Paper Title:

Some Controllability Properties of Bilinear Delay-Differential Systems

From the Proceedings:

The 1975 IEEE Conference on Decision and Control

pp. 360-361

Houston, Texas December, 1975

SOME CONTROLLABILITY PROPERTIES OF BILINEAR DELAY-DIFFERENTIAL SYSTEMS

John S. Baras Electrical Engineering Department University of Maryland College Park, Maryland 20742

Abstract

Bilinear delay-differential systems appear frequently in applications. We present here controllability properties of such systems and in particular we derive criteria for local accessibility, and a 'bang-bang' theorem.

Summary

The analysis of finite dimensional bilinear systems [1-7] and of linear delay-differential systems [8-11] has reached a very satisfactory level to date. The purpose of this paper is to present several controllability properties of bilinear delay-differential systems. Abundant examples of this type of systems come from integrated circuits, nuclear reactors and economics [12]. For simlicity we chose to consider only systems of the simple type

$$\frac{d\mathbf{x}(t)}{dt} = (\mathbf{A} + \sum_{i=1}^{p} \mathbf{u}_{i}(t) \mathbf{B}_{i}) \mathbf{x}(t) + C\mathbf{x}(t-\tau)$$
(1)

where $x(t) \in \mathbb{R}^n$, $u_i(\cdot)$ are scalar functions measurable and bounded on finite intervals and A, B_i, C are nxn matrices. The dynamical characteristics of bilinear delay-differential systems can be found in [12,14]. The natural state space for (1) is a subset of $C([-T,0];\mathbb{R}^n)$, and we let

$$x_{+}(\theta) = x(t+\theta); \theta \in [-\tau, 0]$$
 (2)

be the state of (1) at time t, with x(t) a euclidean trajectory of (1). The reachable set in \mathbb{R}^n from initial condition φ , at time t>0 will be denoted by $R(t,\varphi)$, and it is the set of all $y\in\mathbb{R}^n$ such that $x(t;0,\varphi,u)=y$ for some admissible control u. The reachable set in \mathbb{R}^n from initial condition φ , in time t>0 is $R(t,\varphi)=U$ $R(t,\varphi)$. The reachable set

in \mathbb{R}^n from initial condition φ is $\mathbb{R}(\varphi) = U$ $\mathbb{R}(t, \varphi)$. Let C denote $C\{[-\tau, 0]; \mathbb{R}^n\}$ and C^1 denote $C^1\{[-\tau, 0]; \mathbb{R}^n\}$. Then the reachable set in C^1 from initial condition φ , at time $t \geq 0$, will be denoted by $\mathbb{R}_C(t, \varphi)$, and it is the set of all $\lambda \in C^1$ s.t. $\lambda(\theta) = x_t(\theta)$, $\theta \in [-\tau, 0]$ for some admissible control u. Similarly the reachable set in C^1 from initial condition φ ,

Luther P. Hampton III Electrical Engineering Department University of Maryland College Park, Maryland 20742

 $\begin{array}{ll} \underline{\text{in}} \ \text{time t} > 0, \ \text{is} \ \mathbb{R}_{C}^{(t,\phi)} = \ U \quad \mathbb{R}_{C}^{(t,\phi)} \\ 0 \leq s \leq t \\ \text{and the reachable set in C^1 from initial condition } \\ \phi, \ \text{is} \ \mathbb{R}_{C}^{(\phi)} = \ U \ \mathbb{R}_{C}^{(t,\phi)}. \\ t \geq 0 \end{array}$

We have now the following definitions:

Definition 1: Let $\lambda(\cdot) = x(\cdot;0,\phi,u)$ be a trajectory of the system. The system has the local accessibility property along λ , in \mathbb{R}^n , at time t_1 if there exists an \mathbb{R}^n -neighborhood of $x(t_1;0,\phi,u)$ which is included in $R(t_1,\phi)$.

Definition 2: The system is euclidean controllable (resp. at time t_1 , in time t_1) from initial condition φ if $\mathbb{R}(\varphi) = \mathbb{R}^n$ (resp $\mathbb{R}(t_1, \varphi) = \mathbb{R}^n$, $\mathbb{R}(t_1, \varphi) = \mathbb{R}^n$.)

Definition 3: The system is completely euclidean controllable (at time t_1 , in time t_1) if it is euclidean controllable (at time t_1 , in time t_1) from every initial condition φ .

Consider the general nonlinear differential delay system

$$\dot{x}(t) = f(t, x(t), x(t-T), u(t))$$
 (3)

where $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^p$, f is continuously differentiable in all arguments and f(t,0,0,0)=0, and the linearized system about the trajectory $x(t)=x(t;0,y,u_0)$:

$$\dot{y}(t) = A(t)y(t) + C(t)y(t-\tau) + B(t)u(t)$$
 (4)

where

$$A(t) = \frac{\partial}{\partial x} f(t, x(t), x(t-\tau), u(t))]_{x_0, u_0}$$

$$C(t) = \frac{\partial}{\partial x} f(t, x(t), x(t-\tau), u(t))]_{x_0, u_0}$$

$$B(t) = \frac{\partial}{\partial u} f(t, x(t), x(t-\tau), u(t))]_{x_0, u_0}$$

where u_0 is an admissible control and $x_{-\tau}(t)=x(t-\tau)$.

<u>Theorem 1:</u> Suppose that system (4) is completely euclidean controllable at time t_1 . Then the nonlinear delay-differential system (3) has the local euclidean accessibility property along x_0 at t_1 .

The proof can be found in [12,14]. Certainly Theorem 1 applies to bilinear delay differential

systems. Let us denote $\hat{B}_{x}(t) = [B_{1}x(t); B_{2}x(t); ...B_{p}x(t)], \hat{A}(t) = A + \sum_{i=1}^{p} u_{0i}(t)B_{i}$ (5) So the linearized system for (1) is

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}(t) = \hat{\mathbf{A}}(t)\mathbf{x}(t) + C\mathbf{x}(t-\tau) + \hat{\mathbf{B}}_{\mathbf{x}_0}(t)\mathbf{u}(t)$$
 (6)

Then utilizing a result of Weiss [18], we have [12]:

Theorem 2: Let $x_0(t)=x(t;0,\phi,u_0)$ be a trajectory of (1). Define the matrices $Q_i^{\ j}(t)$ via the equations

$$\begin{aligned} &Q_0^0(t) = \hat{\mathbb{B}}_{\mathbf{x}_0}(t) \\ &Q_i^{j}(t) = \hat{Q}_i^{j-1}(1) - \hat{\mathbb{A}}(t+i\tau)Q_i^{j-1}(t) - CQ_{i-1}^{j-1} \end{aligned}$$

$$i = 1, ..., k-1$$

and $Q_i^j = 0$ for i < 0 or i > j

Let
$$Q(t) = [Q_0^0(t), \dots, Q_1^{k-1}(t), Q_1^1(t-\tau), \dots, Q_1^{k-1}(t-\tau), \dots, Q_m^{k-1}(t-m \cdot \tau)]$$

Suppose there exist integer k>0 and time $t_1\epsilon[m^\intercal,(m+1)^\intercal)$ such that all the derivatives needed in the formation of Q exist and are continuous and rank $Q(t_1)=n$. Then the bilinear delay-differential system (1) has the local euclidean accessibility property along x_0 at t_1 .

Finally we generalize the results of Sussman [15] to bilinear delay differential systems. Following [15] we let $\mathcal{U}(T)$ =set of all measurable function defined on [0,T] with values in the cube $\{(u_1,u_2,\dots u_p): -1 \leq u_i \leq 1, j=1,2,\dots p\}; \mathcal{U}B(T)=\{u\in\mathcal{U}(T): |u_i(t)|=1,i=1,\dots p\}; \mathcal{U}BP(T)=\{u\in\mathcal{U}B(T):u(t) \text{ is piecewise constant}\}$. According to whether we use controls from $\mathcal{U}(T)$ or $\mathcal{U}B(T)$ or $\mathcal{U}BP(T)$ we have for a given initial condition ϕ , the reachable sets $R(T,\phi)$, $R(T,\phi)$, $RB(T,\phi)$, $RB(T,\phi)$, $RBP(T,\phi)$.

The following theorem is then the analogue of Corollaries 1-3 of [15] in our setting, and its proof appears in [12,14].

<u>Theorem 3:</u> The sets $R(T,\phi)$ and $R(T,\phi)$ are compact. The sets $RBP(T,\phi)$ and $RBP(T,\phi)$ are dense in $R(T,\phi)$ and $R(T,\phi)$ respectively.

Consider now the reachable sets in function space $R_C(T,\phi)$, $R_CB(T,\phi)$, $R_CB(T,\phi)$, and $R_C(T,\phi)$, $R_CB(T,\phi)$. We have then the analogue of Theorem 3 in function space.

Theorem 4: The sets $R_C(T,\phi)$ and $R_C(T,\phi)$ are compact. The sets $R_CBP(T,\phi)$, $R_CBP(T,\phi)$ are dense in $R_C(T,\phi)$, and $R_C(T,\phi)$ respectively.

The proof appears in [12].

Finally we have the following result which provides an instance of a truly "Bang-Bang" theorem.

Theorem 5: If all the brackets $[B_i, B_j], [A, B_i]$ vanish for all i, j then RB(T, ϕ) and RB(T, ϕ) are closed. Moreover the sets RBP(T, ϕ) and RBP(T, ϕ) are also closed.

The proof appears in [14], and utilizes the theorems of Liapunov, Aumann [16] and Halkin [17].

References

- Brockett, R.W., "System theory on group manifolds and coset spaces", <u>SIAM Journal on</u> Control 10, 1974, pp. 265-284.
- Sussmann, H.J. and V. Jurdjevic, <u>J. of Diff.</u> Eq., 12, 1972, pp. 95-116.
- 3. Brockett, R.W., "On the algebraic structure of bilinear systems", in Theory and Application of Variable Structure Systems, Academic Press, New York, 1972, pp. 153-168.
- Brockett, R.W., "Lie algebras and lie groups in control theory", in Geometric Methods in Systems Theory, Reidel Pub. Co., the Netherlands, 1973.
- Fliess, M., C.R. Acad. Sc. Paris, t. 280, Serie A, 1975, pp. 965-967.
- Sussmann, H., Proc. of CNR-CISM Symposium on Algebraic System Theory, Udine, Italy, 1975.
- 7. Brockett, R.W., "Volterra series and geometric control theory", Proc. of 6th IFAC Congress, Boston, Mass., 1975.
- Hale, J.K., <u>Functional differential equations</u>, Springer Verlag, New York, 1972.
- 9. Banks, H.T., <u>J. Diff. Eqs.</u>, 5, 1969, pp. 399-409.
- Delfour, M.C., C. McCalla and S.K. Mitter, SIAM J. Control, 13, 1975, pp. 48-88.
- Bensoussan, A., M.C. Delfour and S.K. Mitter, Technical Rept. ESL-P-604, Dept. of Electrical Engineering, MIT.
- 12. Baras, J.S. and L.Hampton, "Bilinear delay-differential systems", Proc. of 1975 Conf. on Info. Sc. and Sys., April 1975, pp. 26-32.
- Weiss, L., <u>SIAM J. on Control</u>, Vol. 5, No. 4, 1967, pp. 575-587.
- Hampton III, L., "On the controllability of bilinear systems with delay", M.S. Thesis,
 Elec. Engr. Dept., Univ. of Md., May 1975.
- Sussmann, H., "The "bang-bang" problem for certain control systems in GL(n,R)", SIAM J. Control, Vol. 10, No. 3, 1972, pp. 470-476.
- Hermes, H. and J. LaSalle, <u>Functional analysis and time optimal control</u>, Ac. Press, 1969.
- Halkin, H., "On a generalization of a theorem of Liapunov", J. Math. Anal. Appl., 10, 1965, pp. 325-329.
- 18. Weiss, L., <u>IEEE Trans. Auto. Control</u>, AC-15, 1970, pp. 443-444.