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Abstract
Recent results on the analysis of models and structural properties of linear

distributed systems are presented.

ed by harmonic analysis in these studies.

The presentation emphasizes the role play-

The conclusions are that a careful

selection of mathematical methods makes possible a satisfactory classification

and detailed analysis of distributed systems models.

These methods provide

simple models that reflect input-output data of engineering importance.

SUMMARY

Modeling distributed parameter systems orne finds
a number of intrinsic problems that do not appear
in lumped parameter systems modeling. Typically
a linear distributed system is modeled by a differ-

ential equation

N
d’;it) = Ax(t) + Bu(t)

1)
y(t) = C x(t)

Here for a great variety of problems it suffices to
assume that x(t) is in a Hilbert space X [1]. The
operator A arises from a formal partial differen-
tial or integrodifferential operator and it may in-
clude boundary conditions through the-definition of
its domain £{(A). In all situations A is assumed to
generate a strongly continuous semigroup of bound-
ed operators on 2. This last statement is an ab-
stract phra'sing of the usual assumption that the
system of equations under study be well-posed.

The controls u are for us square integrable c”-

valued functions and the outputs y are square

integrable Cm-value'd functions. So u € Li and
yE€ Lfn. Certainly other input and output function
spaces can be utilized. It turns out however that
the I_.2 topology gives rise to a particularly rich
theory. This does not state that other function
spaces can not provide theories with similarly rich
structures. The latter remains to be proved how-
ever. It is fair to say that to date other theories
(based on distributions for example{3]) have not
produced detailed results like the ones we describe

here.

Describing the properties of the operators B and
C in (1) above is more intricate. Indeed there are
various possibilities that are due to the following
facts: in distributed systems we can (a) apply
distributed control, that is control distributed in
the spatial domain of our partial differential op-
erator or, (b} apply boundary control, that is con-
trol through the boundary conditions of our p. d.e.

system; in distributed systems we can, (c) have

as outputs linear functionals of the whole solution
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x, that is distributed observations (in the form of
a weighted average) or, (d) have as outputs linear
functionals of the boundary values of the solution

and (or) its derivatives, that is boundary observa-
tions. In (1) B: ¢ 4% andC: X c¢™. In the case
of distributed control B is bounded, appears in (1)
directly from the physical description of the sys-

termn and usually Range (B) & £(A). Similarly with
distributed observation C is bounded. In case of
boundary obervation C turns out to be typically

unbounded. The usual situation however is that
C is A-bounded [ 4].

£(A) and Ilc:cﬂa:n;1 K, Haxll, +x, lIx\l,, for some

That is its domain $(C)2

positive kl'kZ and for all x € 8(A). The situation
with boundary control is a little more subtle. In
such cases the physical description of the system
Typ-
d_x(_t_) = ox(t) and a bound-

dt
ary partial differential operator v, which gives

does not result directly in a model like 1).

ically one has a p.d.e.

the control via T x{t)=ul(t), with 7 being 0 -
bounded. One has to work further to bring the
original description into the form of (1). At the
end of this construction one ends with an operator
B that is "unbounded”, in the sense that B now
maps €¢” into V/2Z=V where Vv’ is the dual of
V (note here that V is included in X as a set and
not as a Hilbert space, the inner products in X
and V may be considerably different) (see [1] or
[2] for details). However as a map from €" into
v’ B is clearly bounded. These ideas have been
used formally in engineering problems when re-

placing boundary controls with delta-function type

distributed controls.

We mainly analyze here mode1’s that have both
operators B and C bounded. We would like to
point out however that most of the results can be
extended to the other cases with additional work
required by the more complex mathematical

The basic ideas remain the same.

technicalities.

The matrix valued function T(t)= CeAtB associated

2

with (1) is the weighting pattern of the system. The
Laplace transform of T is the transfer function
',i‘(s) = C(Is-A)‘1 B which is originally well defined
in some right half plane. The triple (A, B,C) is a
regular realization for T or ”I‘“, when B and C are
bounded and T(t) =CeAtB. This last equation is a
representation for the function T, and thus we
expect classical function theoretic representation
We shall sce that

results to be quite useful here.

this is indeed the case.

It is clear that spectral properties of the gencerator
A are crucial for the analysis of systems like (D).
Utilization of spectral information can provide
structural and qualitative analysis of great detail.
On physical grounds it is desirable that the spec-
tral properties of A "fajthfully represent input-
output measurements'. Let us make the last state-
ment rﬁore precise. Clearly ’}(s) = C(Is-A)_lB

can be analytically continued in OO(A), the connect-
ed component of the resolvent set of A that contains

+ ®, To simplify the discussion we assumec that

~

0(A) is connected. Then if we let ¢ (T) denote the
set of nonanalyticity of ',i' we have the spectral in-
clusion property [5], O(TA)E_ 0(A). A realization
(A, B,C) is spectrally minimal [ 5] if O(E‘FU(A),
for some analytic continuation of ',i‘, and with
multiplicities counted whenever meaningful. Our
position is that spectrally minimal realizations are
very useful and natural models for linear distrib-
uted systems. Afterall physicists and engineers
usually measure things like natural frequencies,
spectral lines, radiation modes that are reflected
in the singularities of '} We want then to investi-
gate existence of such models, find simple models
of this type and study relations between such models.
What follows is a very brief summary of results in
For details and further references

this direction.

we refer to [5] [6] [7].

A regular realization (A, B,C) is reachable when-



A*
ever B e 'x=0 for t 20 implies x= 0; is obser-

vable whenever C eAtx= 0 for t 20 implies x=0;

is canonical whenever it is reachable and obser-

vable; is exactly reachable whenever the limit

Y
lim eAt BB* eA
tl*” 0

*
tdt exists as a bounded and

boundedly invertible operator; is exactly observ-

vable whenever the limit lim eA’rt
tl'"” 0

csce™tat

exits as a bounded and boundedly invertible opera-
tor. First notice that the existence of regular
realizations implies certain properties for T. In-

deed we have;

Theorem 1: Let T be an mxn matrix weighting

pattern. If T has a regular realization then T is
continuous and of exponential order. On the other
hand if T is locally absolutely continuous and its
derivative T is of expontial order, T has a reg-
ular realization.

To proceed in the analysis we need to use the

) 2 2
theory of Hardy functions Hg' H® , H ,
mxn mxn

Hz(i(ck,N)) (see [ 7] for notations). Then
Theorem 2: Let T be analytic in Res> 0. If
T(Ew)= C(iw)* B(iw) a.e. with C eu? 2 (€c™, N)),
B €H2(=€(Cn, N)) where N is an auxiliary Hilbert

space, then T has a regular realization.
This latter realization is given by

% =HEN)

G=¢™* Z; (Gu)(iw) = B(iw)u

Ft (2)
e x=P 2 M iMx
H (N) e

'

«©
H:X-¢™; Hx= %%J c* iw)x (i) dw
-0

where M
. 1wt
iwt,
e .

is the operator ‘multiplication by

e
This is the translation realization.

It is interesting to ask when does the factorization

.condition of the previous theorem become neces-

3.

sary? Then

Theorem 3: Let T be a transfer function matrix.

If either
(a) T has a dissipative (i.e. for x € £(A),
(Ax,x)+ {x,Ax) s 0) globally assymptotically

stable (i.e. lim "eAtx“= 0, ¥xeZ) regular
t-'@
realization, or

o 2
(b) Te H and has a reachable and exactly
mxn
observable regular realization,
then the factorization condition of Theorem 2 is

also necessary.

We would like to analyze case (b) a little further.

Note that the square integrability assumption is

inessential. The Hankel operator is then well
defined:
[--]
(o= [ T+ o)u(o)do (3)
0

or in the frequency domain

H.G=P _ M.0o4 (4)

:i‘ H T
m

where 06(11)2 G(-iw). Then the following is a well
defined regular realization:

—_— 2
%= Range (Ha) € H
T m

2wt ™ (5)

e
(Bu)(i®) = T(iw)u

D S P
Cx = ZTTJ x(iw)dw
-

(5) is the restricted translation realization. But

we know [ 6] [8] that if (A, B,C) and (F, G,H) are
two regular, reachable and exactly observable real-
lizations of the same weighting pattern T, then
there exists a bounded and boundedly invertible
operator P so that PA=FP, PB=G, C=HP. Soit
suffices to analyze the restricted translation real-
ization for this class of weighting patterns (and

thus systems). Note that this is an extremely

et




simple model and that the Fourier transform
(which is a classical function theoretic represen-
tation theorem) was utilized in its construction.
Now m is a left translation invariant sub-
space, and therefore m= (QrH}Z()L , ksm,
where Qr(iw) is isometric a.e. The important
case is when k=m. Then Qr is inner and the sub-
space of full range. This fact must reflect some
properties of '} The relevant property is that of
existence of a psecudomeromorphic continuation of
bounded type in the openlefthalf plane. Atransfer
function matrix "i‘ analytic in Res > 0, has the above
mentioned property if there exists a matrix func-
tion G and a scalar function g, both bounded and
analytic in Res < 0 so that %(itL)=G(iw)/g(im) a.e.
on the iw -axis, This is a generalization of the
concept of regular analytic continuation. Then the
following are equivalent:

(a) ’E‘ has a meromorphic pseudocontinuation of

bounded type in Res < 0.
(b) (Range (H:\r) Y+ :Qern’ Qr inner.
(c) T has a right coprime factorization T(i&)=

=Q (ivP *(iw), with Q inner and P €H® .
r r r r  mxn

Now Qr determines the spectrum of A in the
restricted translation realization (5) with multi-
plicities: 0(A)= {L€OLP such that Qr*(-ﬁ) has

non null kernel} U {points on iw-axis through which
Qr cannot be continued analytically}, Qr also
determines the singularities of the pseudocontinu-
ation of T and 0(&')= C (A), multiplicities counted.
Note that, except for pathological cases, the
pseudocontinuation will be a true analytic continu-

ation for T. Thus we have:

Theorem 4: Suppose &‘eHZ NH® , Thas a
—_— mxn = mx
meromorphic pseudo-continuation of bounded type
in O.L.P., and &‘ has a reachable and exactly
observable regular realization. Then i) the

restricted translation realization is spectrally

minimal, ii) any other reachable and exactly

4

observable realization is spectrally minimal.
Note also that Qr gives a precise state space de-
composition for this class via the Jordan model
theory of Nagy-Foias {10, ch. III]. Similar results
for discrete time systems can bn.a found in [ 8], [9],
and the references therein. We would like to re-
mark again that all of the above can be extended to
the other cases, i.e. B or C or both being un-
bounded. What is involved is a careful analysis of
the restricted translation realization (5) (which
can formally be written for any H;xn function) in

order to make the various operators well defined.

This is as far, invariant subspace thco;-y and
Hardy spaces go. There are however inportant
classes of distributed systems that arise from
engineering and physics that are not included here.
To produce examples one needs only consider
transfer functions with branch points. For a

simple example consider heat transfer along a

long bar:
2 3
e (t, z) _ dx(t, )
> - x(t, z)
at dz
x(0,2)=90
x(t, 0) = u(t) > (6)
lim x(t, z)=0
Z-.@
y(t) = (temperature at z=1)= x(t,1) ~
- - ~ -Vs+
Then T(t) = e * ;3 e/ nd T(sy=e/SHL
2/11t

One can write a translation realization for this T

Z = L2[0,°°)

eAt= left translation an [ 0,®) 7
d

Bu = (T T T)u

Cx= J g(t)x(t)dt, glt)=e™
0

This is a canonical regular realization. However
0(A) = closed L.P. while o(T) =

= fbranch cut from -1to =}. Thus no spectral



minimality. But.certainly (7) is an unnatural
model for (6), because it ignores the great internal
symmetry of (6). One has to use other means. In
particular many problems from mathematical
physics lead to models like (1) where A is selfadjoint
or normal. Then one can show by the use of the
spectral theorem that if (A, B,C) is a canonical
regular realization for T, and A= A* this
realization is spectrally minimal [6]. The inter-
nal symmetry of the system results to additional
properties for T, which then can be utilized to
construct simple models. A simple example,
which illustrates the point, and alsc indicates how
classical function representation results can be
used here, is provided by the well known to elec-
trical engineers completely monotonic and positive
definite functions. These arise naturally from
lumped distributed RC networks. A function ¢ is
completely monotonic, if it is C® on [0, =) and

(-1)° q:’(n)

on (-®,®) if £ cb(ti-t.) ai;' 20, for every set of
i by
real numbers fti} and complex numbers fai} .

(t)2 0 for t> 0, and is positive definite

Then we have [ 6}]:

Theorem 5. A weighting pattern T is completely

monotonic if and only if it has a regular realization
(A, b,b) with A=A" and stable. T has a positive
definite extension on (-®, ®) if and only if it has a

regular realization (A, b,b) with A= -AT,

One uses Bernstein's representation of completely
monotonic functions and Bochner's representation
of positive definite functions to construct simple

models.

Under such symmetry the state space isomor-
phism theorem can be improved. It is important
to note that spectral minimality results from
assumptions on A alone (like A = A*, A normal),
while the state space isomorphism theorem re-

quires additional symmetry:

Theorem 6 ([6]): Let (A, B,C) and (F, G, H) be

canonical regular realizations of T, with A= A,
B=C*, F=F%, G= H¥*. Then they are similar via

a unitary map.
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