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Abstract

Bilinear delay-differential systems appear
frequently in applications. We present here con-
trollability properties of such systems and in par-
ticular we derive criteria for local accessibility,
and a 'bang-bang'' theorem.

Summary

The analysis of finite dimensional bilinear
systems [1-7] and of linear delay-differential sys-
tems [ 8-11] has reached a very satisfactory level
to date. The purpose of this paper is to present
several controllability properties of bilinear delay-
differential systems. Abundant examples of this
type of systems come from integrated circuits,
nuclear reactors and economics [12]. For sim-
licity we chose to consider only systems of the
simple type

dx(t) 1)

p .
it = (A+Z ui(t)Bi)x(t)-}- Cx(t-T)

izl

where x(t)eIRn, u.{+) are scalar functions measur-
able and bounded *on finite intervals and A, Bi’ C

are nxn matrices. The dynamical characteristics
of bilinear delay-differential systems can be found
in [12,14]. The natural state space for (1) is a sub-
set of C([-T,0]; R™), and we let

xt(9)=x(t+9); gef-1,0] (2)

be the state of (1) at time t, with x(t) a euclidean
trajectory of (1). The reachable set in R® from
initial condition @, at time t> 0 will be denoted by
R(t,®), and it is the set of all ye R™ such that
x({t;0,®,u)=y for some admissible control u. The
reachable set in R® from initial condition @, in
time t> 0 is R(t, ®)= I.;tR(t,Cp). The reachable set
s

in R™ from initial condition @is R(®)= U R(t,®).
Let C denote C{[-T7,0] ;R"} and ct dento%g

Cl[[-‘f, 0];IR™}. Then the reachable set in c! from
initial condition ®, at time t>0, will be denoted by
R _.(t,®), and it is the set of all AeC"s.t. k(e)=xt(6),
g e[-7,0] for some admissible control u. Similar-
ly the reachable set in C* from initial condition ©,
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C(t.CP)= U R.{t,®)
0ss<t
and the reachable set in Cl from initial condition
®p, is R _{(P)= U IRC(t,cp).
t20
We have now the following definitions:

in time t>0, is R

C

Definition 1: Let A{*)=x(-;0,®,u) be a trajectory
of the system. The system has the local accessi-
bility property along A, in R®, at time t, if there

exists an R™ -neighborhood of x(t,;0,%,u) which is

included in R(tl, ®).
Definition 2: The system is euclidean controllable
(resp. at time t,, in time tl) from initial condition

© if R(9)= R® (resp R(t;, ®)=R”, Rit}, 0)=R"")

Definition 3: The system is completely euclidean
controllable (at time t,, in time t,) if it is euclidean
controllable (at time ty, in time tl) from every
initial condition ®.

Consider the general nonlinear differential
delay system

x(t) = £(t, x(t), x(t-T), u(t)) (3)

where x(t)e RP, u(t)e RP, f is continuously dii-
ferentiable in all arguments and £(t,0,0,0)=0, and
the linearized system about the traj ectoryxo(t)=

30, y,u,):
x(t;0, v uo)

)= A(E)y(EH+C(t)y(t-T M B(t)ult) (4)
where
AlD)= = £(tx(0), x(6-7), u(t))]
* *0' %
Clt)= == sltx(6), e, ult))]
X X .0
-T 0
B(H)= 2= f(t, x(t), x(t-"), u(t) )]
u b4 ,uo
where ug is an admissible control and X T{t)=x(t-T).

Theorem 1l: Suppose that system (4) is com-
pletely euclidean controllable at time t;. Then the
nonlinear delay-differential system (3) has the local
euclidean accessibility property along x4 at tl'

The proof can be found in [12,14]. Certainly
Theorem 1 applies to bilinear delay differential
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systems. Let us denote

~ ~ P

Bx(t) [le(t);Bzx(t);...Bpx(t)], A(t) A+i§1u0i(t)Bi (5)
So the linearized system for (1) is

4«
dt
Then utilizing a result of Weiss [18], we have [12]:

Theorem 2: Let x_(t)=x(t;0,®,u, ) be a trajectory
of (1). Define the matrices QiJ(t) via the equations

(t)=£(t)x(t)+c:<(t-n+ﬁx (t)u(t) (6)
0

0 _2
Q1= By (®

TN ) SR, S j-1 j-1
Qi(t) Qi (1)-A((;+1T)Qi (t)-CQi_l
i=1,...m, j=i,...,k-1
and QJ=0 for i< 0 or i>j
0 k-1 1 k-1 k-1 .
Let Q(t)-[Qo('c),...Q1 (t),ol(t--r),...Q1 (t-T),...Qm (t-m- T}

Suppose there exist integer k>0 and time tle[mT,
(m+1)T) such that all the derivatives needed in the
formation of Q exist and are continuous and rank
Q(t,)=n. Then the bilinear delay-differential sys-
tem (1) has the local euclidean accessibility prop-
erty along %, at tl.

Finally we generalize the results of Sussman
[15] to bilinear delay differential systems. Fol-
lowing [15] we let U(T)=set of all measurable func-
tion defined on [0, T] with values in the cube
f(ul,uz,...up): -1<u.51,j=1,2,...p}; UB(T)={ueU(T):
|ui(t)| =1,i=l, ... p}; UBP(T)={ue UB(T):u(t) is piece-
wise constant} . According to whether we use con-
trols from U(T) or UB(T) or UBP(T) we have for a
given initial condition @, the reachable sets R(T,o),
R(T,®), RB(T,9), RB(T,¢), RBP(T,9), RBP(T,¢).

The following theorem is then the analogue of
Corollaries 1-3 of [15] in our setting, and its proof
appears in [12,14].

Theorem 3: The sets R(T,9) and R(T,®) are

compact. The sets RBP(T,9) and RBP(T,®) are
dense in R(T,®) and R(T,9) respectively.

Consider now the reachable sets in function
space RC(T,qJ), RCB(T,cp), RCBP(T,CP) and ]RC(T,Cp),
IRCB(T,QO), IR __BP(T,p). We have then the analogue
of Theorem 3 in function space.

Theorem 4: The sets R_(T,9) and R_(T,®)
The sets RCBP(T,CD), R _BP(T,®)
are dense in RC(T,CP), and IRC(’I',CD) respectively.

are compact.

The proof appears in [12].

Finally we have the following result which pro-
vides an instance of a truly ""Bang-Bang' theorem.

Theorem 5: If all the brackets [Bi' B.], [A’Bi]
vanish for all i,j then RB(T,9) and RB(T,®) are
closed. Moreover the sets RBP(T,») and RBP(T,®)
are also closed.
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The proof appears in [14], and utilizes the
theorems of Liapunov, Aumann [16] and Halkin [17].
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