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Summary

In this paper the realization question for infinite
dimensional linear svstems is examined for both bound-
ed and unbounded operators. In addition to obtaining
realizability criteria covering the basic cases, we
discuss the relationship between canonical realiza-
tions of the same system, What one finds is that the
gset of transfer functions which are realizable by
triples (A,b,c) with A bounded is related in a close
way, to the space of complex functions analytic and
square integrable on the disk !s! < 1 and that the set
of transfer functions which are realizable by triples
(A,b,c) with A unbounded but generating a strongly con-
tinuous semigroup is related in a close way to functions
analytic and square integrable on a half-plane.

1. Preliminaries and Notation

In this paper we study realization theory for a
class of infinite dimensional linear systems. On one
hand our motivation comes from a desire to understand
engineering problems involving transmission lines,
elastic deformations, moving fluids, and related matters,
where the assumption of finite dimensionality 1s too
restrictive; on the other hand we want to see the
finite dimensional results themselves as part of a
larger picture.

For the sake of definiteness we work in the most
basic Hilbert space, £5(Z2*)={as} 1=1,2,3,... such
that the {a;} is a square summable sequence. This
makes possiéle a fairly direet comparison with many
well known results concerning the finite dimensional
case. The problem is to express a given real function
T defined on [0,%) as T(t)=<c,eAtb> or to express 1its
transform T(s) as <c,(Is—A)'1b>. We consider several
distinct, but related cases. The first centers around
the existence of realizations (A,b,c) with A a bounded
operator on 22(:z+) and b and ¢ elements of £,5(2%).

We call such triples regular bounded realizations. Ve
call a triple (A,b,c) a regular realization if A is the
infinitessimal generator of a stronglv continuous semi-
group {eAt} defined on 23(Z*) and b and c are in
29(2Z*%). We also consider cases where A is the infin-
itesimal generator of a semigroup and b is restricted
to belong to the domain of A (written D, (A)) but ¢ is

merely required to map D (A) into R with ]c(x)!d«Ax‘#M

for all x in Dy(A). Such realizations will be called
balanced realizations. They have important properties
not shared by regular realizations.

In order to describe what realizations realize
vhat svstems we need to introduce some notation. The
open disk of radius p is denoted bv D = {s:|s|<p).
Ve write ) for[Dy. The boundary of )7, the unit circle,
is denoted by T .~ By HZ(]D) we mean the set of complex
functions which are analytic in D and have a Taylor
series about zero with square summable coefficients.
The space H2§ﬂ> ) is defined by saying that ¥(s)
belongs to H (0? ) 1f and only 1f y(s/p) belongs to
H2(D). By Hz(qg) we mean the set of complex valued
functions which are defined and square integrable, in
the Lebesque sense, on the unit circle . H2(D) and
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H2(7T') are related by the fact that for any H2(D)
function the radial limits from within the disk

lm Y (reif) = 6(6)
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exist for almost all § and give an element ¢ of B (T').
This correspondence is, moreover, one to one and onto
so that H2(D) and H2(P) are closely related indeed.
In fact, the Fourier coefficients of ¢ are the Taylor
coefficients of V. In addition, H2(D) is a Hilbert
space with the inner product

Wy 0, = JED U3 (s)U, (s)du(s)

where H(s) is Lebesque measure in the plane, normalized
to give D measure 1. This makes H2(D) and 22(2.+)
{somorphic as Hilbert spaces with the isomorphism
defined bv

-]
(al,az,a3,...) — Z aisi
f=]

Ve denote by HZ(DO) the subset of Hz(lDo) consist-
ing of those funclions which vanish at 0. We gay that
U(s) belongs to H“([Dgy) 1f U(1/s)_belongs to HZ(DD).
Bv HE(DQ) we mean the subset of H2([),) consisting of
those functions which vanish at =,

We denote by H; the half-plane Re s > p. We under-
stand by H2(I*) the functions which are analytic in H3
and sauarte ineegrable along vertical lines in Tt such
that P

sup

x>p
The relationship between Hz(ﬂ)) and Hz(H+) is this:
6(s)eH2(I™) 4f and only 1f ¥ defined by

Ws) = g 62D

f [w(xriy) | 2dy € M < =
-fco

belongs to Hz(l>). It may be recalled that H2(*) plays
an important role in the Paley-Wiener Theorem on the
Fourier Integral.

The connections between realizability and 12 functions
is outlined in the following table. The time domain
characterization is also given, and is to be regarded
as an equality between the function e OIT(t) and
<c,eAth> in the L,[0,») sense. .

Bounded General

()T (8)-T(OYen* () (suf)

- @2
T(s) € H2(D) T(s) eR2(THNK () fnec

%(t) exists; exp order (suf)

={(n) n +
{1 (/o }622(2) T(t) cont; exp order (nec)

T(t) real analytic

As we were preparing this paper we received from
Paul Fuhrmann a manuscript [13] which analyzes the
bounded case and obtaing a number of the results des-
cribed here with certain small changes due to the fact
that he works with discrete time systems. Helton [14]
also investigates some questions of this type but
emphagsizes a different class of ideas.



2. Realizability Criteria, Bounded Case

Let T:[O,M)+IR} be a continuous function of time.
When can it be written as

T(t) = <c,e’tb>

where b, cef (Z*) and A:22(22+)*22(7z+) is bounded?
As {s well known such a representation is possihle for
T with {(A,b,c) all finite dimensional if and only 1f

T 1s of exponential order and its transform

i(s)- fm e-StT(t)dt ; Res >0
0 o

is rational. In the present case A is hounded; {eAt}
defines a uniformly continuous semigroup of onerators
(see [1], page 626), and since b, and ¢ belong to
€5(2+) we have

<c,e?®o> < bl Ile] ] Me® b teRY

where IIeAt[l ¢ Me¥ ' and the norms are £5(2%) and
induced 22(2*) respectively, Thus the class we are
looking for includes only functions of exponential
order. Moreover since A is bounded, <c,eAtb> {5 an
entire function.

Regarding <;,eAtb>-as a function of a complex
variable, we can expand it as

2

<c,effh> = <c,b> + t<c,Ab> + (£2/2)<c,A%> + ...

Now if |]A]] < k then

1<c,alnst < el Tn] 1kt

Thus <c,eAt/kb> has a power series exnansion valid in
the finite complex plane with the coefficients in the
power series being square summable, The following two
theorems characterize in the time and frequency domain
the set of realizable input-output maps. (Comnare with
Fuhrmann, Theorem 2.6.)

At

Theorem 1: T: [0,@)*“{1 can be written as T(t)=<c,e b
if agd only if T is an entire function such that if

o0

T(E) = ] et
n=0
n!cn L 2
then { 5 } £ 2°(2%) for some positive finite k.
k= n=0
Proof: The necessity follows from the above. For the
sufficiency take
0
1 0
aev[0 3 1
0.

c = {co’ E_

Using now Laplace-transform in the complex domain
we pass from the equation T(t)-<c,eAtb> to the equation
T(s)-<c,(Is-A)'1b>, for Re s > ![A[]. Moreover T(s)
is analytic in Re s > {|A]||. Since A is bounded using
an elementary analytic continuation argument we see
that T(s) is analytic for |s| 3 ||A]l ang also,that
T(x) = 0. Hence T(s) =<c,b>s +<c,Ab>s “4<c,A b>s~3+...
for |s| > ||All. For any k > ||A|] then we have as
before that the sequence <c,A1b>/ki is square summable,

Theorem 2: The function 'I‘(t)-[O,"")HRl can be written
as <c,ertb> {f and only if the Laplace transform T(s)

of T(t) 1is analvtic outside a disk of finite radius k

and vanishes at infinity, such that if

T(s) = ef ls] > x
1=0

ais-(i+1) for

a,|
L)
k

then €2, (zh).
i=0 :
Proof: The necessity follows clearly from the above.

For the sufficiency take again

n
1
A=k |0

D= D
D= D
v

b= {1,0,...}

c = {ao,al/k,az/kz,...}

It 1s clear from the above that the singularities of
T(s) must be contained in a disk of finite radius. More~
over since T(s) is analytic at infinity all the branch
cuts should be considered in the finite plane. An in-
teresting question is how small k can be taken? It
follows from a theorem in Widder's, "Laplace transform"
that if 9, is the exponential order (or type) of the
entire function T(t) then T(s) will be analytic for

Is| > 0 and will vanish at infinity, and conversely.
Hence w8 have {mmediately that the k in Theorems 1 and
2 must satisfy always k > Oy

Corollarvy 2.1: A function T(t):io,@)*ml'can be written
as <c,eAtb> 1f and only if T(s)c&&(ﬁ)p) for some positive
finite p.

The triplet (A,b,c) 1s called as usual a realization
for the weighting pattern T(r,0)=aT(t-0)=T(t) iff
T(t)=<c,eAtb>, The system-theoretic interpretation of
this equation in terms of "external' and "internal" des-
criptions of time-invariant linear systems with scalar
input, scalar output is considered here to be well-
known. The fact that we are using £2(:l+) as our state-
space is not very restrictive, since any separable
Hilbert space is isometrically isomorphic to 12(7L+).
The correspondence between 12(:z+) and HZ(T’) has another
merit. Namely the shift acting on 22(2%) corresponds
to multiplication by s in HZ(T).

It is apparent from the above that if T(t) has any
realization, then it can be realized by a multiple of
the unilateral shift in Rz(i!+) or. by a multiple of the
bilateral shift in £5(Z). To see the latter take

3 n!c“
b ={.,0,1,0,0,...}, ¢ ={..0,c, T —E— .
and
‘0
0.1 n
A=%K"'0 1 0,
0 1.° .
0

(the c,'s as in Theorem 1). This is not surprising in
view og the fact that the shift can be considered as a
"universal model" for bounded operators in Hilbert
spaces (c.f. [9]).

3. Realizabilitv Criteria, General Case

In this section we describe the functions T(t) which
can be written as c[eAtb], where eAt denotes a strongly
continuous semigroup of bounded operators on L3(z %)
with infinitesimal generator A, be DA lcOal< kil Axi+ i xlt)
for xe DA.By the Hille-Yosida Theorem [18]) a necessary
and sufficlent condition that a closed linear operator
A with domain D, (A) dense, be the infinitesimal generat-
or of a strongly continuous semigroup, is that there
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exist real numbers M and 8 such that for every real
A > B, A is in the resolvent set of A and

[](IX-A)-nll < ?ngjﬁ (n=1,2,...). If these conditions
hold for all X > B then (Is—A)"1 exists for all complex

¢ with Re 8 > B and 1s given bv (Is—A)-lx-fme-scS(t)x de,

0
for all xet,(Z1), || (1s-0)"|| ¢ ¥/ (Re 5-8)" for

Re s > B, and |]s(e)]] < MelE.

Theorem 3: A necessarv condition for T(t) to have a

balanced realization is to be continuous and of exn,

order. A sufficient condition is that T(t) exist and
be of exp. order.

Proof: (Necessity) Let T(t)-c[eAtb]. Then by the
definition of a balapced realization beDy(A) and
I’r(t)lsk(lAaAthﬂ f,&.Since eAt 15 strongly continuous
this proves continuity. By the Hille-Yosida Theorem
Ity <k Meﬁt('Ab {Sufficiency) Let T(t) be as
in hypothesis.
Hlence the function e ®tT(t) is in L»{0,®), its deriv-
ative exists and is in Lp{0,®). We will use the fact
that the Laguerre functions satisfv the recurrence
relation:

H 1
q)k= -i wk~wk’1-wk-2' . .‘wo H ‘bn(o) =1
Consider the one parameter semigroun defined by:

P (£) 9i(e)-0 () §y(e)-v,(t) ...

Sit)= 0 Yo () POy (1) ...
n 0 ¢°(t) ves
0 0 0

e o o q ® *+ v = & & . . eae

This clearly satisfies S(t)S(x)=S(t+x) for t, T 3 N

and is the identity at zero. We see from the above
recurrence relation that

-1/2 -1 -1 I

Sy o 0 2 41 1 g
0 0 -1/2 -1 ...
0 0 0 -1/2 -

‘Call the matrix appearing here A . If x is an % zhH
vector whose entries are the Laguerre coefficients of a
function in L5[0,*), whose derivative is also in
tho,w), then from the above recurrence relation we

see that A x is the vector of Laguerre coefficients for
the derivative. Thus A, is the differentiation opera-
tor and from [18) we know it is a closed operator with
domain dense as described above, that it generates the
semigroup of translations and that G(Ao)={s;Re s€0}.
Now to complete the proof, we let ¢ be the vector
(1,1,1,... , and b be the vector of Lapuerre coeffi-
clents of e™®tT(t). For A we take A,+¢l, €he oI
accounts for the multiplication by eS%.

Theorem 4: A necessarv condition for T(s) to have a
balanced realization is to belong in Hz(H;)nHm(H;) for
some p > 0, A suﬁjicient condition is that
T(s)er2(INy) and (sT(s)~T(0))eR?(lly) for some p > 0.

Proof: This is an immediate consequence of Theorem 3,

of the Paley-Wiener Theorem [7] and the Hille-Yosida
Theorem,

Examnle: The delaved step whose transform is e /s 1s
not realizable whereas the delaved ramn e S/s2 is
realizable.

Remark: let T(t) be continuous and of exnonential
Ofggr let b be the vector of Laguerre coefficients of
€ T(t), where 0 is large enough. Let Y be the vector

Then for large enough o, e0tT(t)elL, [02)

A

of Lapuerre coefficients of 2.2 = hA(T). Then

b A2+12
by Theorem 9.9 in [19] we have -
- t -
e c’t'l‘(t)'-lim <cy.e b -
A0

mim [ e Dy (1) ar
a0 Jo A

Hence T(t) = lim <cx,eAtb>, where A=0I+A,.
A+0
can be written as the pointwise limit of a one para-
meter familv of regular realizations.
4., Canonical Realizations

Hence T(t)

In the rest of this paper we will restrict our study
to weighting patterns T(t) with bounded regular real-
{zation. Moreover we assume that T(t) satisfies the
realizability criteria for k = 1 or equivalently can be
realized with A such that |lA]| ¢ 1. This does not
harm the generalitv of the discussion, since using the
corollary of Theorem 2 we can reduce the general case
where 04 € k (g_ being the exp. order of T(t)), by a
simple change o? variable, to the above case. Indeed

~ *® a -—
1f we define T, (s) = ] L (1+1)-kT(ks)-£ (1)1,

k 1=0 ki k
where 5$ denotes Laplace transform, then corollary 2.1
says that, T(t) can be written as <e,eAtb> if and only
£ Ty (1/s) € H2(D).

It is obvious that if a weighting pattern has one
realization it has manv. An element ¢ of a separable
Hilbert space f§ is called a cvelic vector for a
bounded operator A 1f and only if the linear span of
¢,A¢,A2¢,A3¢,... {s dense inH . One calls a realization
(A,b,c) canonical whenever b is a cyclic vector for A,
and ¢ is a cyclic vector for A*, However we askew the
term "minimal" because many of the implications of this
term are absent in the present setting. (Some authors
prefer to call such a realization 'controllable and
observable" or 'E-~controllable and £ -observable™ or
"weakly controllable.”) If a weighting pattern T(t)
has a finite dimensional realization, 1t has one with
minimal dimension of the state space, which is called
minimal. As is well known (see [2], pages 105-115) a
finite dimensional system is minimal if and only if it
is controllable and observable (canonical). Moreover
any two minimal realizations differ by a charge of
basis in the state space and the spectral properties of
A in any minimal realization are uniquely determined by
the weighting pattern. Here the situation is much more
complicated. It happens that a canonical realization
is much more looselv specified by the weighting pattern.

We start with a construction of a canonical realiza-
tion starting from a given one.

Theorem 5: Let T(t) = <c,eAtb>. Let M be the closed
linear span of ¢, A*c, A*2c,... in K (a sep. Hilbert
space.) Let Py be the orthogonal nrojection on M.
PWAP‘(:
Then (i) T(t) = <c,e = =~ P ,b>. Let now N be the
closed linear snan of wa,...,(PMAPM)iPMb,... in M and

let Py be the orthogonal projection on N.
(PNAPN)t
Then (i1) T(¢t) -<PNc,e -
N is the closed linear span of PHb,...,(P"APN)iPMb...
and the closed linear span of PNC""(PNAPN)*‘PKC

wa). Moreover

It is obvious that M is the smallest closed sub-
space of #H which contains ¢ and is invariant under A".
Hence M+ 1s invariant under A, Hence A(I—PM)erJ]

¥Vx EH . So PMA(I-PM)x =0, ¥xeH . Pence

PMA - PMAPM

Using (1) we get (PMAPM)iPMb - PMAib.

Proof:

(¢}
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PrAPyt At

PMb> - <c,PHe b> = <c,eAtb> =T (t)

and this proves (i). Similarly N is the smallest
closed subspace of M which contains Puyb and is invar-
fant under PMAPM. Then for every x ¢ H

(I-PN)PMAPMPNX =0

Hence <c,e

So
PNAPN - PNPMAPMPN - PMAPMPN - PMAPN (2)
Using (1), (2) we obtain
e ap e b = b ale bo(paRY b 3)
MA M M M M TTHENRNT M

and this proves (ii) similarly as above.

The first assertion in the last statement is proved
by (3). The second is an easy consequence of (2) and
of the cvelicity of ¢ for A*,

Here, as we assumed in the beginning of this part,
if T(t) is realizable it can be realized bv the shift
(unilateral or bilateral). Some important questions
which arise naturally are the following. It {is
obvious that the realization given by Theorem 1 and 2
is controllable. Also we know that the spectrum of
the unilateral shift is |[D. Civen a weighting pattern
T(t), how simple can the spectrum of the infinitesimal
generator A of a realization be? How small can the
spectrum be? If we take a canonical realization
(A,b,c) 1is the spectrum of A uniquelv determined by
T(t)’ How are all canonical realizations of a piven
T(t) related to each other? When can we make the re-
solvent set of the infinitesimal generator A connected?

An immediate observation, which gives however some
indication of the interplay of the notions described
in these questions is the following: We can realize
any such T(t) by the bilateral shift. Such a realiza-
tion is obviously non-canonical. On the other hand
since the spectrum of the bilateral shift is just'T ,
the spectrum can he considered as 'simple." Wowever
the resolvent set is not connected; a nropertv which
has very important implications as far as the relation-
ship to frequency response methods for svstem identi-
fication 1is concerned.

1f we let o(T(s))={s e€IT(s) is not analvtic at s}.
We see immediately from the equation T(s)=<c, (Is-A)~ Ip>
that for any realization (A,b,c) of T(t) we must have:
a(T(s))  gA)

This relation will be called in the sequel the
"spectral inclusion property."

Given a weighting pattern T(t) we have the "shift
realization" as described in Theorems 1 and 2

E% x(t) = Ux(t) + bu(t)
y(t) = <c,x(t)>
where x(t) € £ (Zl Y for all t, b= f1,0n ...} U 1is
the unilateral shift and ¢ = fT(ﬂ) T(l)(”) L)y, )

Here b 1s obviously a cvelic vector for U, It is
immediatelv seen as a consequence of Theorem 5, that

if we let M be the closed linear span of ¢,U c,...,U*ic,

es. and Pi the nrojection on M, then (P U M b ¢) is

a canonical realization of T(t), with state space M
We can write the "shift realization" in terms of P2(T)
functions as follows:

E% x(t,s) = sx(t,s) + u(t)

y(t) = f sT(s)x(t,s)du(s)
tril
where x(-,s) ¢ Hz(ﬁr). (Compare with [17] where

N e —— o . — S

similar equations are used.) Under the isomorphism
between 9, (Z2*) and Hz(‘ﬁ")) ¢ corresponds to
l T(~) which equals with sT(s) on'T (since T(s) has

real Taylor coefficients).

We need a few well-known facts from the theory of
12 functions and Toeplitz overators. The reader 1is
referred to, [7% [8), and [1Nn) for further detalls.
A function feM2(T) is called inner if [f(s)| = 1
a.e. A function feB2(F) 1is called outer if it is a
cvelic vector for the shift in H2('P). (i.e. the linear
sran of the functions f, sf, szf,... is dense in H2(T).
A Blaschke product is a function of the form

A a,-s a

k
B(s) s T 1 — TE}T

=1 1—;55
where k is nonnepative integer and the a, are complex
numbers (not necessarilv distinct) such éhat 0<|aj|<1,

) (1-|a1[) < o,
j=1 :

the form

A singular function is a function of

16
S(g) = exp(-J e e+s
e

du(8))
-8

where ¥ 1s any positive finite measure on [0,2n] which
is singular with respect to the normalized Lebesque
measure. Everv f € HZ('") has a factorization f=t.h
where ¢ is inner and h is outer., The factors are unique
up to constant factors of modulus one, B is a Blachke
nroduct, and S is a singular function. An inner
function 1s normalized if we choose ¢ = 1, or equival-
entlv if we require the first non-zero Taylor
coefficient to be real and positive. Beurling showed
that to every closed subspace M of Hz(ﬂﬂ) which s
invariant under the shift (i.e. under multiplication
bv s) there corresponds a unigue normalized inner
function @ such that M =@ H2(T) and conversely. We
have also the corresponding facts for Hz(ﬂ)).

A Laurent operator on 29(2) has a matrix representat-
ive which is constant on diagonals (i.e. agy = ai—j)
&

and corresponds to multiplication by ¢(s)= Z ais1
{m—oo
2
on L (1r) (where a = ui+k k) A Toeplitz operator A,

on £ (Z ) has a similar matrix representative (which

is infinite in one only direction) and if P: L (q‘)+n T)
is the associated projection; ¥ f € H2(T')we have

Af = P(d-f) .

The onlv way the '"shift realization" can be canonical
is 1f ¢ s a cvclic vector for U*, (i.e. for the back~-
ward shift) or equivalentlv 1f T(l/s)/s is a cyclic
vector for the backward shift on HZ(“T) (See also
Fuhrmann Theorem 2.6). In [S] the authors studied
cvclic vectors of the backward shift very extensively.
Ve are going to use some of their results and we refer
to [5) for further details. There exist many cyclic
vectors for the backward shift on HZ(T"), as well as
non-cvclic ones. The rational functions are non-cyclic.
The authors give several ways of constructing cyclic
vectors. Anv HZ function with isolated branch points
on'T" is a cvclic vector and also anv function with
lacunary Tavlor series and square summable Tavlor co-
efficients is also a cveclic vector. Since f(s)eHz(ﬂP)
is a cvclic vector for the backward shift if and only if
sf(s) is one, we have two cases to consider. Namely
the case when T(1l/s) is a cvelic vector for the back~
wvard shift and the case when T(1/s) is non-cyvclic.
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We would like to close this part with some important
remarks about the cyclic and non-cvclic case. Let Q
be the subset of the realizable transfer functions,
for elements of which the set of reals k, such that
T(k/s) 1s in H2(D) 1is open. Let G be the complement
of Q in the set of realizable functions, Theorem 2.2.4
in [5) reads as follows: "If f is holomorphic in
Is] < R for some R > 1, then f is either cvclic or a
rational function." Since k > O, for elements of Q,
an irmediate consequence of the above theorem is that
the elements of Q are either cvclic or rational

functions. Then in 6 we have either cveclic or non-
eyclic but not rational functions. So we have the
nicture
Q
rational
functions
ey
fung

Also from £S] we have that the set of cyclic vectors
is dense in H-(#) as is the set of non-cvelic vectors.
However the set of non-cyclic vectors is a set of the
first category, whereas the set of cvclic vectors is
not. Hence the non-cveclic vectors are somehow much

more rare than the cvclic ones. Moreover an element

of H2('") is non-cvclic if and only if there exist a
sequence of rational functions (satisfying special
conditions see {5] Theorem 4.1.1) which converges to it
in the L2(qr) norm., A fact which indicates that the
non-cyclic case is very much like the rational functions
whereas the cyclic situation is new, harder, and
potentially more interesting.

5. The Non-Cvclic Case

Now we consider the case where T(1/s) is not a eyeclic
vector for the backward shift., This case is treated
by Fuhrmann [13] in detail, however there are some
additional facts given here about the spectrum of A.

To proceed we need the following theorem from [S]),
p. 56.

Theorem 6 ({51): f(s)€H2(qP) is non-cyvclic if and only
if there exists g(s)eH2(T") and an inner function ¢ such

that f(eie)-e ieg(eie)cb(eie) a.e. on'nw. Moreover if
we require that ¢ be normalized and relativelv prime

to the inner factor of g, then ¢ and g are uniquely
determined. 1In this case the closed subspace generated
by URf, n=0,...® is precisely (¢HZ(T))+

The normalized inner function ¢ thus uniquely
associated with each non-cvclic (for the backward shift)
vector f is called the "associated inner function" of f.

Ve see immediately that the subspace M of €2(2.+)
vhich is the state space for the canonical realization
(P“UPM,PHb,c) derived from the '"shift realization"

corresponds_to the closed subspace of HZ(T") grenerated by

*n 11
{v™n T} which we call also M.

8 'nzp Hence applying

N —_—
Theorem 6 we get that M=(¢H2(T'))" where ¢(eie)g(eie)'

e 0, ~{H -

T(e ")=T(e" ") a.e. on I (since T(eie) has real
Fourier coefficients), and ¢ and g are uniquely deter-
wined by Theorem 6.

Ve need another theorem now from [é3.
Theoren 7 ({s!): Let K = ¢HZ('P) (i.e. K 1is a closed
SUbSche of*H (T") invariant under the shift U). Let
M=(6H<(T))". Then the spectrum of U restricted on M

is the set S¢ which consists of
(1) all the points in € with [A|<1, where $(})=0

(i1) all the points inC with !X]=1, where &(s)
is not continuahle analyticallv across the boundary’
of © at A.

Using theorems 6, 7 we see that the spectrum of the
infinitesimal generator of the canonical realization
(PMUPM,VMh,c) is uniquely determined by T(t). Namely

the spectrum consists of the zeros of ¢ in “), which
coincide with the zeros of the Blaschke product part

of ¢, and the points of 4 throuph which ¢ is not con-
tinuable analvticallv outside the unit circle, which
coincide with the union of the support of the measure on
T which is associated with the Eipgular part of 9 and
the set of points of ' which are accumulation noints

of the sequence of zeros of ¢. (See [7) p. £8-69)

When %(s) has a meromorphic continuation inD ,
it is easy to prove (using corollarjes 3.1.8 and 3.1.19
p. 58-59 of [5]), that s¢ = g(T(s)).

So in this case we arrive at the conclusion that:
o(T(s)) = 0(PyUP)
Ve have thus proved the following:

Theorem 8&: Let T(t) be a given weighting nattern which
5atisfies Theorem 1 (or Theorem 2) (with k=1) such that
T(1/s) is not a cvclic vector for the backward shift

on HZ(TT). Then there exist a canonical realization of
T(t) with the spectrum of the infinitesimal generator
of the realization being exactly sy, whered is the
associated inner factor for e~18T(el®). 1If (U,b,e) is
the "shift realization" for T(t) and M is the subsvace
of 12(12+) defined in Theorem 5, the above realization

is (PHUP ,PMb,c). Moreover if T(s) has a meromorohic

continuation in [} this spectrum is just c(f(s)).

We see that in the above case the "spectral inclusion
property' becomes in fact an equality, i.e. the spectrum
of the infinitesimal generator of the realization des-
cribed in Theorem 6 is "minimal."” This motivates the
following definition:

Definition: A canonical realization (A,b,c) of a
weighting nattern T(t) is called S-minimal (S from
spectrun) 1if o(A) = 0(T(s)) (multiplicities counted
vhenever nossible).

These considerations lead us to a trivial corollary
of Theorem 8:

Corollary 8.1: Any T(t) which has the "shift realizat-
ion" and is such that T(1/s) is not a cyclic vector of
the backward shift on H2(T), and T(s) has a meromorphic
continuation in ) has an S-minimal realization, with A
having a connected resolvent set.

We do not have a complete picture for the relation
between canonical (resp. S-minimal) realizations of the
same weighting pattern T(t), in this case. However a
partial analysis indicates that the non-cvclic case is
verv similar to the rational case.

6. The Cvelic-Case

The cyclic case, is very interesting since it reflects
a number of physically interesting phenomena; e.g. trans-—
fer functions with branch points and branch cuts. Trans-
fer functions like these arise in systems governed by
partial differential equations; hence an understanding
of the cyclic case should undoubtedly shed some light
towards the realization problem for distributed systems,

This case is more difficult, since the associated
inner factor of T(s) which proves so crucial in the
noncvelic case is now trivial. That 1is, the shift
realization for cvclic transfer functions is already
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canonical. However the spectrum of this realization
is far from being equal to o(T(s)), unless we have

a pathological transfer function with branch points on
a dense subset of M. Hence canonical hy no means
implies $-minimal. (Again compare with Fuhrmann [13)
Corollarv 2.7 who observes the nonuniqueness of the
spectrum.)

It is apparent from the snectral inclusion proverty
that all the points on the branch cuts (i{f the transfer
function has branch points) are included in the spec-
trum of anv infinitesimal generator A which realizes
the transfer function. Moreover the branch cuts are
not uniquelv defined. Hence the spectrum of T(s) is
not uniquelv determined and consequentlv there is not
a unicue "minimal spectrum’ for the infinitessimal
pgenerators of the realizations. A reasonable expectat-
ion is that the spectrum of an S-minimal realization
(provided it exists) will be unique if there are no
branch points, and otherwise will be unique modulo the
branch cuts.

We conclude this part with an examnle of a realizat-
ion for the Bessel functipn of zeroth otder‘ﬂo(t) which
achieves the spectrum off)o(s) exactlv. It is easv to

m 2m
Cl) /2 satisfies our

o
verify that{]o(t) - Z poy
1

m=0N
realizability criteria. Uo(s) =

has branch

~ VsTF1

points atiiq hence,g;(s) is a cveliec vector., We must
take the branch cut in the finite plane. We are

after a realization whose infinitesimal generator has
spectrum exactly the line between 1 and -i. Recalling
that (1/2s-1/s)t is a generating function for the
Bessel functions of integral order, i.e. that

él/Z)(s—lls)t -7 n(t)sn

n-—oo
and using Laurent operators we see that for
s S
1 L0 -1
A =5 ‘1 0 -1,
0 1 0,
L4 L4 -‘

C_flm \7.2(*') o

I AGIVANCREY
e o Tt Jio Joo o yo o

L 4
L * ¢ N
Hence the above A along with b=c={...00 100 ...}
pive a realization for O@(t), in 22(11). That the
snectrun of A 1s exactly [i,-1] 1is a well known fact
from [10].

wJo e
v - 31(C)

Aol

We note also that the same trick will work for

T (t), vhere 5 (s) 1 (-——1-——- )]n

n , p(8I—= provided we
5241 s+v/5%+1

keep A, b as above and take c={...00100.,.}, with the

1 in the nth place.
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