(N + 1).

Looking at Eq. (4.9b), we observe that p(pN − 1) (the pre-detection payoff)

is always smaller than N (the post-detection payoff). This seems to imply that the

Good user’s payoff is maximized when δt0 is maximized, i.e. when t0 is minimized.

But this is not the case, although it is not easy to see analytically. The idea is that

when δ is small enough, δt0 is very close to zero even for t0 = t∗0. As a result, Ri is

practically equal to p(pN − 1), and it is maximized when p is maximized, i.e. for

p→ 1.

To study the behavior of Ri(p) for different values of the discount factor δ we

perform numerical computations. First of all, the payoff increases monotonically

with δ. This is because, regardless of the value of p, being more patient gives more
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weight to the post-detection payoff, which is higher (N versus p(pN − 1)). We can

also see that the Good users can guarantee a payoff of N − 1 (4 in this case) by

choosing p very close to 1. Even though the pre-detection period can become very

large, the pre-detection payoff is close to N − 1. But we will see that in some cases,

the Good can do better than that.

For a fixed value of δ the effect of an increase of p is twofold: First, the

payoff during the pre-detection period is increased. Second, if p increases from

0 to 1
e
, then the number of rounds until detection (the length of the pre-detection

period) decreases. But if p increases beyond 1
e
, the length of the pre-detection period

increases.

It seems there are three distinct types of behavior for different intervals of δ

(Fig. 4.4). When δ is small, the payoff increases monotonically with p (Fig. 4.5).

This happens because a small δ implies that δt0 ≈ 0, and Ri ≈ p(pN − 1) which

increases monotonically with p. So, if the Good user is very impatient, then the

post-detection payoff is too heavily discounted to make any difference, even if the

Bad user is detected in the shortest number of rounds (t∗0 = e ln(N + 1)). All the

Good can do in this case is increase the pre-detection payoff as much as possible by

setting p to 1.

When δ is large (Fig. 4.6), δt0 is approximately equal to 1, so Ri ≈ N (the post-

detection payoff, which is the maximum possible value of the total payoff) regardless

of p. A value of δ close to 1 means that the Good users don’t mind waiting; so,

provided that the detection happens in finite time, the payoff is very close to N .

This is reflected in Fig. 4.6 where the payoff is almost constant for a wide range of
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Figure 4.4: All values of δ: 0 ≤ δ ≤ 0.9, step 0.05; 0.9 ≤ δ ≤ 1, step 0.01.
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Figure 4.5: Small values of δ: 0 ≤ δ ≤ 0.9, step 0.05; 0.91.
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Figure 4.6: Large values of δ: 0.95 ≤ δ ≤ 1, step 0.01.

values of p, and the maximum is attained for values of p that are around 0.5 and

definitely away from 1. However, when p is too close to 0 then the detection time is

too large, and the pre-detection payoff is too small, so the total payoff is close to 0.

When p approaches 1, the detection time is again too large (hence the observed drop

in post-detection payoff). But now the pre-detection payoff is close to its maximum

value of N − 1, so the total payoff goes up again and becomes equal to N − 1 for

p = 1.

When δ is medium (Fig. 4.7), the maximum payoff is again attained for p = 1,

as in the small δ case. However, unlike the small δ case, the payoff does not increase

monotonically with p. There is a local maximum for values of p around 0.5, which

is caused by the same reasons as in the large δ case, although not as pronounced.

The conclusion is that, for a given value of δ, the maximum payoff is achieved

either for a probability of cooperation p equal to 1, or for some value around 0.5.

The first case happens when the Good users are impatient (small δ), and so the

post-detection period is too far into the future for them to care. Which means that

57



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Probability of Cooperation (p)

P
a
y
o
ff
 (

v i)

Figure 4.7: Medium values of δ: 0.92, 0.93, 0.94.

all their gains are going to come from the pre-detection period, therefore the best

policy for them is to maximize the pre-detection period payoff p(pN−1). The second

case happens when δ is large enough for the post-detection payoff to be weighted

more heavily than the pre-detection payoff. The maximum around 0.5 is happening

because the post-detection payoff is maximized for p = 1
e
≈ 0.37 (the value of p that

maximizes δt0), but does not drop significantly for somewhat larger values of p. The

pre-detection payoff is, however, monotonically increasing with p, and until around

p = 0.5 it more than compensates for the slight drop in the post-detection payoff.

After that, the post-detection payoff starts dropping faster than the pre-detection

can increase.

Why does the Bad user have to play C all the time? If he plays what most

Good play, he prolongs the time of detection. If he plays C, he gains payoff. If p

was chosen by the Good to be larger than 1
2
, then these two considerations of the

Bad user would both concur to playing C. However, the maximizing p may be less

than 1
2

for some values of δ, so it might make sense for the Bad user to play D once
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in a while so as to hide a bit longer.

We will see that playing D never increases the Bad user’s payoff, and it can

even decrease it. Suppose the current hiding set is X, and the Bad plays D. If the

central Good plays D, nothing changes. If the central Good plays C, he observes

who plays D and who plays C, so by looking at the payoff he can tell what the Bad

played. The new hiding set is X ∩ Y ⊆ X, i.e. smaller than X, the Bad has gained

nothing in the current period, and because of the discount factor δ the payoff of a C

has become smaller. So, in effect, the Bad player is facing the exact same situation

he was facing before, only he is in a smaller hiding set, and the benefit of a C is

smaller. This allows us to conclude that the best thing the Bad can do is play C

from the first round until he is detected. Hence, the strategies “always C” for the

Bad and “C with probability p” (for the maximizing value of p) for the Good form

a Nash equilibrium. Noone can do better by unilateral deviation.

4.4 Simulation for the star topology

Another observation is that we have assumed that the detection is happening

at exactly the expected time. This translates to an incorrect computation of the

expected payoff Ri. Using equation (4.9c) to calculate the payoff (Ri(t)) for a time

of detection equal to t, the expected payoff over all possible times of detection (but

for a fixed value of p) is

E[Ri(t)] = E[δt](N − p(pN − 1)) + p(pN − 1). (4.12)
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What we have computed, however, is

δE[t](N − p(pN − 1)) + p(pN − 1) = (4.13)

δt0(N − p(pN − 1)) + p(pN − 1). (4.14)

To estimate how far from the truth we are, we performed some indicative

simulations. Shown in figure 4.8 are the comparisons of the computations to the

simulations for three values of δ : δ = 0.2, 0.91, 0.97. These were chosen as repre-

sentative values from each one of the three intervals of δ where the behavior of the

payoff function changes. Each simulation was repeated 100 times and the mean and

variance are depicted in the diagram for each value of p that the simulation was

done. We see that, except for the δ = 0.2 case, there is a disparity not accounted

for by the variance interval. On the other hand, qualitatively the simulations are

similar to the computations. For δ = 0.2 they are almost identical, for δ = 0.91 the

simulation curve is monotonically increasing achieving its maximum at p = 1 (sim-

ilarly to the computation), and for δ = 0.97 the maximum is attained long before

p = 1, after which the payoff drops, just as the computation predicts.

4.5 Extensions

The case of multiple Bad users in the neighborhood of a Good user is not

much different in essence (there is still the concept of a hiding set), although the

calculations grow longer. Even if the Good user does not exactly know how many

Bad neighbors he has, he can discover after each round how many Bad users were

among the cooperators. Since the set of cooperators changes in every round, the
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Figure 4.8: Comparison: Simulation against computation results for three represen-

tative values of the discount factor δ = 0.2, 0.91, 0.97

Good user can utilize the information he gathers after each round to eventually

pinpoint who the Bad users are. For example, if a set of cooperators has just one

extra member compared to another set, then the type of that extra member (Good

or Bad) can be immediately determined by comparing the payoffs in the two cases.

Of course, this process requires extra memory capabilities on the part of the Good

user (to remember what happened in the past rounds).
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Chapter 5

Trust Computation: Algebraic Models and Discussion of Related

Work

This chapter initiates this dissertation’s second part, in which we focus on

the computation of indirect trust values. We briefly summarize the relationship

between direct trust generation and indirect trust computation, and we give example

applications of trust computation. Most of this chapter is a discussion of related

work in terms of an algebraic model. In brief, the various ways to compute trust

are formalized under an algebraic terminology and their properties are discussed in

terms of algebraic properties.

5.1 Introduction

Trust is a weighted binary relation between two members of a network. As

an example, consider a network of intelligence gathering agents, organized in a

hierarchical manner. Trust could then be the expectation of a person A (presumably

high in the hierarchy) that a person B (low in the hierarchy) is honest, as opposed,

e.g., to being a double agent. The weight of this relation is then a way to quantify

this expectation: The greater the weight, the higher the expectation.

For an illustration associated with Public Keys, suppose that entity A wants

to determine the public key associated with entity B. In this case, the trust relation

62



would be: “A does (or does not) believe that B’s key is KB”. A and B have had no

previous interactions, hence no trust relation, so A has to contact entities that have

some evidence about B’s key. Relevant pieces of evidence in this case are certificates

binding B’s key to B’s identity. Also, the trustworthiness of the entities that issued

these certificates should be taken into account.

In a regular Public Key Infrastructure (PKI) with a Trusted Third Party

(TTP), A would now contact the TTP for B’s key. Since the TTP is trusted by

everyone, A would believe that B’s key is what the TTP provided, and that would

be the end of the story. In this work, however, we do not assume the existence of

any globally trusted entity: on the contrary, everything is up to the individual nodes

of the network. They themselves sign certificates for each other’s keys, and they

themselves have to judge how much to trust these certificates and, essentially, their

issuers. If A has had previous interactions with these issuing entities, then their

public keys as well as their trustworthiness will be known to A, who will now decide

whether to accept KB as B’s key or not. Otherwise, the same steps will have to be

repeated to establish a trust relation with the issuing entities, recursively, until A can

reach a decision, which could very well be that there is not (trustworthy) enough

evidence to establish the relation. This is what the trust computation algorithm

does (Sec 6.3.3), but in a forward way: A first computes trust values for his one-

hop neighbors, then two-hop, and so on until the destination is reached (or, in the

general case, until A has computed a trust value for all other entities).

Real life interactions build trust (or distrust) between some of the members

of the network. In this way, what we call direct trust is created, and, since not all
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members of a network have direct interactions, such direct trust links do not exist

between all pairs. However, members without direct interactions will also need to

make trust assessments for others, as in our example above. Trust computation

deals with the calculation of these indirect trust relations.

Ultimately, we want to combine all relevant direct trust relations and associ-

ated weights to come up with an indirect trust value (weight). For this, first of all

we assume that trust is in some sense transitive: If A directly trusts B (to some

degree) and B directly trusts C (to some degree), then we can derive how much A

indirectly trusts C (through B). Hence, we can talk about trust paths from a source

(A in this case) to a destination (C in this case). These paths can be of any length,

not just of length 2, as in this case. A further observation is that there could be

multiple trust paths from A to C, through nodes other than B, and all these paths

will be relevant for the trust computation.

Several approaches to trust computation have been proposed in the literature

by [58], [29], [35], and others. Unfortunately, all these attempts have been made in a

relatively ad-hoc fashion. With few exceptions, no researchers have compared their

own approach to the others. As a result, someone – say, a network administrator –

who believes that a notion of trust would be useful to incorporate in his adminis-

trative domain, has no easy way to choose which trust metric would be more suited

to his needs.

In this chapter, we show how multiple trust computation algorithms can be

seen from a common viewpoint. Their properties are formalized within an algebraic

framework. The benefit of this approach is that it is much easier to see the differences
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and similarities that exist. Moreover, it is easier to design an algorithm that satisfies

the desired set of properties for a particular situation, since the relevant properties

are clearly singled out. Finally, it is easier to implement and evaluate the algorithms

under a common software solution which makes use of the common framework that

all algorithms are instantiations of.

The rest of the chapter includes the description of our system model; de-

tailed expositions of published algorithms under that model; requirements that the

algorithms are intuitively expected to satisfy; and algebraic properties that the al-

gorithms may or may not have. We interpret the algebraic properties in terms of

practical implications. Finally, we emphasize proposals on evaluating the robustness

of the algorithms to attacks by malicious adversaries.

5.2 General framework and description of algorithms

We will be dealing with what is called recommendation trust in the literature,

as opposed to direct trust. In other words, we assume that direct trust has already

been built between some pairs of users in the network through real life interactions

or otherwise, as mentioned earlier. Then, our area of interest is the combination of

these direct trust values into indirect ones. The term recommendation comes from

the fact that the intermediate trust values can be seen as recommendations of users

for other users. Also note that, in general, the recommendation trust values of two

users A and A’ about a user B will differ. Different users can have different opinions

about the same user.
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Our model of this situation is a directed graph G = (V, E) with weights on the

edges, the weight function being w : e −→ S, e ∈ E. The set S contains all possible

trust values, usually from some minimum to some maximum value. The nodes of

the graph correspond to the users, and the edges and edge weights correspond to the

direct trust relations and the degree of trust associated with each relation. The set

of neighbors of a user i, denoted Ni, consists of all nodes j ∈ V such that a directed

edge e = (i, j) exists. We distinguish a source node s. The task of the algorithm

that we present is to compute the source node’s opinions (recommendation trust

values) for every other node (user). That is, we want to come up with a single value

in S for each user in the network. We denote s’s recommendation trust value for

user d by t(s, d) ∈ S, where t : V × V −→ S.

Each of the algorithms that we present differs in the values and interpretation

of edge weights (the set S), and the way the function t(s, d) is computed from the

graph and the weights. The unifying theme is the path interpretation that can be

given to these computations. More specifically, we can define two operators that can

be used to combine the available direct trust information. The first operator, which

we will call concatenation operator and denote with the symbol ⊗, is used to combine

trust values along a path from the source to the destination, as shown in Figure 5.1.

More formally, consider a path p1 from the source s to the destination d comprising

of the edges e1 = (s, a1), e2 = (a1, a2), . . . , ek = (ak−1, d). The recommendation trust

value of s about d along the path p1 is

tp1 = w(e1)⊗ w(e2)⊗ . . .⊗ w(ek). (5.1)
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Note that it only makes sense to use the ⊗ operator for edge weights that are

one after the other, i.e., form a directed path from the first to the last.

Figure 5.1: The concatenation operator ⊗ is used to combine opinions along a path.

The second operator, which we will call summary operator and denote with

the symbol ⊕, is used to combine opinions computed along paths that start at

the same node X, and end at the same node Y , i.e., paths that are, in a sense,

parallel (see Figure 5.2). More formally, consider multiple paths p1, p2, . . . , pn from

the source s to the destination d with associated computed recommendation trust

values tp1(s, d), tp2(s, d), . . . , tpn(s, d). The total recommendation trust is

t(s, d) = tp1(s, d)⊕ tp2(s, d)⊕ . . .⊕ tpn(s, d). (5.2)

Overall, we can write

t(s, d) =
⊕

path p:s;d

tp(s, d). (5.3)

We now proceed to describe several trust computation algorithms within the

framework that we have just built. For each algorithm, we will give the definition

and interpretation of the weights, and the definition of the operators.
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Figure 5.2: The summary operator ⊕ is used to combine opinions across paths.

5.2.1 Information Theoretic [57]

5.2.1.1 Entropy-Based

The weight is derived from a Bernoulli probability mass function, which, in

effect, defines the probability pAB that user B is trustworthy according to user A.

The weight w(A, B) is then computed as a function of the entropy of the Bernoulli

distribution in the following way:

w(A, B) =



















1−H(pAB), for 0.5 ≤ pAB ≤ 1,

H(pAB)− 1, for 0 ≤ pAB ≤ 0.5.

(5.4)

The entropy function is defined as H(p) = −p log2 p− (1− p) log2(1− p), and since

0 ≤ p ≤ 1, we can see that −1 ≤ w(A, B) ≤ 1. So, in this case, the set S is

S = [−1, 1].

The concatenation operator is:

w(A, B)⊗ w(B, C) = w(A, B)w(B, C), (5.5)

i.e., regular multiplication.
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The summary operator is:

tp1(s, d)⊕ tp2(s, d) =
w(ep1

1 )

w(ep1

1 ) + w(ep2

1 )
tp1(s, d)+

w(ep2

1 )

w(ep1

1 ) + w(ep2

1 )
tp2(s, d),

(5.6)

i.e., a weighted sum, where the weight of each path is proportional to the trust value

on the first edge of the path.

5.2.1.2 Probability-Based

The weight w(A, B) in this case is a pair of numbers (pAB, σAB). The number

pAB is the mean of a Beta probability distribution function, and σAB is the variance

of this Beta distribution. It is interpreted as the confidence that user A has about

the trust value pAB, i.e., how certain A is that pAB is an accurate estimate of the

probability that B is trustworthy.

As an aside, a Beta pdf is often used in the literature to model how direct trust

values appear from direct positive and negative experiences between two users. The

connection is that if user A has a positive and b negative experiences with user B,

the mean of the associated Beta pdf will be a
a+b

and the variance will be ab
(a+b)2(a+b+1)

.

This will help make it easier to understand why the summary operator does what

it does. However, we do not look into what alternatives exist to the generation of

direct trust values. Our aim, as we have noted, is to compare alternatives to the

computation of recommendation trust values.
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The concatenation operator is:

w(A, B)⊗ w(B, C) =(pAB, σAB)⊗ (pBC , σBC) (5.7)

=(pABC , σABC), (5.8)

where the two components are

pABC = pABpBC + (1− pAB)(1− pBC) (5.9)

σABC = pABσBC +
1

12
(1− pAB)

+pAB(1− pAB)(2pBC − 1)2

(5.10)

The summary operation is done through an intermediate transformation :

tp1(s, d)⊕ tp2(s, d) = (pp1

sd, σ
p1

sd)⊕ (pp2

sd, σ
p2

sd) (5.11)

Each (p, σ) pair is transformed to an (a, b) pair. Then, the two pairs (a1, b1)

and (a2, b2) are composed, and the result is transformed back to a (p, σ) pair.

(p, σ)→ (a, b) =
(

p(p(1−p)
σ
− 1), (1− p)(p(1−p)

σ
− 1)

)

(5.12)

(a1, b1)⊕ (a2, b2) = (a1 + a2 − 1, b1 + b2 − 1) (5.13)

(a, b)→ (p, σ) =

(

a

a + b
,

ab

(a + b)2(a + b + 1)

)

(5.14)

5.2.2 EigenTrust [30]

The weights in this case are real numbers between 0 and 1: S = [0, 1]. The

weights are normalized on a user-per-user basis, i.e., for each user i,
∑

j∈Ni
w(i, j) =

1.
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The concatenation operator is:

w(A, B)⊗ w(B, C) = w(A, B)w(B, C), (5.15)

i.e., regular multiplication.

The summary operator is:

tp1(s, d)⊕ tp2(s, d) = tp1(s, d) + tp2(s, d), (5.16)

i.e., regular addition.

5.2.3 Probabilistic [39]

In this case the weights are treated exactly as probabilities: S = [0, 1]. A

weight w(A, B) is interpreted to be the probability that the directed edge (A, B)

exists. Then, the recommendation trust value of user s for user d is equal to the

probability that there exists at least one directed path from s to d. We assume

throughout that the probabilities on different edges are independent.

The concatenation operator is:

w(A, B)⊗ w(B, C) = w(A, B)w(B, C), (5.17)

i.e., regular multiplication.

The summary operator is:

tp1(s, d)⊕ tp2(s, d) = tp1(s, d) + tp2(s, d)

−tp1(s, d)tp2(s, d),

(5.18)

which is derived from the simple law of the probability of the union of two events:

P (A ∪B) = P (A) + P (B)− P (A ∩B) = P (A) + P (B)− P (A)P (B).
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5.2.4 Multi-level [2]

The weights are discrete: S = {−1, 0, 1, 2, 3, 4}. The interpretation ranges

from complete distrust (-1), to ignorance (0), to increasing levels of trust (1,2,3,4).

The concatenation operator is:

w(A, B)⊗ w(B, C) =
w(A, B)

4

w(B, C)

4
, (5.19)

i.e., multiplication of the values divided by 4. The division by 4 is presumably done

to normalize the values to have a maximum equal to 1, but this is not explicitly

stated in [2].

The summary operator is:

tp1(s, d)⊕ tp2(s, d) =
1

2
tp1(s, d) +

1

2
tp2(s, d), (5.20)

i.e., averaging. This operator can be applied to multiple opinions at once, taking

the average of all of them:

tp1(s, d)⊕ tp2(s, d)⊕ . . .⊕ tp
n

(s, d) =

1

n
(tp1(s, d) + tp2(s, d) + . . . + tpn(s, d)).

(5.21)

5.2.5 Subjective Logic [29]

The weights are ordered triplets of positive real numbers that sum to 1: S =

(b, d, u), b + d + u = 1, b, d, u ∈ [0, 1]. These three numbers are called, respectively,

belief, disbelief, and uncertainty.

The concatenation operator is:

w(A, B)⊗ w(B, C) = (b1, d1, u1)⊗ (b2, d2, u2)

= (b1b2, b1d2, d1 + u1 + b1u2).

(5.22)
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The summary operator is:

tp1(s, d)⊕ tp2(s, d) = (bp1

sd, d
p1

sd, u
p1

sd)⊕ (bp2

sd, d
p2

sd, u
p2

sd)

=

(

bp1

sdu
p2

sd + bp2

sdu
p1

sd

k
,
dp1

sdu
p2

sd + dp2

sdu
p1

sd

k
,
up1

sdu
p2

sd

k

)

,

(5.23)

where k = up1

sd + up2

sd − up1

sdu
p2

sd.

5.2.6 Path-strength [34]

The weights are real numbers between 0 and 1: S = [0, 1].

5.2.6.1 Strongest Path

The concatenation operator is the min operator:

w(A, B)⊗ w(B, C) = min(w(A, B), w(B, C)). (5.24)

The summary operator is the max operator:

tp1(s, d)⊕ tp2(s, d) = max(tp1(s, d), tp2(s, d)). (5.25)

5.2.6.2 Weighted Sum of Strongest Disjoint Paths

The concatenation operator is the min operator:

w(A, B)⊗ w(B, C) = min(w(A, B), w(B, C)). (5.26)

The summary operator is similar to the one in 5.2.1.1, a weighted sum of paths,

where the weights are those of the first edges on each path. The difference is that

now the paths are required to be disjoint.
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5.2.7 Graph flows [35]

This and the next algorithm are based on arguments related to flows in graphs.

In this algorithm, the edge weights are viewed as capacities. A unit flow is

sent out from the source s, and the trust value for the destination d is equal to the

fraction of the flow that reaches the destination. Edge weights are again between 0

and 1: S = [0, 1].

We can define the concatenation and summary operators as follows:

The concatenation operator is the min operator:

w(A, B)⊗ w(B, C) = min(w(A, B), w(B, C)). (5.27)

The summary operator is regular addition:

tp1(s, d)⊕ tp2(s, d) = tp1(s, d) + tp2(s, d). (5.28)

5.2.8 Certificate Insurance [52]

In this algorithm, the weights are nonnegative real numbers: S = [0,∞).

Again, the algorithm is a flow algorithm, just as the previous one. The same oper-

ators apply. However, the interpretation of the weights is different. Here, weights

are expressed in monetary terms, in particular dollars. An edge (i, j) corresponds

to a public key certificate that user i has issued for the public key of user j. The

weight w(i, j) is the amount of dollars that i agrees to pay to someone who believes

that i’s certificate is correct and later it turns out that it was not. This amount of

dollars can be thought of as a kind of insurance.
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5.3 Requirements for trust metrics

So far, we have listed several pairs of concatenation and summary operators.

All of them are used to do the same calculation, that is, compute the recommenda-

tion trust value that a source node s should place on a destination node d. Based

only on our intuition about this objective we can derive some conclusions about the

desirable behavior of the operators. In this section we discuss some conditions that

these operators should satisfy.

First of all, a user should not be able to unilaterally increase the source’s

recommendation trust value for the destination to a level higher than the source’s

trust value for the user himself. In other words, if s’s trust in user i is t(s, i) ∈ S,

then tPi(s, d) � t(s, i), where � is a partial order defined on S, and Pi is the set

of paths from s to d that pass through i. The rationale is to avoid maliciously

manipulated reports of trust values by users. A user’s trust values about others

cannot be trusted more than the user himself. At the most, a user can give the

maximum trust value to everyone else, but even then, we do not want the source to

increase its own trust values for everybody beyond some level.

On a related note, if s knows about d only through i, i.e., the path s ; i ; d

is the only path from s to d, then s cannot trust d more than how much i trusts d.

Simply, there is no reason for s to be more optimistic than i’s recommendation is.

Continuing from the last paragraph, tPi(s, d) � t(i, d). Translating these considera-

tions into a condition for the concatenation operator, we impose that trust should

decrease along a path.
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a⊗ b � a, b, a, b ∈ S. (5.29)

We now come to the summary operator, which deals with aggregating rec-

ommendation trust values derived from different paths. Throughout the literature

there is a prevailing notion that more independent paths are better than fewer [51].

More paths should in a sense be better than fewer paths, since more evidence is

better than less evidence. It takes more malicious users to collaborate and subvert

the trust computation algorithm, since at least one is needed on every path from

the source to the destination.

But it is not the trust value that should increase; it is the confidence in the

accuracy of the computed value, as long as, and to the extent that the trust values

of different paths agree. In other words, if all recommendations agree that the

destination is untrustworthy, then it stands to reason that the result of the summary

operator should not increase the trustworthiness of the destination.

However, this conclusion is not always correct. What happens if some rec-

ommendations are positive and some are negative? Then two results are possible:

One is that the confidence in the accuracy of the computed value should decrease,

since the recommendations are in conflict. The other one is that the computed value

should be the average of the recommendations (possibly weighted by the respective

confidence values), while the confidence in its accuracy should increase.

Which one is more correct depends on the particular situation. If trust is

ultimately assumed to be binary, i.e, a user is in reality either fully trustworthy or
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fully untrustworthy, then the summary of conflicting opinions should decrease the

confidence. This happens, for instance, when entities in the network are assumed to

be divided in either friendly or enemy, with no gradation in between. On the other

hand, trust can also be interpreted to be something that can legitimately be grey,

as opposed to just black or white. It can be, for instance, the fraction of the time

when a user has been seen to behave in a cooperative way, which is a quantity that

can take any value between 0 and 1. In this case it is perfectly admissible to say

that a user is trusted at a level of, say, 0.7. Therefore, two conflicting opinions could

be reconciled by arguing that the two recommenders have seen different aspects of

the behavior of the destination user. As a result, it would make sense to compute a

summary value as the average of the two recommendations, and increase the total

confidence value in the result.

So far, we have mentioned in passing a distinction between two concepts: trust

and confidence. We defined trust to be an estimate of the behavior of a user, and

confidence to be the accuracy of that estimate. However, not all the algorithms

that we described incorporate the notion of confidence. As transpires from the

discussion in this section, the usefulness of confidence is more apparent when there

exist conflicting opinions. So, one situation that simplifies things is when conflicting

opinions are not needed, or can be explicitly forbidden to exist. This saves us the

trouble of having to deal with malicious users falsely accusing benign ones, but also

prevents good users from notifying the network about potential misbehavior that

they have noticed. If, for instance, trust values are used for access control decisions,

then disallowing conflicting opinions amounts to disallowing revocation of privileges.
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Whether this can be tolerated or not depends on the particular situation.

5.4 Algebraic properties of the operators

After going over the intuitive properties that we would like the operators to

have, and the conditions under which we would like them to have those properties,

we now proceed to the algebraic properties of these operators. The motivation for

talking about algebraic properties is that they can be linked to issues with the

numerical results that the computation returns. As a high level example to be

elaborated on later, with certain operators it could happen that some edge weights

are taken into account twice, which is clearly undesirable. Moreover, related to the

algebraic properties are performance issues, as well as whether the computation can

be done in a distributed manner or not.

First and foremost, both operators should be closed with respect to the set S,

that is, if a, b ∈ S, then a⊗ b ∈ S, and a⊕ b ∈ S. The reason is that our admissible

results are in the set S, and any value outside S has by definition no meaning in

our computations. If S and ⊗ satisfy this property, then the pair (S,⊗) is called

a magma or a groupoid. Similarly for the pair (S,⊕). Although this look like a

fundamental property, some times it can be tricky to get right. For example, in one

of the two proposed algorithms in [57], presented in Section 5.2.1.1, the summary

operator is not closed for the set S = [−1, 1]. That summary operator is weighted

averaging and it would create a problem in a situation where the following holds for
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four users A, B, C, and D:

w(A, B) = 0.95 w(B, C) = 1 (5.30)

w(A, D) = −0.9 w(D, C) = 1 (5.31)

The algorithm would then compute

t(A, D) = tABC(A, C)⊕ tADC(A, C)

= w(A, B)w(B, C)⊕ w(A, D)w(D, C)

= w(A,B)
w(A,B)+w(A,D)

w(A, B)w(B, C)

+ w(A,D)
w(A,B)+w(A,D)

w(A, D)w(D, C)

= 0.95
0.95−0.9

0.95 · 1 + −0.9
0.95−0.9

(−0.9 · 1)

= 34.25 /∈ S = [−1, 1]

(5.32)

A property for the summary operators, which is so natural, that is satisfied

by all summary operators described above, is the commutativity property:

a⊕ b = b⊕ a, ∀a, b ∈ S (5.33)

Remembering that a and b correspond to recommendation values derived from

paths, we can see that it would not make sense to differentiate between, in effect,

the names of the two paths when combining them. Commutativity makes the pair

(S,⊕) a commutative magma.

We do not need commutativity for the ⊗ operator. This makes sense, since

reversing the order of the edges of a path need not necessarily result in the same

outcome. However, we note that some of the concatenation operators proposed are
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indeed commutative (e.g. ·, min). This is not a problem, as long as the computation

algorithm does not explicitly rely on the commutativity of this operator.

Another property of interest is associativity, and we would like both operators

to be associative:

a⊕ (b⊕ c) =(a⊕ b)⊕ c (5.34)

a⊗ (b⊗ c) =(a⊗ b)⊗ c, ∀a, b, c ∈ S (5.35)

The reasoning is that the order in which the operator is applied should not

matter. The justification in the case of the summary operator is that, if we have

computed a recommendation trust value based on the currently available informa-

tion, and then another path appears, we want to be able to just “add” together the

information from the new path, and not do the whole computation from scratch.

This pertains to the efficiency of the computation, especially when done over a net-

work where information will arrive with different delays. Unfortunately, one intuitive

summary operator – namely, averaging – is not associative in general:

∃a, b, c ∈ S : avg(a, avg(b, c)) 6= avg(avg(a, b), c) (5.36)

The averaging operator is intended to average over all available paths simultaneously,

and not to include them one by one. However, in distributed environments, this leads

to the problems just stated. One way to overcome this problem would be to count

the number of paths already taken into account in the current result, so as to weight

properly the current result and the new path value.

When it comes to the concatenation operator, associativity means that the

final result should depend only on the order with which the edges appear in the path,
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but not on the order with which we choose to do the calculations. Associativity is

not satisfied by all the concatenation operators we have presented. For example,

the operator presented in Section 5.2.1.2 is not associative. However, whether this

is a significant problem or not depends on the actual computation algorithm and

the way it is implemented distributedly.

As far as algebraic terminology goes, the pair (S,⊗) is now a semigroup,

whereas the pair (S,⊕) is a commutative semigroup.

The last property we will consider is the distributivity (left and right) of ⊗

over ⊕:

a⊗ (b⊕ c) =(a⊗ b)⊕ (a⊗ c)

(a⊕ b)⊗ c =(a⊗ c)⊕ (b⊗ c)

(5.37)

Distributivity is the most useful operation in terms of increasing the efficiency

of computations. By inspection of (5.37), we see that the left sides need to compute

two operations (one ⊕ in the parenthesis, and one ⊗ next). However, the right sides

need three. This fact and the efficiency gains have been explored and discussed at

length in the literature [3]. However, it seems to be the most difficult to satisfy.

We will just limit ourselves to discussing the flow-based metrics (presented in

Sections 5.2.7 and 5.2.8) from the point of view of distributivity. The operators

used there (⊗ = min,⊕ = +) do not satisfy distributivity. For this reason, only if

applied in a particular way will they return the correct (intended) result, which is

the flow from the source to the destination. If all the paths from the source to the

destination are edge-independent (share no common edges), then no particular way

is needed. But if they are not independent, then the paths need to be decomposed
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into successive segments comprising parallel (edge-independent) subpaths and com-

mon edges (a series-parallel decomposition). Then the summary operator will be

applied to the edge-independent segments and then the concatenation operator will

be applied to the successive segments. This could be repeated as needed. However,

this cannot be done with all graphs, so other methods for computing flows should

be used.

In the case of Subjective Logic (Sec. 5.2.5) distributivity is also not satisfied.

It seems that where the series-parallel decomposition cannot be done, there is no

way to do the computation, so some graphs can simply not be handled by that

algorithm.

If the two operators satisfy all the properties that we have assigned to them

so far, then the triplet (S,⊗,⊕) is an algebraic structure called a semiring.

5.5 Conclusions

We have presented an algebraic framework that unifies many trust computa-

tion algorithms. By focusing on the algebraic properties of the algorithms under

this framework, we are able to compare them in a much more rigorous way. We have

shown links between the properties and considerations that can arise in practical

implementations. As a result, we believe that a security practitioner can benefit

from our exposition by adapting a particular metric to his own specifications, or

even designing a new one.
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Chapter 6

Semiring-Based Trust Computation Metrics

In this chapter, we present two novel trust metrics based on semirings. We

also model PGP’s web of trust computations as a semiring.

6.1 System Model

We view the trust computation problem as a generalized shortest path problem

on a weighted directed graph G(V, E) (trust graph). The vertices of the graph are the

users/entities in the network. A weighted edge from vertex i to vertex j corresponds

to the opinion that entity i, also referred to as the issuer, has about entity j, also

referred to as the target. The weight function is l(i, j) : V × V −→ S, where S is

the opinion space.

Each opinion consists of two numbers: the trust value, and the confidence

value. The former corresponds to the issuer’s estimate of the target’s trustworthi-

ness. For example, a high trust value may mean that the target is one of the good

guys, or that the target is able to give high quality location information, or that a dig-

ital certificate issued for the target’s public key is believed to be correct. On the other

hand, the confidence value corresponds to the accuracy of the trust value assignment.

A high confidence value means that the target has passed a large number of tests

that the issuer has set, or that the issuer has interacted with the target for a long
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time, and no evidence for malicious behavior has appeared. Since opinions with a

high confidence value are more useful in making trust decisions, the confidence value

is also referred to as the quality of the opinion. The space of opinions can be visual-

ized as a rectangle (ZERO TRUST, MAX TRUST)×(ZERO CONF, MAX CONF)

in the Cartesian plane (Figure 6.1, for S = [0, 1]× [0, 1]).
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Figure 6.1: Opinion space

Both the trust and the confidence values are assigned by the issuer, in accor-

dance with his own criteria. This means that a node that tends to sign public key

certificates without too much consideration will often give high trust and high con-

fidence values. The opposite holds true for a strict entity. When two such entities

interact, it is important for the stricter entity to assign a low enough trust value

to the less strict one. Otherwise, the less strict entity may lead the stricter one

to undesirable trust decisions. This situation is easier to picture in the context of

Certification Authorities and public key certification. In that context, a certification

authority A will only give a high trust value to B, if B’s policy for issuing certificates

is at least as strict as A’s and has the same durability characteristics [21].
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In the framework described, two versions of the trust inference problem can

be formalized. The first is finding the trust-confidence value that a source node

A should assign to a destination node B, based on the intermediate nodes’ trust-

confidence values. Viewed as a generalized shortest path problem, it amounts to

finding the generalized distance between nodes A and B. The second version is

finding the most trusted path between nodes A and B. That is, find a sequence of

nodes 〈v0 = A, v1, . . . , vk = B〉 : (vi, vi+1) ∈ E, 0 ≤ i ≤ k − 1 that has the highest

aggregate trust value among all trust paths starting at A and ending at B.

Both problems are important: finding a target’s trust value is needed before

deciding whether to grant him access to one’s files, or whether to disclose sensitive

information, or what kind of orders he is allowed to give (in a military scenario,

for instance). With this approach, a node will be able to rely on other nodes’ past

experiences and not just his own, which might be insufficient. The second problem

is more relevant when it comes to actually communicating with a target node. The

target node being trustworthy is one thing, but finding a trusted path of nodes is

needed, so that traffic is routed through them. Note that in the usual shortest path

problem in a graph finding the distance between two nodes, simultaneously finds the

actual shortest path. In the trust case, we will usually utilize multiple trust paths

to compute the trust distance from the source to the destination, since that will

increase the evidence on which the source bases its final estimate. The first problem

is addressed with what we call “Distance semiring” (Sec 6.3.2), and the second with

the “Path semiring” (Sec 6.3.1).

The core of our approach is the two operators used to combine opinions: One
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operator (denoted ⊗) combines opinions along a path, i.e. A’s opinion for B is com-

bined with B’s opinion for C into one indirect opinion that A should have for C,

based on B’s recommendation. The other operator (denoted ⊕) combines opinions

across paths, i.e. A’s indirect opinion for X through path p1 is combined with A’s

indirect opinion for X through path p2 into one aggregate opinion. Then, these

operators can be used in a general framework for solving path problems in graphs,

provided they satisfy certain mathematical properties, i.e. form an algebraic struc-

ture called a semiring. More details on this general framework are in Appendix A.

An existing trust computation algorithm (PGP [61]) is modeled as operating on a

particular semirings. Note that our approach differs from PGP in that it allows the

user to infer trust values for unknown users/keys. That is, not all trust values have

to be directly assigned by the user making the computations. The operators are

discussed in greater depth in section 6.3.

6.2 Semirings as a model for trust computations

In order to show the modeling power of this framework, we now model PGP’s

web of trust computations [61] as a semiring. Remember that PGP computes the

validity of an alleged key-to-user binding, as seen from the point of view of a par-

ticular user, henceforth called the source. The input to the computation algorithm

consists of three things: The source node, the graph of certificates issued by users

for each other, and the trust values for each user as assigned by the source. Note

that the validity of all key-to-user bindings has to be verified, since only certificates
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signed by valid keys are taken into account, and any certificate may influence the

validity of a key-to-user binding.

The validity of the key-to-user binding for user i will be deduced from the

vector di ∈ N
k, where k is the number of different trust levels defined by PGP. It

seems that k is 4 (“unknown”, “untrusted”, “marginally trusted”, “fully trusted”),

but some include a fifth level : “ultimately trusted”. Our analysis is independent of

the exact value of k. The vector di will hold the number of valid certificates for user

i that have been signed by users of each trust level. For example, di = (0, 1, 2, 3)

means that one “untrusted”, two “marginally trusted”, and three “fully trusted”

users have issued certificates for user i’s public key. In addition, all six of these

certificates are signed by valid keys, i.e. keys for which the key-to-user binding has

been verified.

In order to verify the actual validity of the binding, we will use the function

val : N
k → V, where V is the space of admissible results. For simplicity, we will be

assuming that V ={“invalid”, “valid”}, although values such as “marginally valid”

have also been proposed. The output of val for a specific input is determined

by thresholds such as: “A key-to-user binding is valid if at least two “marginally

trusted” users have issued a certificate for it”. These thresholds are incorporated in

val and will be transparent to our analysis. Finally, for computation simplicity we

will be assuming that V = {0, 1}, where “invalid”= 0, and “valid”= 1.

The edge weights wij ∈ N
k, 1 ≤ i, j ≤ n, where n is the number of users,

correspond to the certificate from i about j’s alleged public key. A weight can only

have one of k + 1 possible values. Either it consists only of 0s, or of exactly k − 1
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0s and one 1. An all-zero weight means that there is no certificate from i about j’s

key. An 1 in the position that corresponds to trust level t means that the source

has assigned trust level t to i, and i has issued a certificate for j.

The ⊗ operator is defined as follows (a, b ∈ N
k):

a⊗ b = val(a)b ∈ N
k

The ⊕ operator is defined exactly as vector addition in N
k.

Verification of the semiring properties

For ⊗, the absorbing element is 0© = (0, . . . , 0) ∈ N
k, and the neutral element

is 1© = {x ∈ N
k : val(x) = 1}. That is, all such vectors are mapped to 1©; for our

purposes, they are equivalent. It is trivial to prove that 0© is a neutral element for

⊕.

The ⊗ operator is associative:

a⊗ (b⊗ c) = a⊗ (val(b)c) = val(a)val(b)c

(a⊗ b)⊗ c = (val(a)b)⊗ c = val(val(a)b)c

and these two are equal because val( 0©)=0.

The ⊕ operator is commutative and associative, because it is vector addition.

The ⊗ operator distributes over ⊕:

a⊗ (b⊕ c) = val(a)(b + c)

(a⊗ b)⊕ (a⊗ c) = val(a)b + val(a)c
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The computation algorithm below uses the above semiring to compute the

validity or otherwise of all keys in the certificate graph G. The source node is s and

the function w maps edges to edge weights.

PGP-Semiring-Calculation(G, w, s)

1 for i← 1 to |V |

2 do d[i]← 0©

3 d[s]← 1©

4 S ← {s}

5 while S 6= ∅

6 do u← Dequeue(S)

7 for each v ∈ Neighbors[u] with val(d[v]) = 0

8 do

9 d[v]← d[v]⊕ (d[u]⊗ w(u, v))

10 if val(d[v]) = 1

11 then Enqueue(S, v)

The computation starts at the source s, and progressively computes the va-

lidity of all keys reachable from s in the certificate graph. The queue S contains all

valid keys for which the outgoing edges (certificates signed with these keys) have not

been examined yet. When a key is extracted from S, its certificates to other keys

are examined, and their d-vectors are updated. Only certificates to so-far-invalid

keys are examined, since adding a certificate to the d-vector of a key already shown

to be valid is redundant. If a so-far-invalid key obtains enough certificates to be-
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come valid, it is added to the queue for future examination. Each key is enqueued

at most once (when it becomes valid), and all keys in the queue are eventually de-

queued. Ergo, the algorithm terminates. After termination, all valid keys have been

discovered.

Note that if s is only interested in the validity of a particular key-to-user

binding, then the algorithm can stop earlier: as soon as its validity is determined,

or after all certificates for that key have been examined.

6.3 Trust Semirings

6.3.1 Path semiring

In our first semiring, the opinion space is S = [0, 1]× [0, 1] Our choice for the

⊗ and ⊕ operators is as follows (Figure 6.2):

(tik, cik)⊗ (tkj, ckj) = (tiktkj, cikckj) (6.1)

(tp1

ij , cp1

ij )⊕ (tp2

ij , cp2

ij ) =































(tp1

ij , cp1

ij ) if cp1

ij > cp2

ij

(tp2

ij , cp2

ij ) if cp1

ij < cp2

ij

(t∗ij , c
p1

ij ) if cp1

ij = cp2

ij

, (6.2)

where (tp1

ij , cp1

ij ) is the opinion that i has formed about j along the path p1, and

t∗ij = max(tp1

ij , tp2

ij ).

Since both the trust and the confidence values are in the [0, 1] interval, they

both decrease when aggregated along a path. When opinions are aggregated across

paths, the one with the highest confidence prevails. If the two opinions have equal
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Figure 6.2: ⊗ and ⊕ operators for the Path semiring

confidences but different trust values, we pick the one with the highest trust value.

We could have also picked the lowest trust value; the choice depends on the desired

semantics of the application.

This semiring essentially computes the trust distance along the most confident

trust path to the destination. An important feature is that this distance is computed

along a single path, since the ⊕ operator picks exactly one path. Other paths are

ignored, so not all available information is being taken into account. One of the

advantages is that if the trust value turns out to be high, then a trusted path to

the destination has also been discovered. Also, fewer messages are exchanged for

information gathering.
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Figure 6.3: ⊗ and ⊕ operators for the Distance semiring

6.3.2 Distance semiring

Our second proposal, the distance semiring, is based on the Expectation semir-

ing defined by Eisner in [20], and used for speech/language processing:

(a1, b1)⊗ (a2, b2) = (a1b2 + a2b1, b1b2)

(a1, b1)⊕ (a2, b2) = (a1 + a2, b1 + b2)

The opinion space is S = [0,∞]× [0, 1]. Before using this semiring, the pair

(trust, confidence)=(t, c) is mapped to the weight (c/t, c). The motivation for this

mapping becomes clear when we describe its effect on the results of the operators.

The binary operators are then applied to this weight, and the result is mapped back

to a (trust, confidence) pair. For simplicity, we only show the final result without

the intermediate mappings.

(tik, cik)⊗ (tkj , ckj) →

(

1
1

tik
+ 1

tkj

, cikckj
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So, when aggregating along a path, both the trust and the confidence decrease.

The component trust values are combined like parallel resistors. Recall that two

resistors in parallel offer lower resistance than either of them in isolation. Also, a

zero trust value in either opinion will result in a zero trust value in the resulting

opinion (absorbing element), while a trust value equal to infinity will cause the

corresponding opinion to disappear from the result (neutral element). On the other

hand, the component confidence values are between 0 and 1, and they are multiplied,

so the resulting confidence value is smaller than both.

When aggregating across paths, the total trust value is the weighted harmonic

average of the components, with weights according to their confidence values. So,

the result is between the two component values, but closer to the more confident one.

Note, also, the behavior caused by extreme (zero or infinity) trust values: A zero

trust value dominates the result (unless its corresponding confidence is zero); a trust

value equal to infinity results in an increase in the trust value given by the other

opinion. In order for the resulting trust value to be the maximum possible, both

opinions have to assign the maximum. So, in general, we can say that this operator

is conservative. A zero confidence value (neutral element) causes the corresponding

opinion to disappear from the result.

6.3.3 Computation algorithm

The algorithm below, due to Mohri [40], computes the ⊕-sum of all path

weights from a designated node s to all other nodes in the trust graph G = (V, E).

93



Revisiting the illustrative example described in the Introduction, remember

that entity A wanted to judge the validity of entity B’s public key based on certifi-

cates signed by other entities in the network. Using the trust computation algorithm,

A will compute those entities’ trustworthiness. If they are trustworthy enough, then

A will believe their certificates are true, and will accept B’s key. If not, A will not

accept it. Of course, the above assumes that A already knows the public keys of

the entities that issued the certificates for B. If that is not the case, then the whole

process will be repeated for the public key of each one of the unknown issuers.
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Generic-Single-Source-Shortest-Distance(G, s)

1 for i← 1 to |V |

2 do d[i]← r[i]← 0©

3 d[s]← r[s]← 1©

4 S ← {s}

5 while S 6= ∅

6 do q ← head(S)

7 Dequeue(S)

8 r′ ← r[q]

9 r[q]← 0©

10 for each v ∈ Neighbors[q]

11 do if d[v] 6= d[v]⊕ (r′ ⊗ w[(q, v)])

12 then d[v]← d[v]⊕ (r′ ⊗ w[(q, v)])

13 r[v]← r[v]⊕ (r′ ⊗ w[(q, v)])

14 if v /∈ S

15 then Enqueue(S, v)

16 d[s]← 1©

This is an extension to Dijkstra’s algorithm [18]. S is a queue that contains

the vertices to be examined next for their contribution to the shortest path weights.

The vector d[i], i ∈ V holds the current estimate of the shortest distance from s to

i. The vector r[i], i ∈ V holds the total weight added to d[i] since the last time i

was extracted from S. This is needed for non-idempotent semirings, such as the

one proposed. Its computational complexity depends on the semiring used, and also
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on the actual topology of the network. As the reader can see in [40], the crucial

parameter of the topology is the number of paths from the source to the other nodes.

So, the more sparse the network, the more efficient the algorithm. But, in any case,

the algorithm can be executed in a distributedfashion just like OSPF [43] with local

data exchanges only.

Our computation algorithm is based on Mohri’s, but with three adjustments

which are needed when considering the problem from the perspective of trust. Lines

11-13 of the algorithm will be referred to as “node q votes for node v”.

First of all, some nodes may be prevented from voting. Only if a node’s trust

value exceeds a predefined trust threshold, is the node allowed to vote. This is

motivated from the common sense observation that only good nodes should partic-

ipate in the computation, and bad nodes should be barred. Note that there is no

restriction on the corresponding confidence. This will initially lead to bad nodes

being allowed to vote, but after some point they will be excluded since good nodes

will acquire evidence for their maliciousness.

Second, no node is allowed to vote for the source (s). Since it is s that initiates

the computation, it does not make sense to compute s’s opinion for itself.

Third, no cyclic paths are taken into account. If that were the case, we would

be allowing a node to influence the opinion about itself, which is undesirable. Un-

fortunately, there is no clear way to discard any single edge-opinion of the cycle. So,

the approach taken is to discard any edges that would form a cycle if accepted. As

a result, the order in which the voters are chosen in line 6 is important. We argue

that it makes sense to choose the node for which the confidence is highest.
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These adjustments introduce characteristics from the Path semiring into the

Distance semiring. For example, the node with the maximum confidence gets to

vote first. Moreover, some paths are pruned which means that fewer messages are

exchanged, thus saving bandwidth, but also some of the existing information is not

taken into account.

6.4 Conclusion

We have presented a scheme for evaluating trust evidence in Ad-Hoc networks.

Our scheme is entirely based on information originating at the users of the network.

No centralized infrastructure is required, although the presence of one can certainly

be utilized. Also, users need not have personal, direct experience with every other

user in the network in order to compute an opinion about them. They can base their

opinion on second-hand evidence provided by intermediate nodes, thus benefitting

from other nodes’ experiences. Of course, we are taking into account the fact that

second-hand (or third, or fourth...) evidence is not as valuable as direct experience.

In this sense, our approach extends PGP, since PGP only uses directly assigned

trust values.

At each round of computation, the source node computes opinions for all

nodes. This means that information acquired at a single round can be stored and

subsequently used for many trust decisions. If there is not enough evidence to

determine an opinion, then no opinion is formed. So, when malicious nodes are

present in the network they cannot fool the system into accepting a malicious node
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as benevolent. A failsafe state exists that ensures graceful degradation as the number

of adversaries increases.
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Chapter 7

Attack Resistance of Trust Metrics

In this chapter, we address the issue of attack resistance of semiring trust

metrics. In particular, we describe an algorithm that computes efficiently the effect

of changing an arbitrary direct opinion on the computation of a source-destination

indirect opinion. With this algorithm we can measure the effect of an attacker

deleting an opinion, manipulating an opinion’s value, inserting a completely bogus

opinion, or even deleting all the opinions of a user by, e.g., destroying the network

node operated by that user.

7.1 Introduction

Levien and Aiken, in [35], suggested a criterion for measuring the resistance of

a trust metric to attackers. First, they distinguished between two types of attacks:

node attacks, and edge attacks. Node attacks amount to a certain node being

impersonated. So, the attacker can issue any number of arbitrary opinions (public

key certificates in Levien’s case) from the compromised node about any other node.

Edge attacks are more constrained: Only one false opinion can be created per each

attack. In other words, an attack of this type is equivalent to inserting a false edge

in the trust graph. Obviously, a node attack is the more powerful of the two, since

it permits the insertion of an arbitrary number of false edges.
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The attack resistance of a metric can be gauged by the number of node or

edge attacks that are needed before the metric can be manipulated beyond some

threshold. For instance, it has been shown [52] that a single misbehaving entity (a

1-node attack) can cause the metric proposed in [9] to return an arbitrary result.

In this chapter, we will deal with single edge attacks on those semiring trust

metrics where the aggregation operator ⊕ has the property that a ⊕ b = a, or

a ⊕ b = b. For example, ⊕ could be max, or it could be the aggregation operator

in our Path semiring (see Chapter 6), which returns the opinion with the maximum

confidence value.

We extend the semiring trust computation framework with an algorithm that,

given a source-destination node pair s and d, computes how much the indirect trust

between s and d changes if an arbitrary direct opinion changes (either improves

or deteriorates). From this, we can find which edge, if attacked, can cause the

greatest change in the computed indirect trust. In the case of the Path semiring

for trust, the same path that is used for the trust computation can be used for

routing traffic from the source to the destination. So, a change in a direct opinion

may cause the traffic to be redirected through a different path. We would then

be interested to know how much the weight (direct opinion) of an arbitrary link

can change without changing the optimal path between the source and destination.

This is called sensitivity analysis of optimal paths. The bounds in the directions of

improvement and deterioration that we get for each edge are called the upper and

lower tolerance of that edge, respectively, and these are defined with respect to the

source-destination path in question.

100



We would like to emphasize that this algorithm works for any semiring whose

aggregation operator satisfies the property mentioned earlier (a ⊕ b = a or b). In

particular, it works for semirings used for Quality of Service (QoS) routing, such as

minimum delay, maximum capacity, and widest-shortest path routing [59].

Algorithms for upper and lower tolerances for shortest paths and for maximum

capacity paths were given in [49] by reducing these problems to the same problem,

called Minimum Cost Interval problem. In [26] an algorithm was given that com-

putes how much the length of the shortest path changes, when an arbitrary link

disappears. We use a generalized version of this algorithm when computing lower

edge tolerances. An apparently equivalent problem, that computes how much a

shortest path changes when a node disappears, was addressed in [45].

The practical significance of sensitivity analysis and of computing upper and

lower tolerances is varied. From a security point of view, an attacker may want to

cause the maximum trust manipulation by affecting a single opinion (edge attack).

The manipulation could be aiming either to artificially improve the source’s opinion

for an untrustworthy target, or, conversely, to artificially deteriorate the source’s

opinion for a trustworthy one. It follows that a defender should pay extra atten-

tion to the opinion that could cause the greatest damage. Further, if a network

administrator wants to achieve a trust increase between two nodes by improving (or

adding) one trust opinion link, then the upper tolerances would be useful: they give

insight to the effect that trust link improvements and additions have. As an exam-

ple, consider what happens when two wireless network users are physically close,

but have no previous interactions, and their indirect trust is insignificant. However,
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they happen to be at strategic locations with regard to network connectivity by

providing, e.g., a shortcut. Then, an administrator could intervene and provide the

two users with an exogenous trust certificate that would immediately build trust

between the two users, thus improving the network.

Computing tolerances is also relevant for judging the stability of routing paths,

to the extent that routing is done through the most trusted path. If a link weight

is close to its upper or lower tolerance, then it is more likely that a fluctuation

in the link weight will cause the corresponding optimal path to change. This is

undesirable, and a network administrator or designer would benefit from knowing

it could happen.

The relevance of tolerances also extends to traffic redirection attacks, discussed

in Section 7.3, which in wireless ad-hoc networks have been called wormhole attacks

[27]. In this case, the upper tolerances of edges are giving the thresholds after which

traffic will be redirected to the newly “improved” edges. An attacker may try to

attract traffic to the links controlled by him. We can show that some edges can

never be improved enough to attract traffic from a particular source-destination

pair. Alternatively, the attacker may break certain links so as to force traffic to pass

through compromised network elements (links and routers).

The rest of the chapter is organized as follows. Section 7.2 introduces two

essential algebraic quantities that are at the heart of the problem, together with

the algorithms that compute them. It then discusses how to get the tolerances from

these quantities. In Section 7.3 we provide an example on how the traffic redirection

attacks would work. The mathematical terminology is provided in Appendix A.
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Figure 7.1: Partitioning of paths according to whether they use edge e or not.

7.2 Edge Sensitivities for the Algebraic Path Problem

We repeat that what we want to compute is how much the optimal s ; d

path weight changes when the weight of an edge e = (i, j) changes. Having fixed

a source vertex s and a destination vertex d, we call A the set of all s ; d paths.

We partition the set A into two subsets A∈(e), A/∈(e) according to whether a path

includes edge e or not (Figure 7.1):

A∈(e) = {p ∈ A|e ∈ p} (7.1)

A/∈(e) = A \ A∈(e) (7.2)

By a slight abuse of notation, we use w(X), where X is a set of paths with

the same source and the same destination, to mean the ⊕-sum of the weights of the

paths in X. So, we have that

w(A) = w(A∈(e))⊕ w(A/∈(e)). (7.3)

We will now proceed to compute the weight w(A∈(e)), which we call total

e-path weight, and w(A/∈(e)), which we call total non-e-path weight.
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7.2.1 Computation of total e-path weight

We write w(A∈(e)) in the following way:

w(A∈(e)) =
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w(p)







⊕









⊕

s
p
;j

w(p)



w(e)





⊕

i
p
;d

w(p)







 (7.4)

What we have done here is that we have split A∈(e) according to whether a

path crosses edge e = (i, j) in the direction from vertex i to vertex j or vice versa.

Note that this is not necessarily a partition of A∈(e), since a path may cross edge e

in both directions. However, adding more edges never improves a path (by property

(A.4)), so the optimal path will never cross an edge twice, which in turn means that

we can disregard all edge-repeating paths. As a result, we can assume without loss

of generality that in (7.4) no path will appear inside both square brackets.

Assuming that the semiring R is commutative, we can factor out w(e) in (7.4),

and have

w(A∈(e)) = w(e)w(B(e)) (7.5)

where

w(B(e)) =





⊕

s
p
;d,w(e)← 1©

w(p)



 (7.6)

which is more usefully written as
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(7.7)
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So we have isolated the weight w(e). We want to be able to compute, for any

arbitrary new value of w(e) given to us, the new optimal path weight efficiently for

all edges e. To this end we compute the optimal-path tree rooted at s (the union

of optimal paths from s to all other nodes), and the optimal-path tree rooted at

d. These unions of paths are trees since we have assumed that the optimal path

between a pair of nodes is unique. Denote by d(s, i), d(j, d) the weight of the optimal

path from s to i, and from j to d, respectively. Note that d(j, d) = d(d, j), since the

graph is undirected. Then, all we need to do for each edge is to compute

w(A∈(e)) = w(e) (d(s, i)d(j, d)⊕ d(s, j)d(i, d)) , (7.8)

which is (7.5) combined with (7.7).

The computation of the shortest path trees can be done with a generalized

version of Dijkstra’s algorithm [18], which uses ⊕ instead of min, and ⊗ instead of

+, shown in Figure 7.2. The generalized version works, as long as 1© is the largest

element of the semiring [53]. The complexity remains the same, i.e., O(m+n log n),

when Fibonacci heaps are used for the priority queue needed in Dijkstra’s algorithm.

Obviously, we also need to assume that the semiring operations take constant time.

To summarize, in order to compute w(A∈)(e), we first compute the two optimal

path trees rooted at s and d. Then, for each edge e = (i, j) and weight w(e), all we

need to do is to look up the four values d(s, i), d(j, d),d(s, j), d(i, d), and substitute

them into (7.8).
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Generalized-Dijkstra(G, s)

1 for i← 1 to |V |

2 do d[i]← 0©

3 d[s]← 1©

4 S ← {s}

5 while S 6= ∅

6 do q ← ExtractFrom(S)

7 for each v ∈ Neighbors[q]

8 do if d[v] 6= d[v]⊕ (d[q]⊗ w(q, v))

9 then d[v]← d[q]⊗ w(q, v)

10 if v /∈ S

11 then Enqueue(S, v)

12 d[s]← 1©

Figure 7.2: Generalized version of Dijkstra’s algorithm, where ⊕ replaces min and

⊗ replaces +.
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7.2.2 Computation of total non-e-path weight

We turn to the computation of the quantity w(A/∈(e)), which is the sum of the

weights of all s ; d paths that do not go through edge e. Equivalently, it is the

weight of the optimal such path.

w(A/∈(e)) =
⊕

s
p
;d,w(e)= 0©

w(p). (7.9)

This equality holds, because 0© is absorbing for ⊗ so setting w(e) = 0© is equivalent

to disregarding edge e for the purposes of calculating the optimal path. Any path

that goes through that edge will have a weight equal to 0©, so it will never be

optimal.

Notice that for all e /∈ P ∗, we do not need to do any extra computations since

w(A/∈(e)) = d(s, d). To compute w(A/∈(e)) efficiently for the edges e ∈ P ∗, we use

the Generalized Edge Replacement algorithm described in Figure 7.4. The

algorithm is due to Hershberger and Suri. We adapt the algorithm for semiring

operators and provide a short explanation. For a more detailed explanation, the

reader is referred to [26].

The main idea of the algorithm is to break up the summation in the way shown

in (7.10) below, and make some simplifying assumptions that enable efficient com-

putation of the quantities involved. However, one of these simplifying assumptions

causes the algorithm not to find the optimal solution in all graphs. Hershberger and

Suri stated that their algorithm works for undirected graphs but not for directed.

However, we show here that it works in some class of directed graphs, too, and

provide the properties that such directed graphs should satisfy.
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Define the property P1(u) of a vertex u ∈ V to be true when and only when

the optimal path from s to u does not contain edge e. For the vertices u that satisfy

P1,

⊕

s
p
;u,w(e)= 0©

w(p) =
⊕

s
p
;u

w(p). (7.11)

Similarly, define the property P2(v) of a vertex v ∈ V to be true when and

only when the optimal path from v to d does not contain edge e. For the vertices u

that satisfy P2,

⊕

v
p
;d,w(e)= 0©

w(p) =
⊕

v
p
;d

w(p). (7.12)

We like pairs of nodes (u, v) that have these two properties, because for them

we do not need to recompute the optimal distances from s and to d. Since the

corresponding optimal paths do not use edge e, it does not make a difference whether

edge e is deleted or not. For these nodes, we can reuse the optimal-path trees

computed earlier for the original graph.

The optimal path in the graph after the deletion of edge e (equivalently, after

setting w(e) to 0©) has the following form: It starts at s, goes through nodes that

satisfy P1 until node u, follows an edge (u, v) 6= e, and all remaining nodes from v to

d satisfy property ¬P1. In other words, as soon as the optimal path leaves nodes that

satisfy P1, it can never return. So, we do not need to do the external summation over

all edges in E \e, but only over the edges in the set {(u, v)|P1(u)∧¬P1(v)∧(u, v) 6=
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e}.

The algorithm limits the set E\e, over which the external summation is taking

place, to the set {(u, v)|P1(u) ∧ ¬P1(v) ∧ (u, v) 6= e}. This new set is, as will be

seen below, easy to update when we move from considering one edge e ∈ P ∗ to the

next edge along the path P ∗. Moreover, since the property P1(u) holds, we can

use (7.11) to simplify (7.10). So far, we have not made any restrictive assumptions.

Whatever we have said can be done on all graphs.

In order to simplify further, the Generalized Edge Replacement algo-

rithm assumes that P2(v) also holds, so that (7.12) can also be used to simplify

(7.10). This assumption limits the class of graphs for which the algorithm finds the

optimal solution. The property that does hold is ¬P1(v), but it is not always the

case that ¬P1(v) ⇒ P2(v). So, the Generalized Edge Replacement algo-

rithm is guaranteed to find the optimal solution only in cases when the following

condition hods:

∀v ∈ V, {v ∈ V |¬P1(v)} ⊆ {v ∈ V |P2(v)}. (7.13)

In words, this means that there cannot be any vertices v such that the shortest

path from the source s to v has any common edges with the shortest path from v

to the destination d. If we also allow the source and destination nodes to vary,

condition (7.13) is equivalent to the nonexistence of a source s, destination d, and

arbitrary node v, such that the optimal paths s ; d, s ; v, and v ; d have one or

more edges in common. In particular, the algorithm works for undirected graphs,

and for directed graphs without directed cycles. The original algorithm [26] is given
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Figure 7.3: The shortest path tree is broken into a forest after removing all the

edges of the s ; d shortest path.

only for undirected graphs, and is described below. The case of directed graphs and

their relation to trust is discussed in Section 7.4 at more length.

Let the optimal path P ∗ consist of k nodes: v1 ≡ s, v2, . . . , vk ≡ d. If we delete

all the edges of P ∗, the optimal-path tree rooted at s becomes a forest. Exactly one

node of v1 ≡ s, v2, . . . , vk ≡ d belongs to each connected component of the forest,

and we label each component by the subscript 1 through k of the corresponding

node. For each edge e ∈ E, we consider the labels of the components that its two

endpoints belong to. We define left(e) to be the smallest of the two labels, and

right(e) the largest. For example, if there exists an edge e that goes between the

component that s belongs to, and the component that d belongs to, then left(e) = 1,

and right(e) = k. Note that it could happen that left(e) = right(e).

The ingenuity of the algorithm is the way it keeps track of the candidate

replacement edges when we move from considering the deletion of one edge of P ∗ to

considering the deletion of the next. Namely, when moving from edge (vi−1, vi) to

110



(vi, vi+1), we no longer care about the edges whose “right” endpoint is vi (since they

can no longer be replacement edges), but we have to add to our list of candidates

the edges whose “left” endpoint is vi. These candidate edges are added to and

removed from a priority queue, the structure of which makes it efficient to recover

the edge that gives the �-optimal weight among all s ; d paths that do not include

a particular edge of P ∗.

The running time of this algorithm is O(m + n log n), when Fibonacci heaps

are used for the priority queue. Note that the optimal path trees rooted at s and at

d need also to be computed before using this algorithm, but the overall asymptotic

complexity is still O(m + n log n).

7.2.3 Computation of tolerances

To compute tolerances, we will consider again (7.3), which we repeat here for

convenience.

w(A) = w(A∈(e))⊕ w(A/∈(e)). (7.14)

Substituting (7.8) into (7.3), and using the shorthand w(B(e)) we get that

w(A) = w(e)w(B(e))⊕ w(A/∈(e)). (7.15)

We can now see the effect of changing the weight w(e) on w(A). In the equation

above, only w(e) changes, and we have four different cases depending on whether

w(A∈(e)) = w(e)w(B(e)) � w(A/∈(e)) or not, and also whether we increase w(e) or

decrease it. The two interesting cases appear, first, when w(A∈(e)) � w(A/∈(e)) and

w(e) is increased (the wormhole case), and, second, when w(A∈(e)) � w(A/∈(e)) and
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Generalized Edge Replacement(G, s, d, P ∗)

1 for i← 1 to k L[i]← ∅

2 for i← 1 to k R[i]← ∅

� Each L[i] and each R[i] is a set of edges

3 Q← nil

� Q: priority queue for the candidate

replacement edges

4 for each e ∈ E \ {e ∈ E|e ∈ P ∗}

5 do if left(e) < right(e)

Put e into L[left(e)] and R[right(e)].

� Ignore edges within the same

component.

6 for i← 1 to k − 1

7 do for each e = (u, v) ∈ L[i]

8 do Put (w(e), e) into Q, with wgt

w = d(s, u)⊗ w(u, v)⊗ d(v, d)

9 If e ∈ R[i], remove (w, e) from Q

10 The �-optimal weight in Q is w(A/∈(e)).

Figure 7.4: For each edge e of the shortest path between nodes s and d, the gener-

alized Hershberger-Suri algorithm computes the new optimal path (and associated

weight) if edge e were removed from the graph.
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w(e) is decreased.

We will distinguish the cases when e ∈ P ∗ and e /∈ P ∗. When e ∈ P ∗, the

situation is depicted in Figure 7.5. The following equivalences hold:

e ∈ P ∗ ⇔ P ∗ ∈ A∈(e)⇔ w(A∈(e)) � w(A/∈(e))

⇔ w(A(e)) = w(A∈(e)) (7.16)

If we increase the weight w(e), then the optimal path weight will not decrease,

and it may actually increase. In that case, the optimal path will not change.

If we decrease the weight w(e) of an edge e ∈ P ∗, then the optimal path weight

will not increase. The optimality of P ∗ may change or not, depending on whether

we decrease w(e) below the lower tolerance of the edge or not. The lower tolerance

of edge e is exactly equal to the new weight w(e)∗ that makes w(A∈(e)) equal to

w(A/∈(e)).

In the case when e /∈ P ∗ (Figure 7.6), the lower tolerance of e is the �-infimum

of R, since no matter how much w(e) is decreased, neither the optimal path nor the

optimal path weight will change. Increasing the weight w(e) will in general improve

a previously suboptimal path. If it is improved beyond the weight of the previously

optimal path (P ∗), then the optimal path will change. This weight is the upper

tolerance, which is again the value of w(e) that makes w(A∈(e)) equal to w(A/∈(e)).

To summarize, e ∈ P ∗ implies that w(A) = w(P ∗) = w(A∈(e)) � w(A/∈(e)).

By changing w(e), we change w(A∈(e)) = w(P ∗), and the optimal path will stop

being P ∗ if we decrease w(e) enough to make w(A∈(e)) decrease below w(A/∈(e)).

On the other hand, e /∈ P ∗ implies that w(A) = w(P ∗) = w(A/∈(e)) � w(A∈(e)).
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The optimal path will change if we increase w(e) enough to make w(A∈(e)) increase

beyond w(A/∈(e)).

So, we see that the “interesting” tolerance in both cases is equal to

w(e)∗ = w(A/∈(e))⊘ w(B(e)) (7.17)

or, equivalently,

w(e)∗ = w(A/∈(e))⊘ (d(s, i)d(j, d)⊕ d(s, j)d(i, d)) , (7.18)

where ⊘ is the inverse operator of ⊗, if it exists. If it does not exist, then we need

to find the value of w(e) that makes w(e)w(B(e)) equal to w(A/∈(e)). In any case,

for computing tolerances, these are the two important quantities to compute, and

they need to be computed efficiently for all edges e. Computing the two optimal-

path trees is enough for the efficient computation of w(B(e)), since for each e we

only need four lookups d(s, i), d(j, d), d(s, j), d(i, d). The Hershberger-Suri algorithm

takes care of w(A/∈(e)).

A final caveat is that the result of (7.17) has to be in the carrier set of the

semiring to be admissible. This applies in particular to the wormhole scenario. Some

edges can never be wormholes: those edges e for which it holds that

w(B(e)) � w(A/∈(e)). (7.19)

7.3 Traffic Redirection Attacks

In this section we will see how knowing edge tolerances helps understand the

effects of traffic redirection attacks on routing. Traffic redirection attacks aim to
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Figure 7.5: The edge e is in the optimal path P ∗. If the weight w(e) improves,

the optimal path will remain P ∗. If w(e) deteriorates enough, P ∗ will stop being

optimal. The lower tolerance of edge e is the lowest value of w(e) for which P ∗

remains optimal.

Figure 7.6: The edge e is not in the optimal path P ∗. If the weight w(e) improves

enough, then P ∗ will stop being optimal. However, it is possible that some edges

cannot be improved enough to create a path that is better than P ∗. If w(e) deteri-

orates, then nothing changes.
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cause traffic to go through links or nodes of the attacker’s choosing by making these

links appear more trustworthy than the other candidate links. Their effect can be

bad for various reasons:

• The redirected traffic could cause congestion to the part of the network it is

redirected to.

• The redirected traffic will experience worse than optimal conditions (for in-

stance, longer delay), assuming, of course, that before the attack it was being

routed optimally.

• The attacker could eavesdrop on the traffic, modify it, or drop it.

There are two general mechanisms that can be used to achieve traffic redirec-

tion: traffic attraction and traffic repulsion. Traffic attraction occurs when a link

is advertised to have much higher trust than it really has, thus luring traffic to go

through it. Traffic repulsion occurs when the advertised trust of the link is much

worse than in reality, thus causing traffic to avoid it.

Traffic attraction attacks have been known for a long time in the networking

field [8], [48]. In wireless networks, the false advertisement of non-existent routes

has been called the wormhole attack [27]. The effect is a traffic attraction attack.

The relevance of tolerances for traffic attraction attacks is the following: If the

weight of a link is changed (advertised) to a value better than its upper tolerance,

then the associated end-to-end traffic will be redirected to a path that crosses the

changed link. Advertising non-existent links can be handled by finding upper toler-

ances for edges with initial weight 0©. Depicted in Figure 7.7 are the initial weights
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Figure 7.7: Traffic attraction attack: By artificially improving the opinion on a link,

the attacker can lure traffic away from the optimal path. Shown next to each link

are the initial weights and upper tolerances. Upper tolerances of two non-existent

edges are also shown. Note that the negative values of tolerances are only shown for

completeness purposes. Negative values for delays cannot be admitted. The optimal

path is painted thick.

and upper tolerances of a simple topology in the case of delay. We can see that not

all links can be used for an attraction attack. Only links that are “close enough” to

the currently optimal end-to-end path in question are candidates.

In the case of traffic repulsion attacks, lower tolerances are relevant (Fig-

ure 7.8). They show how much a link’s trust value needs to deteriorate before traffic

is redirected. The new path can also be computed, which will show which new links

and routers the new path goes through.

If we know the tolerances for all the edges in the network, we can see which

edges, if artificially improved, destroyed, or degraded, will cause traffic to be redi-

rected through which path. So, we can see the effects of the possible single-link

117



Figure 7.8: Traffic repulsion attack: By decreasing the trust on a link, the attacker

can lure traffic away from the optimal path. Shown next to each link are the initial

weights and lower tolerances. The optimal path is painted thick.

attacks, and plan accordingly. For example, one could check the trustworthiness of

routers that could be used as replacements, or guard certain parts of a path whose

replacements are judged undesirable for one reason or another. Note again that

tolerances are computed with respect to specific source-destination pairs, so an edge

will have many tolerances in general, and the analysis would have to be done for

each pair separately, or, if this is impractical, for the “most important” ones.

7.4 Directed Graph Sensitivities

Directed graphs are more pertinent for trust, since opinions are directed. In

directed graphs without directed cycles the Generalized Edge Replacement

algorithm works optimally, since ¬P1(v)⇒ P2(v) for all v ∈ V , and for all edges e ∈

P ∗. To see why this is so consider a node v such that for some edge e ¬P1(v)∧¬P2(v)

is true. Then there would exist a directed cycle consisting of the subpath of the
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s ; v shortest path that goes from e to v, and the subpath of the v ; d shortest

path that goes from v to e. Since we assumed that the graph has no directed cycles,

this is a contradiction.

We will now address whether limiting trust graphs to directed graphs without

undirected cycles is excessively severe. In practice, we expect almost all graphs

to have directed cycles. However, when computing indirect opinions from s to d,

including cycles in the computation is uncomfortable from a trust point of view.

First of all, cycles mean that a node can influence the opinion that is computed

about itself, which is clearly undesirable. Secondly, cycles give rise to potential

conflicts of interest in the following sense: two (or all) nodes on a cycle can agree

to artificially increase their opinion for their next hop neighbor on the cycle, thus

artificially increasing the computed opinions about themselves. In the same scenario,

a node v can threaten another node u on the cycle that, if u does not increase his

opinion about the next hop node (thus also increasing the computed opinion about

v), then v will retaliate by decreasing his own opinion about his own next hop node,

thus decreasing the computed opinion about u.

7.5 Conclusion

We provided an algebraic framework for computing the effect that arbitrary

changes of link trust values have on optimal routing paths. Network designers and

administrators are interested to know how the performance of their network can be

affected, either in the positive or in the negative. We also showed that attackers can
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cause malicious faults in an attempt to redirect traffic along compromised network

elements.
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Chapter 8

Practical Considerations

8.1 Taxonomy of Design Issues

In this section we are examining issues that should be considered by designers

of trust metrics.

8.1.1 System Model

The most commonly used model is a labeled, directed graph. Nodes represent

entities, and edges represent binary trust relations. These relations can be (for an

edge i→ j): a public key certificate (issued by i for j’s key), the likelihood that the

corresponding public key certificate is valid, the trustworthiness of j as estimated

by i, etc.

8.1.2 Centralized vs decentralized trust

By centralized trust we refer to the situation where a globally trusted party

calculates trust values for every node in the system. All users of the system ask this

trusted party to give them information about other users. The situation described

has two important implications: First, every user depends on the trustworthiness of

this single party, thus turning it into a single point of failure. Second, it is reasonable

to assume that different users are expected to have different opinions about the same
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target; this fact is suppressed here.

The decentralized version of the trust problem corresponds to each user being

the ”center of his own world”. That is, users are responsible for calculating their

own trust values for any target they want. This ”bottom-up” approach is the one

that has been most widely implemented and put into use, as a part of PGP [61] for

public key certification.

Note that the distinction just mentioned refers to the semantics of trust. The

actual algorithm used for the computation of trust is a separate issue: all data

may be gathered at a single user, where the algorithm will be executed; or the

computation may be done in a distributed fashion, throughout the network; or the

algorithm may even be localized, in the sense that each node only interacts with his

local neighborhood, without expecting any explicit cooperation from nodes further

away.

8.1.3 Proactive vs reactive computation

This is an issue more closely related to the communication efficiency of the ac-

tual implementation. The same arguments as in routing algorithms apply: Proactive

trust computation uses more bandwidth for maintaining the accuracy of the trust re-

lationships. So, the trust decision can be reached without delay. On the other hand,

reactive methods calculate trust values only when explicitly needed. The choice de-

pends largely on the specific circumstances of the application and the network. For

example, if local trust values change much more often than a trust decision needs
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to be made, then a proactive computation is not favored: The bandwidth used to

keep trust values up to date will be wasted, since most of the computed information

will be obsolete before it is used.

8.1.4 Extensional vs intensional metrics

As mentioned by Maurer [39], one possible criterion to classify uncertainty

methods is whether the uncertainty is dealt with extensionally or intensionally. In

extensional systems, the uncertainty of a formula is computed as a function of the

uncertainties of its subformulas. In intensional systems, uncertainty is attached to

”state of affairs” or ”possible worlds”. In other words, we can either aggregate

partial results in intermediate nodes (in-network computation), or we can collect all

data (opinions and trust topology) at the initiator of the trust query and compute

a function that depends on all details of the whole graph.

For example, the scheme proposed by Jøsang [29] is intensional, whereas our

semiring model is extensional. As pointed out by Maurer [39], there seems to be

a trade-off between computational efficiency and correctness. Extensional systems

are more efficient, whereas intensional are more correct. For more on this, see the

discussion on the distributivity property (Sec 5.4).

8.1.5 Negative and positive evidence (certificate revocation)

It is desirable to include both positive and negative evidence in the trust

model. The model is then more accurate and flexible. It corresponds better to real-
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life situations, where interactions between two parties can lead to either satisfaction

or complaints. When a node is compromised (e.g. its private key is stolen) the

public key certificates for this node should be revoked. So, revocation can be seen

as a special case of negative trust evidence.

On the other hand, the introduction of negative evidence complicates the

model. Specifically, an attacker can try to deface good nodes by issuing false negative

evidence about them. If, as a countermeasure to that, issuing negative evidence is

penalized, good nodes may refrain from reporting real malicious behavior for fear

of being penalized.

8.1.6 What layer should trust be implemented in?

An important issue that is often glossed over is the layer at which the trust

protocol will operate. That is, the services required by the protocol and the services

it offers should be made clear, especially its relationship to other security compo-

nents. As pointed out in [12], some secure routing protocols assume that security

associations between protocol entities can be established with the use of a trust

establishment algorithm, e.g. by discovering a public key certificate chain between

two entities. However, in order to offer its services, the trust establishment algo-

rithm may often assume that routing can be done in a secure way. This creates a

circular dependency that should be broken if the system as a whole is to operate as

expected.
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8.2 Trust for routing

In this section we will discuss an implementation sketch for a trust protocol

that could be used as a complement to aid a routing protocol. We will use parts of

the research presented in this dissertation, and refer to them as appropriate.

The trust agent running at a node i collects information from the routing

protocol about two things: the number of packets transmitted to each one-hop

neighbor j for further forwarding (denoted by N j
t ), and how many of those packets

were actually forwarded further by neighbor j (denoted by N j
f ). In particular,

we assume that there is a mechanism to detect whether one-hop neighbors have

forwarded a packet. In wireless networks, for example, this can be done with the

Watchdog mechanism [38].

First of all, the values N j
t and N j

f will be translated to trust and confidence

values for j. We follow the Beta distribution model, that is, we will use N j
t and

N j
f to find the two parameters α and β needed to define a Beta(α, β) distribution.

The parameter α will correspond to the number of successfully transmitted packets,

therefore α = N j
f , while β will correspond to the number of dropped packets, so

β = N j
t −N j

f . Trust will be the mean value of the Beta distribution, and confidence

will increase as the variance of the distribution decreases. More precisely:

tij =
α

α + β
(8.1)

cij =1− 12 Var{Beta(α, β)} = 1− 12
αβ

(α + β)2(α + β + 1)
(8.2)

The values α and β are both initialized to 1, and are increased by 1 for each
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successfully forwarded packet, or dropped packet, respectively. So, initially, tij = 1
2
,

and cij = 0 for all i, j. As the number of observations goes to infinity, the trust

value will be following the fraction of packets successfully forwarded by neighbor j,

while the confidence value will converge to 1, i.e., total confidence.

So far we described the direct trust generation process. The opinions generated

will be exchanged with neighbors, similarly to distance-vector routing. That is, each

node will have a vector of opinions, one opinion for each other node in the network,

and these vectors will be exchanged with the neighbors. This exchange, as discussed

earlier, can be done either proactively or reactively. If it is done reactively it will

resemble more the controlled flooding paradigm, as done by on-demand routing

protocols. Eventually, each node will compute end-to-end trust values using, for

example, the path semiring, introduced in Chapter 6. Because we use semirings, we

can compute opinions in a distributed way. The result of this trust computation

phase is that each node will have a trust estimate about the paths to everybody

else. What is more important for routing, the end-to-end trust estimate of i about a

destination d will be associated with a next hop neighbor, through which the most

trusted path passes.

We are now in a position to see how the generated and computed opinions will

affect routing. Given a packet for destination d, node i will forward it to the next

hop neighbor through which the most trusted path to d passes. In other words, we

replace the routing metric of, e.g., hop count or delay with trust. This is an extreme

case in which only trust matters when selecting routing paths. In general, we can use

trust in combination with a more traditional metric, when the combination would
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be tuned to fit the application’s requirement (e.g. small hop count versus more

trusted).

There is another way in which direct trust, in particular, can be taken into

account in practice. For packets originating at node i, the next hop selection is done

as in the previous paragraph. However, if a packet destined for d is coming from

neighbor j, node i will check his opinion about neighbor j. He will only forward the

packet if his opinion about j exceeds some threshold. This is following the protocol

described in Chapter 3. In practice, this means that i will forward a packet coming

from j if and only if j has forwarded “enough” packets transmitted to him by i.

The threshold depends on i’s Ei and Ni values (in Chapter 3 it is equivalent to Ei

Ni

per neighbor). A large threshold would conserve a user’s energy at the expense of

helping the network operate, while a user with a small one could risk the danger to

exhaust his battery (or other resources, in case of non-wireless networks). Choosing

a proper threshold would have to be empirically explored. It could even be the

case that the threshold changes with time, e.g., increasing as the available energy

decreases.

8.3 Practical Applications of Trust

In this section, we briefly survey three areas to which trust has been applied

in one way or another, and point out the relevance of our work in each case. We

have already shown (Ch. 6) how the Web-of-Trust concept of PGP could be modeled

with our semiring-based indirect trust computation framework.
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In [50], the notion of data trust is proposed for ephemeral networks, i.e., net-

works where only short-lived interactions happen between users. As a specific exam-

ple, the authors are applying data trust ideas to vehicular networks. The novelty of

data trust is that the focus is moved from computing trust on entities to computing

the trustworthiness of the data reported by the entities. In particular, the authors

are proposing that the trustworthiness of an event report is not only a function of

the trustworthiness of the entity creating it, but also a function of, for instance, the

proximity of the entity to the event being reported. In general, it is a function of

the suitability of an entity to produce that report on that event. The reports are

then relayed and aggregated by other entities, who create and transmit aggregate

reports. Transitive trust could be applied to aggregate reports by making the trust-

worthiness of that report a function of the entity’s suitability to aggregate. The

point is that different entities may have different capabilities for aggregation (police

cars versus private vehicles, for example).

Ebay [1] has a feedback system for its users to rate each other after a transac-

tion. The rating can be either positive (+1), or negative (−1). A user’s reputation

is the sum of positive and negative feedback values he has received. However, there

is nothing to prevent a malicious merchant from creating false accounts and fake

transactions so as to give himself an artificially high rating. Such an attack would

be immediately thwarted if transitive trust (indirect trust) computation were used.

A user would only take into account trust information that is reachable from him

through trust paths of direct interactions. This measure thwarts Sybil attacks [19]

in general.
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The Semantic Web is an attempt to make the information that is available on

the Web more accessible to automated software agents. One of the issues surfacing is

the trustworthiness of the information available, and how this trustworthiness can be

assessed without human intervention. In [10], the authors propose a way to combine

trust values as in the indirect trust computation we have described. The difference

is that they compute the indirect trust for the neighbors of the destination, and

use the computed values as weights when choosing among (or averaging over) the

destination’s neighbors’ opinions about the destination. Since they are also using a

generalized shortest path approach to compute indirect trust values, their scheme

could benefit from our attack resistance evaluation of trust metrics (chapter 7).
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Chapter A

Semirings and the Algebraic Path Problem

The algebra that we use is based on the algebraic structure called semirings.

For a more complete survey of semirings and their applications, see Rote [53], and

also Kschischang, Frey, Loeliger [33], and Aji, McEliece [3].

A.1 Definitions

A semiring is a triplet (S,⊕,⊗), where S is a set (the carrier set of the

semiring), and ⊕,⊗ are two binary operations defined on S that satisfy certain

properties. Intuitively, the properties correspond to those of the usual addition

and multiplication (hence the symbols), but inverse or negative elements do not

necessarily exist. Similar to the usual multiplication, we will be writing ab instead

of a⊗ b. Also, ⊗ binds stronger than ⊕, so ab⊕ c means, as expected, (ab)⊕ c.

• ⊕ is commutative, associative, with neutral element 0© ∈ S:

a⊕ b = b⊕ a

(a⊕ b)⊕ c = a⊕ (b⊕ c)

a⊕ 0© = a
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• ⊗ is associative, with neutral element 1© ∈ S, and absorbing element 0©:

(ab)c = a(bc)

a 1© = 1©a = a

a 0© = 0©a = 0©

• ⊗ distributes over ⊕:

a(b⊕ c) = ab⊕ ac

(b⊕ c)a = ba⊕ ca

If ⊗ is commutative (ab = ba, ∀a, b ∈ S), then the semiring is called commu-

tative. If it holds that

ac = bc⇒ a = b, for all a, b ∈ S, c ∈ S \ { 0©} , (A.1)

then the semiring is called right cancellative. The dual property

ca = cb⇒ a = b, for all a, b ∈ S, c ∈ S \ { 0©} , (A.2)

is called left cancellativity, and if the semiring is both left and right cancellative,

then it is simply called (multiplicatively) cancellative. Obviously, if the semiring is

commutative, then the three notions of cancellativity are equivalent. The notion of

multiplicative cancellativity will prove central to the relation between semirings and

Sobrinho’s algebra.

We define a total order on S by

a � b⇔ a⊕ b = b. (A.3)
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The reader can think of ⊕ as max for a concrete example. Throughout this

chapter, a � b will intuitively be equivalent to saying that a is “worse” than b. A

total order has certain properties, some of which are satisfied through the properties

of ⊕, but some imply extra properties for ⊕. In particular:

• � is reflexive: a � a, ∀a ∈ S. This means that the semiring has to be idempo-

tent : a⊕ a = a, ∀a ∈ S.

• � is antisymmetric: if a � b and b � a, then a = b. This is already satisfied

because of the definition of � and the commutativity of ⊕.

• � is transitive: if a � b and b � c, then a � c. This is already satisfied

because of the definition of � and the associativity of ⊕: a⊕ c = a⊕ (b⊕ c) =

(a⊕ b) ⊕ c = b⊕ c = c, where we have used, in sequence, b � c, associativity

of ⊕, a � b, and again b � c.

• For every a, b ∈ S, either a � b, or b � a. This property makes the order a

total order as opposed to a partial order. It means that a ⊕ b is either a or

b. From this property, idempotency follows as a corollary since a ⊕ a would

necessarily be a.

Moreover, a⊕ 0© = a implies that 0© � a, that is, 0© is the �-smallest element

of the semiring.

Also, for all a, b ∈ S we require that

a⊗ b � a, b, (A.4)
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which implies that a ⊕ ab = a ⇒ a( 1©⊕ b) = a. If the semiring is multiplicatively

cancellative, then we get that 1©⊕ b = 1© ⇔ b � 1©, that is, 1© is the �-largest

element of the semiring.

We will also use the symbol � with the obvious meaning

a � b⇔ b � a. (A.5)

When we use the words “increase” or “decrease”, it will always be in the sense

of the �-order. For example, if ⊕ is min, then a � b means that min(a, b) = b⇔ a ≥

b. So, in this case, “increasing” a weight in the �-order means making it smaller.

A.2 The Algebraic Path Problem

Consider an undirected graph G = (V, E), with |V | = n vertices, and |E| = m

edges. A source vertex s and a destination vertex d are distinguished. The edges are

weighted with a weight function w : E −→ R, where R is a semiring (R,⊕,⊗). A

path p is a sequence of nodes (v1, v2, . . . , vk) such that (vi, vi+1) ∈ E, 1 ≤ i ≤ k − 1.

The weight of a path p is computed from the weights of its edges using the ⊗

operator.

w(p) = w(v1, v2)⊗ w(v2, v3)⊗ . . .⊗ w(vk−1, vk) (A.6)

The algebraic path problem is the computation of the ⊕-sum of the weights

of all the paths p from s to d (see Figure A.1).

⊕

s
p
;d

w(p) (A.7)
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Figure A.1: The Algebraic Path Problem computes the ⊕-sum of the weights of all

paths from a source s to a destination d. Each path weight is the ⊗-product of the

weights of its edges.

Table A.1: Examples of semirings (R̄+
0 = R+

0 ∪ {∞} = [0,∞])

S {0,1} R̄+
0 R̄+

0 [0, 1] {(d, b) ∈ (R̄+
0 , R̄+

0 )}

⊕ max min max max lex. min

⊗ min + min × (d1 + d2, min(b1, b2))

0© 0 ∞ 0 0 (∞, ∗)

1© 1 0 ∞ 1 (0,∞)

Optimal path Reachable Shortest Widest Most reliable Widest-shortest
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For example, suppose that the semiring is the triplet R = ([0,∞], min, +).

Then, the algebraic path problem is equivalent to the shortest path problem with

nonnegative weights. We assume that there is a unique optimal path, denoted by

P ∗, the weight of which is equal to the quantity in (A.7).

The problem of computing edge sensitivities with respect to an optimal sub-

graph of a graph appears when we consider how much the weight of an edge can

change before the subgraph ceases to be optimal. For example, we can compute

edge sensitivities for the minimum spanning tree of the graph. In this work, we

compute sensitivities for the algebraic path. In particular, we compute how much

the result of (A.7) changes when we vary the weight w(e) of an edge e = (i, j).

An associated concept is that of the upper and lower tolerances of an edge.

The upper tolerance of an edge is the �-largest weight it can take, while preserving

the optimality of the path P ∗. Conversely, the lower tolerance of an edge is the

�-smallest weight it can take, while preserving the optimality of the path P ∗. It

is expected that some tolerances will be trivial, since, for example, decreasing the

weight of an edge that is not on the optimal path always preserves the optimality

of the path.
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