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Abstract

We consider here the point process disorder
problem in its generality and we develop the
maximum likelihood and MAP estimates of the
disorder time T. Applications of the results to
the platoon determination problem in urban
traffic show that both estimators outperform
previous solutions to the problem,

1. Introduction

In a series of papers [1,2] we have demon-
strated the applicability of point process tech-
niques in urban traffic estimation problems.
The present paper is a continuation of [2]
where a simple stochastic model was proposed
for the headway process as observed at a traf-
fic detector and then subsequently utilized to
derive estimates of platoon ''passage'' time and
platoon "length". It was recognized in [2] that
the appropriate starting point for such problems
is a complete statistical characterization of the
headway (or interarrival time) process. The
simple model proposed there states that the
first order density for headways is:

ph) =y py(h) + A-y) p;(h) (1.1)

where po(h) = following headway probability
density function
= lognormal density

2

Tohlﬂ’ exp[——(——“—-hh'z) ] ,h=20

= 20 (1. 2)
0 , h<O

pl(h) = nonfollowing headway probability
density function
= displaced negative exponential
density
___{A exp (-(h-T1) %) ,har
0

, her (1. 3)

] = a variable denoting the degreé of
interaction between following and non-
following headway processes.

Furthermore, to a good approximation consec-
utive headways are independent. To analyze

the platoon passage time (or platoon size) prob-
lem in [2] § was modelled as a switching vari-
able assuming the value 1 when a platoon passes
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over the detector and the value 0 when freely
flowing traffic passes over the detector. This
lead to the formulation of the problem of esti-
mating the passage time of a platoon over a
detector as a point process disorder problem
[2]. The general point process disorder prob-
lem is: Given a point process with counting
process Nt' which is characterized by a rate
process X? up to a random time T and by a
rate process )\: afterwarda, estimate the
switching time T, from the observed process

Nt' We are interested in the case where T

coincides with one of the occurence times
(detector activation times in the traffic context)
Ti' Furthermore due to the possibility of feed-

back we do not assume that the events {T=Ti}
and N, are independent. This problem has been

recently solved in the filtering context (i. e.
under the constraint to utilize only the past of
N, for estimation) by Wan and Davis [35’

Letting

=l a Ty (L 4)

it can be shown that the dynamics are given
by [2, 3]

_ 0
dxt = (l-xt) QA dt + dvt (1. 5)
and the observations by
- 0 1
dN, = (1 -x) Ap +3x, A, ) dt +dw, (1. 6)
where = 5vq, I
9 i 9y {Ti1st< T},
1.7
P (L. 7)
9 = § e Py TPr{T=T}}
k21

where P;» q; are allowed to be functions of t,

Ve 2Te martingales
with respect to ﬁt=g {xs,Ns, s <t}. Notingthat

Tyr Tpreees Ty s and w

Pr {T=xt|3,] = E{x |3} =%, (1. 8)

where 3t =g{N,s st} , the minimum variance
]

filtered estimate of T (in the sense of comput-
ing the conditional distribution (1. 8)) was found
in [2, 3] to satisfy



A1 0. -
dxt—-(xt—xt)xt(l-xt)dt

N .y
(- A £ (%) + a0 -k
* 0 0 dNy
(A, =2g) X, +)
R M X T A
x0=E[x°]

which for the traffic problem described above
was solved explicitly in [2]. Two scalar esti-
mates of T and of the platoon size were devel-
oped and evaluated in [2]. One which perform-
ed reasonably well was the maximum jump
estimator

T =T, . Wwhere j*=arg{ max (x -x,-A - )3
MJ 1<jsN Tj Tj-l
(1.10)

and N is the maximum number of vehicles which
might cross the detector within a cycle of the
signal. -

In this paper, we first solve for the maxi-
mum likelihood estimate of the switching time
T given an upper bound N on the number of
occurences (vehicles which might cross the
detector in one cycle) on which to base our
estimate. Next we present the solution to the
smoothing problem for T, in the sense of com-
puting the conditional distribution

Pr{T stlsN] = Efx,| 3] = %N 1.11)

where 3N= g {Ns, s<T This result is then

N}
used to derive the maximum aposteriori (MAP)
estimator for T. All results are recursive on
the length of data used. Finally the theory is
applied to the platoon determination problem
and the resulting estimators are evaluated
against our previous solution (i.e. the maxi-
mum jump estimator).

2. Maximum Likelihood Estimator

The maximum likelihood (ML) estimator de-
rived here applies to a memory 1 point process.
However it should be clear from the derivation
that the general result for a finite memory (say
4) point process can be derived mutatis-
mutandis and its form is going to be very simi-
lar to the result reported here.

Since we have a memory 1 point process the
interarrival times arc independent and distri-

buted with density Py when the rate is >‘0 and
density P when the rate is A Therefore the

ML estimate is simply given by

TMB):TJ‘T;]) where an) =

arg{ max p

(tl,tz,...,fan=TJ.)} (2.1)
l<j=n

TI'TZ"“’

where n is the length of the data record used
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Theorem 2.1:

(i. e. the n arrival (activation) times), Then in

view of our assumptions
N j n ,
J(l SR {max 7 pO(hi) m pl(hz)} (2.2)
I<js<n i=l 4=j+l

since p (tl,tz,...,tn|T=TJ.) =

TI’TZ"”T

P (hl"”’h |T.) where
HL Hyeoo, ]

H. are the interarrival times T, .=T.+H,
i i+l Ti i+l

i=1, 2,40, Tl=0. We now give a recursive com-

putation of the ML estimator as the data record
length increases,

Under the above hypotheses (i.e.
independent interarrival times and "I‘=Ti for

some i), ’iML(n) is obtained via

TypqL® = Tj*(n) where
J¥(n) ifonpy(h 1mpg(h ) or (2.3)
if j*(n)<n,fnpy(h ,)2énp (b )and
V(j*(n), n+l)> V(n+l, n+l) (2.4)
j*(n+1)=ﬁ
n+l if onp,(h_ o )20np,th_ o)
0'""'n+l 1" n+l (2.5)

and j*(n)=n or

if j*(n)<n, Q/npo(hn+l)2ﬂ/np1(hn+l)and

L V(j*(n),n4l) < V(n+l,n 1)  (2.6)
where
j n
VG,m) = £ mpyth) + T tap(h) (2.7)
i=1 i=j+l

Proof: Note that V(j, n) is just the natural
logarithm of the conditional density (i. e. the
right hand side of (2.2)). For (2.3) observe
that

j*(n) n+l

V(@) m) +np (B )= B dnpg(hy) ¢ swnpy (b )

1=

2= (n)+1
2 V(k,n) +onpy(h ), Yk sn
> Vik, n) +£’/np0(hn+l) , Yk <n
Therefore
V(j*(n),n+l) 2 V(k,n+l) , Yk sn

and > V(n+l,n+l)

which proves (2.3). Now suppose j*(n)=n.
Then if ano (hn+l) 2 ’”'P]_(hn.;.l) we have



\

IR S S Lt i A

j*k(n)+l
V(j*(@),n) +oapy(h )= T tnp,(hy)
i=1
2 V(k, n) +Qmp0(hn+1) , Yk<n
2 V(k, n) +z7/npl(hn+1) , Yksn
from which (2.5) follows.

Next suppose j*(n) < n. Then if the r.h.s. of
(2.4) is assumed we have

j*(n) n+l
V(3*(n),n) +tnpy (b )= T fnpy(h,) + T tap (hy)
S e e Py b

2 V(k,n) +;mpy(h

n+1) » Vksn

> V(k,n) +onpyth ) » Yksn

and the result follows.
(2.6).

It is clear that the implementation of the
ML estimator presents no problem once the
probability densities P,s Py are specified. The
ATML(D = T1 with
V(,1)=tapy(h)). Then T, . (
from (2. 3) - (2.6) while updating V(j*(n), n)
using (2.7) also. Furthermore the running
sum V{(n,n) needs to be updated. An explicit

example relevant to urban traffic is given in
the last section of the paper.

Similarly one obtains

initial conditions are

n) is computed

If we relax the memory 1 hypothesis and
instead assume that the interarrival times
{Hi} are dependent with memory £ when the
point process is represented by rate Ao and

that they are independent when the rate is Ape
Then

n
Vimsip (1. by ¥ E npBy. (28)
H,,...,H. i=j+
1 j

A recursion on the ML estimator can be derived
again but it is more involved.

3, Maximum Aposteriori Estimator

In this section we derive the maximum apos-
teriori estimate of the switching time given n
observations:

TMAP(n)=Tj*(n) where

j*¥(n)=arg { max Pr {T=Tj |3T 11 (3.1)
n

l<j<n
To solve this problem we first solve for the
smoothed estimate of the switching time T,
which has the representation [4, (3.2)] given
the model (1.5) - (1. 7),

A A T = ~ ~
xtlT'xtlt‘PJ.t %—E 3 (- It)(ks-)‘s)] dvg (3.2)
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where
_ 0] 1 - 1
xt—(l-xt)xt TxA )\t-E t{kt}

and Ve is the innovations process

t
v = N, - § ds (3.3)
0
But R
}\s'-)\s'—'()\ -k )(xs-xs!s)
and since ;Et is :}t measurable, while 3(:5 35 ‘
for t < s (3.2) becomes !
~ ~ T }‘é - )‘g F ~
= —_— s . :
xtlT. xtlt + J; { - E {xt(xS xsls)} d\)S :
As !
1.0
~ T )‘S = )‘8 3 A A é
- xt’t * b ( '): ){h‘ S(ths) -xs[sxt[e}dvs !
4 (3. 4)
By definition (recall (1. 4)) and since t <8
xx = { 0 ift<T
t's 1 if Tst
so that
s {xtxs} = xt's (3.5)
and therefore (3, 2) becomes
xt' T—xt't + (—"_)xtlsu- xs]s) dvs . (3.6)

t

]
The first step in reducing (3. 6) is to use the
nature of d\)t =dNt - )‘s ds (from (3. 3)), namely

that (3.6) has a continuous part and a jump
part. Considering t fixed in (3,6) and letting

T.st<T< Tj+1 we need concern ourselves only

with the continuous part in (3. 6).
Thus if

~c ~
=x = continuous part of x
o T Fy nous p thr

v =§ -JT()\I—}\O)V 1-x
Ttk , s s’ s s|s (3.7)

j arbitrary.

fqr Tjst<T<Tj+l, ’

or ) !

dy

T 1 .0 A

7. = -0, )\T)(I-XT!T) dr
or

sy, exp [- ] 0L -20)a-%,,) ds] !
Yp = Ve eXP L] g =g 1" %51 ’ '

t '

and therefore



A C

S [leOL‘ ds] (3.8
\th-xtk exp | - t(:\s')\s)( -xals) 8 (,)

for Tjst<'r< Tj+1 » ] arbitrary,

Now at r = Tj+l we have to calculate the contri-

bution from the jump part in (3.6), which leads
to (where t_ denotes left limit)

b3 - +
T 7 T g
. (3.9)
0 N
(Ap _=rp Dl-x, J)
o2 T Tgu Tj+1|1}+10 .
UTd ol smhp ) Xy sz thp -
Mg GalTd Ty

Then (3, 8) and (3.9) give

A -
’th =%yp . =
’j+1 tlTj+1 Ar -
j+l (3.10)
1
A T. =
T. 3 R j+l
= —Lx exp [—f ()\1-)\ Y(lex )ds]
2 te : |
Ta

for Tj st< Tj+1 s arbxtrary.

To proceed let

_ .1 0 A
v(s) = (As - )‘s)a-xs,s) . (3.11)
Then by (3.6) and (3.10)
. ) j+1 .
Xt"r = xtlt - jt Y(S) xt,S ds +
1
)‘T.+'l T R
+§T|T (—J—--l)-j y(s)x ds
T s\ 3 t|s
Jjr 3+l A’I‘ - T.+1
jH J
~ T A B
= xt, T'+1 - fT y(a) xt[s ds (3.12)
J 5+
for 'I‘jst<’13+1, T:].+lsr<'I3.+2.
Therefore similarly as in (3.7), (3.8),
Xyjy = % [ v a (3.13)
x =x exp |~ Y s SJ .
tfr Ty T,

J
for Tj st<'13.+1, ’I:]._‘_ls T< Tj+
So similarly as in (3.9) (3.10),

2
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. X Lz
X o X oxp|~ Y(u)da]. (3. 14)
tT, t|T, [ ‘[r ;
jt+2 jrl J4L
d
A A j+2
X X . (3.15)
T2 T -
Ap oL
j+2
Then (3.10) - (3.15) imply
1 T, ; T,
R ~ jt2 )‘Ti- j+l j+2
g, 8 1 T ] et
jt2 i=j+l )‘Ti' o
(3.16)
It is now apparent that the general formula is
1
A orn ’\Ti- Gir n-1 rTi+1'
xt[T:Jﬁ:]{TT ~ ]exp[-f v(s)ds - 3 y(s)ds]
n i=j+1 A t i=j+l JI‘i
t (3.17)

for Tjst< Tj+1 and j=1,2,... n-1,

Since we assume that T (the switching time)
coincides with one of the T;'s we are clearly
interested only in the values of the smoothed
probabilities given by (3.17) at t=T;, =L ..., n-1,
Furtherrore since Xy 8witches onI]y at occur-
ence times we expect the smoothed probabilities
to be constant between occurence times., Indeed
considering the continuous part of the filtering
equations (1.9) we see that for s between occur-
ence times

d
“y(s)ds = -(}‘i')‘(s))(l - £SIs)ds = -x—sE

s|s
and therefore for Ti <t < Ti+1
Ti+1-d£ L
f sls = - y(s) ds
t X
s|s
or
% T -
T.rlT - i+
+1
_,}:‘_14-]?\1 = exp [—f v(s) ds] . (3.18)
tlt t
for Ti stc< Ti+1 ,» i=l, ... n-1,
Consequently (3.17), (3.18) lead to
. 1 A
A . X - -
~ ol Gl T 3
ﬁt[T-ﬁT]T m [*  G-19)
modEE A o Ry
1+1 1 1

for Tj st< 'I3+1 and j=1,2,...,n-1, This demon-

strates the constancy of smoothed probabilities
between occurence times mentioned above.
Given n occurence times the quantities of inter-

A

est are Xep ’Tn’ j=l, ..., n-1. Notice that we

also have fthe recursion




1
X- .
2 = Tt an+l-|rn+l- 2 |m. (3.19a)
T.T . T.|T
j' ntl N 2 i'n
Tn+1- Tann

We thus have

Theorem 3.1: The smoothed probabilities of
awitching, given n occurence times, are given
by

=T, |s = V{j,
Pr (T TJ[';Tn} (j,n)

=R

- , 3=L 2,..0,n
T.|T, "rj_lrrn

i1 T

where ijlTn are computed in (3.19).

Having obtained explicit expressions for the
smoothed probabilities we can now give several
estimators, We are primarily interested here
in the MAP estimator which from (3.1) and
theorem 3.1 is given by

']?‘MAp(n) = I:j*(n) where j*(n)=arg{ max Vi, n)l.

lsjsn (3, 20)
We then have
Theorem 3.2: Let
l A
, Moo FTo|T-
B(J’J—1)=XT.IT.- xr.-lT.-A N L S (3.21)
e I o S S
j j=17j-1
and
)\1 ir l
~ T, .- Y I S
V(j,n)frﬁ_:,_l[znﬂ i+l +on SE1+l i+l Jﬂms(j,j-l)
i=j -
M TIT

for j=1,2,... n.
Then the MAP estimator satisfies the recursion

) i Y(j*(n),n+l) 2B+l n)

PO 24 i V(j*(n), ntl) <mB(n+l,n)
Proof: From (3.19)
1
A ®
T, LT,
VG, = [ A1
i=j A _ X
T Gl%
1,
Ar. Fre|T-
—_— 1 J

4R -R
{ T.T, "T. ,|T. ; 2 o
175 Tl G M- *r, T
j j=173-1
and therefore V(j,n) = gn V{j, n) has the form
shown in the theorem statement. Suppose j*(n)

is optimal. Then

V(*@),n) = Vion) , ¥ k sn.

Since
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1
oy )‘Tn
VU, n) +n .

A

Xy

- -[T -
+1 +on n+l | "n+l

T -~

b4
n+l Tn I Tn

Vi, ntl) =

for j=1,2,...,n

n+l

on B(n+l, n) for j

we have
1 ~
X
Mo Tl

V(5*(n), n+l)2 V(k, n)+n +on ntl

)\Tn+l' xTann
for k < n, since j*(n) <n.
So
WG*(n), n+l) = V(k,n+l), ¥ks<n.
Hence if
V(j*(n), n+l) 22 [g(n+l), n)]

then j*(n+l) = j*(n), Otherwise j*(n+l) = n+l.

Several remarks are now in order. First
observe that the MAP estimator can be directly
implemented using the filter equations (1.9).
Next for uniform prior probabilities Pr{T=T.}
the MAP gives identical results to ML which?
can be actually implemented in a much simpler
fashion (recall theorem 2.1). Furthermore
one can combine the recursive implementation
of the MAP estimator with the filter in order to
obtain a measure of the degree of certainty
that the switch has occured (via ;‘T IT Yo

n'n

4. Algorithms and Applications to Urban Traffic

Our results described in Theorems 2.1 and
3,2 lead to the following explicit algorithms to
compute the ML and MAP estimate for the
switching time T. Both algorithms are recur-
sive, but only the second (MAP) requires the
filter's implementation.

ALGORITHM ML
1. Set j=1, n=l, Tl = Tl, and \6P=VRUN=0
2. V

rRUN * Vrun T2 Polbgy)
3. I pyby, ) >Polhy ) ‘

then' [ 1= T, Vop+ Vop t 7P (Phy)
and go to 6.

Otherwise go to 4.

4, If j=n the J=n+1,'l;‘+l=’I3, VOP“VOP‘?'gﬂpO(hnH).

Otherwise go to 5

5. If Vgpt+inpy(h

n+1) > VRUN then Tn=Tj and

+
Vop" Vop Tnpithy )



Otherwise j=n+l, T

ndl” 50 Vop*tV

RUN
Go to 6.
6. Set n=n+l and if n ‘Nmax to to 2,

Otherwise stop.
ALGORITHM MAP

l. Set j=1, n=l, i-1=T1 and Vo p=fy 1
11
1
1 R T
2. Compute A = . ntl . “n+l "n+l
A - b'e
Tn+1 Tn,Tn
Vop“Vop ™ A
V. « % - % + A
RUN Tn+1 ' Tn+1 Tn 'Tn

3. EVop 2 Vpyy then T, = T,

Otherwise j=ntl, V

4. nentlandifne Nrnax to to 2.

Otherwise stop.

These algorithms have been applied to the
platoon determination problem [2], where the

two densities Pg» Py are given by (1. 2), (1. 3).

As expected in critical runs these estimators

perform better than the previously proposed

op © Vrun38d Ty = T;e

ones [2]. In table 1 we show one trial run.
TABLE1l =10 52=0,1681, 3 =0.1
§=0.8 =10

SEQ

NUMBERIMJEST|{MAPEST|MLEST|ACTUAL
0 6 4 4 4
1 5 5 5 5
2 6 6 6 5
3 10 10 10 10
4, 6 6 6 6
5 4 4 4 3
6 6 6 6 5
7 3 3 3 3
8 13 13 13 13
9 2 2 2 2
10 7 7 7 7
11 10 10 10 8
12 9 9 9 9
13 5 5 5 5
14 1 6 6 6
15 7 7 7 7
16 1 2 2 2
17 11 11 11 9
18 3 3 3 3
19 13 13 13 9
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