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Abstract
We study the relations between infinite dimensional realization theory,and the

synthesis of networks using lumpted and distributed elements.

In particular

we indicate how results from operator theory and especially the theory of
invariant subspaces in HP spaces can be applied to both these problems. We
discuss synthesis by reactance extraction and cascade synthesis,

1. INTRODUCTION

The interelations between system theory and
network theory are more than apparent. The
interactions between the two disciplines have
produced many results of important theoretical
and practical value. One of the major problems
in network theory is that of synthesis. The so
called state space theoryoflinear finite dimension- .
al systems proved to be a very effective tool in
solving the synthesis problem for a network with
lumped components. Especially the realization
theory of Kalman [1], has been used repeatedly
to produce elegant synthesis procedures. For an
excellent exposition of these methods see the
recent books by Anderson-Vongpanitlerd [2] and
Saeks [3].

Due to dévelopments in integrated circuit
technology and microwave circuits, the synthesis
and design of networks with distributed and
lumped elements is currently attracting the
research efforts of many network theorists, see
Youla [4]. The goal here is to develop precise
synthesis procedures for nonrational impedance
or scattering matrices.

On the other hand due to the limitations of the
classical (to date) linear finite dimensional the-
ory, system theoristsstudy intensively distributed
parameter systems, of which there is an abun-
dance in practical problems. Recently there has
been considerable success in developing a real-
ization (modeling) theory for distributed para-
meter systems using fairly recent results from
operator theory and invariant subspace theory.
The interested reader should see Baras and
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Brockett [ 5], Baras [6], Fuhrmann (7, 8],
Helton [9]. ,

Since lumped-distributed networks are distri-
buted parametersystems, the question naturally
arises, to whether or not there is a link between
infinite dimensional realization theory and lumped-
distributed network synthesis. This is the major
theme of this paper. In addition we investigate the
effectiveness and relevance of certain results from
the Nagy-Foias operator theory [10], and from the
theory of Hardy spaces of functions [11], with re-
spect to lumped-distributed network synthesis. It
turns out that these mathematical tools are par-
ticularly suited for studying both the infinite
dimensional realization problem and the network
synthesis problem. :
in contrast with the common multivariable approach
to distributed networks. )

The organization of the paper is as follows.
In section 2 we summarize the recent results in
infinite dimensional realization theory and discuss

" their relevance to distributed network systhesis,

In section 3 we show how a lumped-distributed
network synthesis problem is equivalent to an infinite
dimensional realization problem, providing thus a
link between these two areas. We also discuss
possible extensions and indicate how similar meth-
ods can be developed for other cases as well.
Finally in section 4 we study cascade synthesis and
demonstrate the effectiveness of the mathematical
methods mentioned above in the investigation of

the problems we consider,

I would like to thank Prof. R. W, Newcomb for
his friendly encouragement and several stimulating
discussions,

Our methods are single variable,



2. RECENT RESULTS IN INFINITE
DIMENSIONAL REALIZATION THEORY

Many distributed effects can be very effect-
ively described by linear partial differential
equations, where the solution belongs to some
Hilbert space. The Hilbert space is usually in-
duced by some kind of energy inner-product. Thus
quite naturally one is lead to investigate systems
with dynamical equations of the form

:T x(t) = Ax(t) +Bu(t) 1)
y(t) = Cx(t)

where u(t) €U, y(t) €Y and x(t) € X, all being
Hilbert spaces. Here

B: U= X and bounded
C: XY and bounded
A XX

are linear operators and A generates a strongly
continuous semigroup of bounded operators on X
[5). Incases of distributed parameter systems
- with boundary observations one considers a
dynamical model of the form [ 12]:

;T x(t) = A x(t)
B%(t) = u(t)

y(t) = Cx{t)
where everything is as before but now B * XU
and B,C may be unbounded. This class is of
particular interst to us since distributed networks
give rise to this kind of dynamical equations,

For many interesting systems which are
described by models like (2), we can produce
equivalent models like {1). -For more details on
that see [12]. We denote by efit the semigroup
generated by A, and then the input-output relation
of the system (1) is given via the convolution '

y=T*u ' (3)
where T(t) = CeBt B is the weighting pattern.

The realization problem consists of finding a
Hilbert space X and operators A, B,C, so that (3)
holds, where T(t) is a given function. Of course
T completely characterizes the input-output
behaviour of the system. To simplify the discus-
sion we consider here scalar inputs and scalar
outputs only. The results have been extended to
finite dimensional inputs and outputs in rl3]. The
triple (A, B,C) is a realization of T. The transfer
function (the Laplace transform of T) is denoted
by T and we have

T(s) = C(1s- &)"'B (4)

for complex s in some right half plane. For
details on these see [6], To characterize the
transfer functions which admit such realizations,
and construct realizations with additional proper=-
ties based on engineering requirements,we use
heavily the theory of invariant subspaces [14,15]
and properties of the Hardy spaces [11],

(2)

If we denote by T+ the right half plane Res> 0,
then H® (") is the space of all functions analytic
and bounded in ™+, The space I—IZ(TT+) consists of the
Laplace tranforms of functions in 1.5(0,%®), These
are also analytic in ¥, Usually we will write H®
and H2, Functions in these spaces have nontan-
gential limits as Res- 0 almost everywhere on the
imaginary axis, and we denote also by H®and H?2
the spaces of boundary values (which space we refer
to will be clear from the context). The space u2
of boundary values is the Fourier transform of
L2(0,°°). Without loss of generality (see [5]) we
restrict the discussion in this section to weighting
patterns that are elements of Lo{0,=).

. Theorem 1: Let T be continuous and in L,(0,=)
If T (iw) = F) (iw) F,(iw) where Fy, F5 are in HZ,
then T is realizable,

For a proof of this theorem and more details
see [5]). These sufficient conditions for realiz-
ability include a large class of weighting patterns.
The realization which we construct uses the
Hilbert space L,(0,=) and the semigroup of left
translations on that space. However we are not
only interested in providing just any model for a
system, but mainly to construct models that reflect
in the best possible way the natural properties of
the system that are inherent in the description (or
performance specifications) given to us through the
weighting pattern T. In finite dimensional linear
systems this is accomplished by constructing min-
imal realizations, which have been proven to in-
herit the maximum amount of information about
the system, that can be inferred from T.Ininfinite
dimensional systems such a concept is not available
in general, Nevertheless engineering considerations
permit us to single out a class of transfer functions,
for which a complete realization theory can be
developed. We outline here the major results that
are relevant to network theory and we refer to {5,
6,7,8,9]and the references there for the complete
expositions. :

The basic observation is that many practical
problems and especially distributed networks will
give us transfer functions which are mero morphic.
For this type of systems a model like (1) where .
the resolvent set of the operator A is not connected
is not natural. It follows then from (4) that the
singularities of T are part of the spectrum of A in
any realization. We thus arrive at the concept of
an S-minimal realization {spectrally minimal) in-
troduced in [5]. Definition: A realization (A, B, C)
is S-minimal if the singularities of T concide with
the spectrum of A, multiplicities counted.

To proceed then we reduce the realization con-
structed in theorem 1 to obtain a controllable and
observable realization. This is the restricted
translation realization. Weighting patterns which

have the property that their left translations span
L>(0,*) are termed cyclic. Those which do not
have this property are noncyclic. For cyclic



weighting patterns we can not obtain S-minimal
realizations by reducing the translation realization.
¥or noncyclic we can (sce [6]).

Theorem 2: Every noncyclic realizable
weighting pattern has an S-minimal realization.

Noncyclicity is equivalent to the transfer
function T (which is analytic in ) being the
boundary value of a function which is mero morphic
in the left half plane and the ratio of two bounded
functions there. For transfer functions of many
networks this is satisfied (see (4] where mero
morphic functions of bounded type are shown to
correspond to fairly general lumped-distributed
networks). n

To proceed further,any noncyclic T
can be written as T (iw) = H(iw) ¢(iw) where HE H2
and ¢ is inner (that is [ $(s)|S1 in Res>0, |g¢(iw)|
= 1 and ¢ is analytic in Tt; for more on these
functions see section 4). _Then T(i®) is the bound-
ary value of the function-H(-53) __ which is mero-

' $(-3)
rmorphic in Res < 0 and of bounded type. Moreover
if T is meromorphic then it is equal to this function
for Res< 0. Clearly ¢ displays the singularities
>f T and these are the points where ¢(-3) = 0 and
the points on the imaginary axis where ¢ cannot be
continued through. It turns out that these points
exactly with the same multiplicity constitute the
spectrum of A in the restricted translation real-
ization of T. Notice the similarity with rational
functions.

Finally by strengthening either the controll-
ability or observability notions one obtains a state
space isomorphis m theorem between two exactly
controllable (exactly observable) and observable
{controllable) realizations of T, see Helton CE
A consequence of this is that all such realizations
of a noncyclic transfer function are S-minimal,
and they differ from the restricted translation
realization by a similarity. Certain considerations
for the class of systems we studied here, similar
to the invariant factors analysis of a rational trans-
fer function have been developed in [13,16]. It
would be interesting to investigate if the analysis
can lead to an extension of the notion of the degree
of a rational transfer function.

3. SYNTHESIS VIA
REACTANCE EXTRACTION

In this section we consider the problem of
synthesizing a lumped distributed network via
reactance extraction [2,3]. Although this method

" does not lead to easily implementable constructions
it has theoretical importance and provides the link
with realization theory. Again we make the
simplifying assumption that we want to synthesize
a nonrational scalar impedance Z(s). The elements
we are allowed to use are resistors, gyrators,
transformers, inductors, capacitors, and loss less
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transmission lines which are short circuited or
open circuited. We assume that the network is
regular, that is we can extract reactances and be
left with an interconnecting wiring network., The
approach is depicted in the figure below

— L 7, capacitors
nondynemic
—1

g
vit

O e

% n, inductors

™
A ™

connect Cna

network

Fig. 1 Reactance Extraction
Leti,,v,i ,v_,i_,v_,i, ,v,6 denote the vector
currents and voltages at the ports to be loaded with
capacitors, inductors, open circuited lossless
transmission lines and short circuited lossl ess
transmission lines respectively. LetC,, i= 1,
***n, be the capacitors, Li' i=1...n)be the
inductors, -Li' 4 di' i=1, «- "nztny the specific
inductances, capacitances and lengths of the trans-
mission lines of the network. We assume (with
no loss of generality) that the connecting network
is described by the hybrid matrix

- -

Moy Mgz Mgz Moy | | v
Mg My My, My Mty
valfiMz0 M, My My My, | iy} (5)
i3] [M3g M3, M3, Mgy Mg, | fvs
| V4 [Mao Mg Mgy My My, Li‘*_

Assumptions on the nature of the interconnecting
network induce properties on the matrix M. It is
then straightforward to show that Z(s) must neces-
sarily have the form of a ratio of exponential poly-
pomials, see [4] [17]. After appropriate space
variable normalizations we can describe the trans-
mission lines by:
a) open circuit lines (capacitive behaviour)

aV3i(t, z) al3i(t, z)

——— . e b ——me (6)
oz 171 ot

-} I3i(t, z) s ° V3i(t, z)
dz R A 3t

with the boundary conditions
Iy, 1) = Q o Ig,(t,0) = ~ig(t), VSi(t’ 0) = vy, (t) (7).

b) short circuit lines (inductive behaviour).
Same equation as before, changing the subscripts
from 3 to 4. The boundary conditions become

V4i(t, 1)=0, V4i(t.0)= th)' Idt. 0)= -i44t) (8)



On the other hand the lumped elements give us the
constraints

dV \ dl
- 1 - _2
h1°5-Cq ¢ vt L g ' (9

where C = diag (Cl' .Cﬂ), L = diag (Ll'" L )

n2
Equations (6) and the corresponding for I,, V
constitute a system of hyperbolic partial differen-
tial equations with boundary conditions (5) (7) (8)
{9) (all data are assumed C! ).

We will use a method similar to that emp-
loyed initially by Brayton [18] to develop a
completely equivalent differential-difference
dynamical model for the network. To simplify
matters and best illustrate the idea let us assume
that n, = n_ = 1. The general case proceeds

similarly but one has to be carefull with the indices.

Solutions of (6) have the form
Viit2)= 3o (22 )+¢ (z+—)J

(10)

I(tZ)———[¢(z —)-¢(z+—)] '

where r

= /Li/c. and 'ri= Zdi/Jlici, i=3,4 are

i
the characteristic impedancesand delay times of
the lines. It is then straight forward to use the
boundary conditions (7) and {8) to establish that

v (t) (¢3o(t)+¢30(t-'!‘ )) v (t)“—(¢40(t) ¢40(t -7,

P07 (=m0 (@) £ A 07500 =T )

+40(t)) (11)
2t . _

ROE ¢i(-;i—),1- 3,4.

Using the relations between between i3. v3, i4, v

provided by the last two rows of (5) and sub-

stituting (11) we get

where ¢i

1ot 4 A1 ;
2 [r’ My B M [0 1 2115 Ot
- 1 - -
M43 +r4M ¢W(t) M, 0 ¢4°(t )
3 ] t-T M MM |V
1 0 l;}MM 43::( 4) _ | % 3 32|t
Y2 0 -l+iM (t’T)-N V+MM i,| 12)
T el ¢4.o 4 30 o427

The first line of (5) gives us using (11)
¢ (t)
+2IM ’J[ WNE

03 94 4 ¢“(t)

1 E

+—-[M 0] 9.t=) +5[0-3M°+] 4, E=1) (13)
¢ (t %) ¢i°(t-"'4)

While (9) (12) and the second and third lines of (5)

give wus the following differential difference
equation of neutral type:

p

i=M v+[M M J[

'y

-
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4
v, (t -
AL I c o_1 v, (t)
4 |i,(t) wor 1= e o -Liffi ()
dt ZD [Ia(t T)} Ngll\%z
M M
03¢ LM
+% [N%M'% ¢ (t)+ ¢ (t- Ta + Molv] + 0 v
- M 0
M g o 2
Mo
M |14
40
The D_ represent the matrices on the £-h-s-of (12).

We can eliminate the derivative of the control by
changing the state variable (see [2] p- 196). Then
(13) and (14) constitute a realization of the transfer
function Z by a neutral differential difference
dynamical system. They are also a state space
description of the network. Of course the system
is infinite dimensional due to the delays. That

we ended up with a neutral equation is no accident,
It is due to the fact that we started with a hyperbolic
partial differential equation. If instead we had
lossy RC lines we would have obtained a differential
difference equation of retarted type. Equation {14)
can be put in the form of (1), (see [19] ) the dif-
ference being that the standard description and
study of these equations are in Banach spaces,

not Hilbert spaces. It is easy to see that the .
transfer function of a system like (13) (14) will be

a ratio of exponential polynomials. Solutions to

the synthesis problem provide a solution to the
problem of realization of differential difference
systems of the neutral type. Notice that these
realization problems are not covered by our theory
in section 2, basically due to the continuity require=-
ments for the weighting patterns there. Conversely
solution to the realization problem for the delay
system may provide a solution to the synthesis
problem. This will involve determination of the
matrix M from the matrices of the delay realiza-
tion and then synthesis of the nondynamical net-
work hybrid matrix M by standard techniques [2],
and loading of the parts with reactances. We have
not completed as yet this side of the problem.
These questions are under investigation.

4. CASCADE SYNTHESIS

. From the practical point of view a cascade
synthesis is very desirable and provides easily
implementable structures. We study here the
synthesis of lossless scattering parameter S.

Such a function is necessarily inner by losslessness,
i.e. S(iw) S(iw) = 1. Now any inner function has
a factorization [11]

Blaschke
product

Singular {15)

Al
function

S=

where a Blaschke product has the form




/]
1
oW

(16)

2
(g_-_lkTT l1-81 .
n 3 \ -
s+1 1-8 s+Bn

-]

where Bl' 52. ... are complex numbers in i

different from ! and such that I iﬁn)_

A singular function has the form
[--]

< &,

sUHt i
w+is

-ps
e exp(-f
©«©

dp(w) ) (17)

where | is a finite singular positive measure on
the imaginary axis and p 2 0. Since S is bounded
real, the ﬁn's in (16) occur in complex conjugate
pairs or are real, and the measure p in (17) is
concentrated symmetrically with respect to the
origin,

s-1 s-Pn
The factors e and 5+Bn

easily realized in cascade by standard techniques
and similarly for complex B, combining the .
conjugate pairs B and B,. For the network to be

for real Bn can be

realizable by finite number of elements the meas~
ure must be concentrated on a finite number of
points. Then considering the symmetry of the
measure we will have factors of the form

Zs.(w2+ 1) |

s +w®
which can be readily realized as loss less trans-
mission lines and transformers in cascade (see
[3] p. 262 and p. 236). These facts were
observed initially by Dominguexz [20] who also
investigated the matrix case, using results of
Potapov f21]. A complete synthesis theory along
these lines is not available however.

Certain questions now arise quite naturally,
What type of measures in (17) arise from practical -
networks? How can we synthesize measures which
are not concentrated on a finite number of points?
Perhaps using waveguides or nonuniform lines.
On theother hand it is not true that a cascade of
finite number of lossless lines will have a
scattering parameter with a finite Blaschke pro-
duct. This is immediately seen from the counter-~
example provided by a lossi ess line loaded with
an open circuit lossl ess line, through a gyrator.
What is true however is that such a cascade will
have finite number of sequences of Bn‘s, (arith-
metic sequences) each corresponding to some
transmission line, which thus can be factored out.
Finally let us consider the lossy case.

Then the scattering parameter will have another
factor of the form

o0
J' sw+ i
_w ist+ @
which is the outer part of S and as we see depends
only on the magnitude of S. How such a factor can
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exp (- W real

dw

loglstwl T7m)

exp( = 18)

o

be synthesized ?

In conclusion we believe that the mathematical
tools described here are effective and well equiped
to study problems in lumped distributed network
synth esis ., Further research along these lines will
result to more precise design techniques .
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