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ABSTRACT

The adaptive control of two queues competing
for the services of a single server 1is treated.
The arrival rates and service rates are considered
constant but unknown. Counvergence results for
certainty-equivalence type, adaptive control sche-
mes are established. Several possible extensions
of the results are discussed briefly.

1. INTRODUCTION

Dynamic control of queueing systems is a sub-
ject of great interest presently, due to potential
applications in performance evaluation and design
of computer and communication networks and
systems.

Extensive bibliographies and reviews of
queueing control models and strategies can be
found in Crabil et al [1], Sobel [2], Stidham and
Prabhu [3]. Typically, classical queueing theory
methods treat static or steady-state models and
strategies. Recently examples of dynamic control
of queueing systems based on point process models
and their relevant theory have been given in stu-—
dies by Hajek et al |4, Bremaud [5], Roseberg,
Varaiya and Walrand |6}, and the authors [7] when
the queue sizes are not observable.

Quite often in practical applications, the
parameter values required in typical stochastic
queueing models are not known. For example the
arrival rates or the service rates or both may be
unknown and should be estimated from current
and/or historical data. Thus in practice adaptive
control of queues is required, in the sense of
designing a control strategy which will be respon-
sive to input and service characteristics as they
may change in time. To our knowledge very few
adaptive control studies of queueing systems have
been undertaken. The present paper analyzes a
simple adaptive control problem for two competing
queues. The results obtained lead to useful prac-
tical strategies and can be interpreted also as
parameter sensitivity analysis of optimal control
strategies.

The organization of the present paper is as
follows. In section 2 we formulate the problenm
and establish nomenclature. In section 3 our main
results on certainty equivalence adaptive control
are described. In section 4 a very brief descrip-
tion of a more complete method is given.
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2. PROBLEM FORMULATION AND NOTATION

We consider two queues served by the same
server in discrete time; thus in computer/
communication applications jargon we have
"synchronous systems”. The time is divided into
equal length time slots (which are prespecified),
during which arrivals and service completions can
occur, We let t = (0,1,2,... be the index of the
time slots. The situation is depicted in figure 1
below. We let xl(t), xz(:)

4

a =
Wt
21 r‘
¢ wl)=0

Figure 1. The server time allocation problem

Customers arrive into queues 1 and 2 according to
two ind?pengent Bernoulli streams with coaustant
rates A, A" respectively. Thus if we let na('),

i = 1,2 denote the two arrival processes,

A= pefale) = 1}, 1= 1,2, (2.1)

The two queues compete for the services of a
server. When the server serves queue 1, 1 = 1,2,
service completions follow a Bernoulli stream with
constant rate ui, i =1,2. Thus if we let ni('),
i = 1,2, denote the two departure processes, their
rates are time varying and depend directly on the
queue size. Let xi(t) be the number of customers

in queue i during time slot t, the customer in ser-
vice (if any) included. The control to be selected
concerns the server time allocation to queue 1 or
to queue 2. Namely when u(t) = 1 and the server
completes a services, the next customer to be
served comes from queue 1, while if u(t) = 0 the
next customer comes from queue 2. With this
nomenclature the departure rates



i 1 past histories of XX,

w(t,k,v) = Pr{nd(t)=l| 1 1
o ,n_ and u, up to time t
a’’a

Pr{n;(t)=l|xi(t)=k, a(t)=v}, i=1,2,

(2.2)
take the simple form
1 ulv, ifk#0
u(t,k,v) ={ (2.3a)
0, if k=20
2
2 W (l-v), if k # 0
u(e,k,v) ={ (2.3b)
0 , 1f k =0

We assume that during each time slot at most
one arrival and one service can occur when each
queue operates alone. We further assume that both
queues can grow without bound. This is done so
that analytical treatment of the problem becomes
possible. When the queues are bounded, e.g. due
to finite buffer size in computer/communication
systems, the methods used here lead to numerical
treatment; analytical solutions are no longer
achievable. 1In the latter case if Ni’ i=1,2,
are the maximum queue sizes for each queue, we
have additional constraints.

Al if k#0, all ¢, v,

ek v=r{al(e)=1 (2.6)

0 , if k=N, all ¢, v.

For further results in the case of bounded queues
we refer the reader to [8].

The controller has available (for the pur-
poses of selecting a strategy) both the departure
and arrival data (slot by slot). Therefore the
controller knows at all times the queue sizes. In
[7] we studied the partially observed case where
the controller had available only arrival data.
The difference here is that the controlier ioes
not know the values of the parameters A™, p~, { =
1, 2. They have to be estimated on the basis of

the observed data ni(s), nz(s), s<t, 1 =1, 2. We

i
assume that A~ ui, i =1,2, are constant but

unknown. We shall consider two cases: Apriori
information on these parameters is of the form

U e Mi , 1=1,2
i (2.5)
XeAi,i=l,2 7
where (a) Mi’ Ai’ are compact intervals or (b) Mi’
A, are finite sets.

i

Service is assumed not to be preemptive and
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server 1dling is not allowed. The decision slots,
i.e. the slots when control values can change, are
either service completion slots or arrival slots
when the other queue is empty.

The controller performance is evaluated in
this paper using two criteria. The first is the
long term average cost

1 n~1
J_ = 1lim inf = I c(x(k),u(k)) (2.6)
a n
n+o k=0

where c{x(k), u(k)) is the instantaneous cost. The
second is the infinite time average discounted cost

I =B 28 e(x(), u()] (2.7)
k=0

where Be(O,l] is the discount factor. In the
course of the analysis we will use on occasion
finite time average cost

n
J.=E{ I c(xk), ae))}. (2.8)
£ k=0

In the present paper the instantaneous cost c(x(k),
u(k)) will be taken as the instantaneous delay

c(x(k), u(k)) = ¢ x (k) + e x, (k) (2.9)
where Cls Sy
relative weight the controller attaches on delays
in queue ! versus those occuring in queue 2.

are positive constants modelling the

At each decision slot the controller must
assign the value 1l or 0 to the control variable
u(t) based on the following information:

n;(s), s =0,1,2,0.., t-1, 1=1,2
1
nd(s), s =0,1,2,..., t=1, i=1,2

u(s), s=0,1,2,..., t-1.

To ease notation we shall use the notation

t i i
y = {na(s), ny(s), 8=0,1,...,t,1=1,2}

(2.10)
ut = {u(s), s =1, 2, ..., t}.

Thus admissible control strategies Yy are sequences
of functions

Y= (8, 8y oer ) (2.11)

where

t-1,

u(t) = g G Wth (2.12)

and each 8, takes values in {0, 1}. Note that at

all times the controller knows the queue sizes,
since



x,(t) = ag(e) - ni(t) +x,(0), 11,2, (2.13)

Our objective is to derive optimal strategies
which are adaptive. We consider two methods for
analyzing adaptive control problems. The first
method is usually known as “"certailnty-equivalence”
type, adaptive control. In this method we first
solve the stochastic optimal control problem with

known parameters Al, ui. For the costs considered
here the optimal strategy is stationary, i.e. Yy =
{g, g, g, }, where g depends on the parameter

2

values; that is g(x) = g(6,x), where 0 = (Al, A

ul, uz). At each time t = 1, 2, ... the
controller selects by some method, e.g. maximum
likelihood, an estimate of the unknown parameters
which we denote by

8(t) = (Aley, 220, ule), ni(e)).

(2.14)

He then uses feedback control
u(e) = g(8(t), %) (2.15)
as a good candidate for adaptive control. In this

method the analysis is focused on the following
questions (problems):

(i) Does lim 8(t) exist? In what sense?
t >
Characterize the limit.

(ii) If SO

g(8(t),x) » g(eo,x) as t+o? FEstimate the

is the true parameter value does

rate of convergence.

- % *
(11i)If 8(t)+8 in some sense, how close is J(§ )
*
(i.e. the cost corresponding to 8 , which is
*
achieved by the strategy (2.19)), to J (eo)

(i.e. the optimal cost for the true para-
meter value)? :

The second method treats the adaptive coantrol
problem as a stochastic control problem with par-

tial observations. In this method Al, ui, i=1,
2, are treated as additional state processes which
are unobserved however. Since they are coanstant
they have trivial transition probability matrices.
We then apply stochastic control methodology for
partially observed Markov chains [7] - [11] and
obtain the optimal control strategy. The
resulting strategy is of course adaptive by
construction.

The consideration of infinite time and long
term average costs is crucial for the first method
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only. The second method can be applied in prin-
ciple for any cost, provided the problem is well
posed. However, there is tremendous difference
between the two methods, both in off line and on
line computations. The second method, although
straightforward, will be unfeasible numerically for
the general case. Furthermore the first method
suggests simple, practical, implementable control
strategies. Finally, convergence rates and estima-
tes cannot be computed in general for nonstationary
strategies. An important part of the analysis 1is
the comparison of the "optimal” costs achieved by
the two methods in order to assess the first (more
intuitive) method versus the global optimal perfor-
mance provided by the second. Work on this latter
subject is in progress and will be reported
elsewhere.

3. "CERTAINTY-EQUIVALENCE" ADAPTIVE CONTROL

In this section we analyze fully the adaptive
control problem posed in the previous section by
the so called "certainty-equivalence” method. For
the analysis that follows it is important to
display explicitly the probabilistic model for the
queues and in particular its dependence on the
unknown parameters.

The queueing model is identical to the one
developed in [7]; we shall therefore be brief. Due
to our assumptions the two queues are independent,
modulo the coupling provided by the countrol stra-
tegy. The transition probabilities for each queue
modelled as a Markov chain with countable state
space j[ , the nonnegative integers, are given by
(see [7] for details):

P;,j(v) = ahtGL,v + a-aba-etGLe))

(3.1)
i i, i,,
Pj’j__l(V) (=2 (3,v)
Pi =0 elsewhere
1.k ’

i=1, 2

where we have suppressed the time argument, since
it does not enter explicitly. 1In view of (2.4)
(2.5), letting

bl = algi-uly | b2 = (1-u2)a?

2 (3.2)

1 1 1 2 2
d” = y(1-27) , d° = u7(1-19)

(3.1) reduce to



A, 0 0
pl(1) = 4, 1-b-d, b 0] (3.3a)
d 1-b -d. b
o L. L 1
L -
- A 0 0
0 1- A 0
pl(o) = 1 1 (3.3b)
0 1A, .
- -
1-1, A 0 0
1-1 A 0 0
Pz(l) = 2 2 (3.4a)
0 1, A
1-1, A 0 0
4, 1-b-d, b, 0 o
p%(0) = (3.4b)
0 ~b -
dz. b4, b

The transition probability matrix for the Markov
chain representing both queues is given by

P(v) = Pl(v) [ Pz(v) , for all v (3.5)

where ® indicates matrix tensor product. It is
straightforward to establish that for any value of
the control variable v (i.e. 0 or 1), P(v) will
not be a block diagonal matrix and therefore any
state will communicate with any other. That is
P(v) is irreducible [12, P. 232] for each value of
v. There are no absorbing states for any value of

v. We assume that the values of Xi, ui, are such
that the Markov chain corresponding to each queue
when operated alone consists of a single ergodic
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class. This condition can be expressed as a sta-

bility condition on the matrices Pl(l) in (3.3a)

and PZ(O) in (3.4b) above. Thus our assumption
becoues

Ata, 1a1,2 . (3.6)

This assumption is quite weak and will be
satisfied by many practical systems. We shall
consider only strategies such that

"P(v) in (3.5) corresponds to a single (3.7)
ergodic class”

Following the steps described in section 2 we
consider first the stochastic control problem when
the parameters Xi, ui, i = 1,2 are known. This
problem can be thought of as a priority assignment
problem in a multiple class queue [1] and has been
investigated by several people in the past. To our

" knowledge all previous work has been directed at

the continuous time problem. Thus Cox and Smith
[13, P. 77] considered priority assignment in a
single server queue with k classes, with arrivals
modelled by independent Poisson streams with rates
Al, ceey Ak. Service times of different classes
were modelled by independent random variables with
probability distribution function Bj(') for the
jth class. The waiting cost per unit time for
class i was denoted by ci. The cost considered in
[13] was average waiting time per unit time (i.e.
J_ in equation (2.10)). The admissible strategies
wére open loop; that is the controller could not
use current informatiom, such as queue size, at
each decision epoch. The optimal open loop stra-

tegy derived in [13] is the so called "uc rule”.

Specifically 1if ui, i=1,...,k, denotes the inverse

of the first moment of Bi(-) (i.e. ui = %73 where

vi = average service time for the iCh ciass), opti-

mal priority assignment ranks classes according to

the value of the product Ulci, i=1, 2, ... k; the
classes with higher "uc values” given higher
priority. Rykov and Lembert [l4ﬁ and Kakalik [15]
proved that the same open loop "pc rule” was opti-
mal even among all feedback rules, which allowed
the controller knowledge of queue size at each
decision epoch only. That is in [14] dynamic
priority assignment was analyzed for average
waiting cost per unit time (see Eq. (2.10)), where
u(t) could be a function of xl(t—l), xz(t-l), cee

xK(t-l) which were assumed to be known to the
controller. 1In [13] - [15] queues without bounds

were considered. The rest of the model was iden-
tical to that treated in [13]. What 1s interesting



in this result is that the optimal stationary
policy does not depend on the arrival rates.

Harrison [16], [17], investigated the same
model with the objective of maximizing the
expected net preseunt value of service rewards
received minus holding costs incurred over an

infinite planning horizon with a positive discount

factor. He showed that there exists a very spe-
cial type of priority assignment, called a
modified static (i.e., open loop) policy which is
optimal among all feedback policies knowning queue
sizes. This particular rule assigns an open loop
priority ranking, which can be computed explicitly
given the system data,

i.e., Ai, Bi(‘), ey i=1, «e. K, via a finite

step algorithm {17]. A particularly important
feature of this policy 1is that in the case of two
classes it reduces to the “"uc rule”; that is it is
independent of the arrival rates. However, in a
queue with more than three classes, the deter-
mination of lower priorities does depend on the
arrival rates of higher ranked classes [17]. In
[16] - [17] unbounded queues were considered.

Finally, Mova and Ponomarenko [18] analyzed
an (M/M/c¢) : (PRI/N/®) system. Due to the finite
bound on the queue length they demonstrated that
the simple "uc rule” is not optimal via a numeri-
cal example. The equations characterizing the
optimal policy, show that it is a true feedback
strategy in the sense that it depends on the
current queue size and furthermore on the arrival
rates of all classes. Linear programming can be
used to compute the optimal policy which is sta-
tionary.

In summary, previous work demonstrates that
for the two competing queues problem in continuous
time (i.e. asynchronous systems) the "pc rule”
strategy is optimal for a variety of criteria when
i i .
the parameters A™, p~, 1 = 1, 2 are known. This
is remarkable and quite useful in practice since
several objective functions usually serve as per-
formance measures of a queueing system.

Our first objective in this section is to
establish a similar result for the discrete time
problem formulated in section 2. We consider
first the infinite time discounted average aggre-
gate waiting cost, i.e. Eq. (2.7). To obtain the
optimal policy we have to overcome a slight tech-
nical problem: the instantaneous cost c(x(k),
u(k)) in Eq. (2.12) is not uniformly bounded,
because the state space is j[ b4 ][. We shall use
results of Lippman [19] which allow polynomial (in
the state) growth of the instantaneous cost. In
the current model (see section 2) only a finite
number of states are accessible from each state in
one transition (see in particular (3.1) - (3.5)).
Specifically from the state (i , i, ) only the sta
tes (il’ iz): (il + 1: 12)9 (il - ’ 12)’ (il - 1’

Y, 4,1 +1), (il, i

iz 1 2-1), (11+1, 12+1),
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Theorem 1:

(il + 1, i, - 1) and (i1 -1, i + 1) are

2 2
accessible. Thus the modification (1°) [19, p-
720] of assumption (1) [19, P 71] holds here.
Assumption 1 [19, P. 718] is satisfied here with m
= ] and Assuamption 2 [19, P. 719] is satisfied
trivially here since only one arrival and one
departure can occur in each queue during each time
slot. A slight modification of the arguments in
[19, Theorem 1] for discrete time, establishes
Denardo's [20] N-stage contraction assumption in
an appropriate metric space with weighted sup
metric. These arguments provide the ideas behind
the proof of the following results since the
action set here is finite (i.e., the set {0, 1}).

For Be(0,1) there is an optimal sta-
*

tionary policy Yd for the infinite horizon

The

discounted average aggregate delay problem.

*
optimal policy and optimal cost V are determined
from the stationary Bellman functional equation

*
\ (i,, L)) =c i, + ¢ i  + B min
d 1’ 72 171 272 vel{0,1}
. (3.8)
b P (v) Vv, (3,,i,)
.. oo, d 192
Jl,Jzeﬂf 11,12,31,32

for all i

i

where P(v) is the transition probability matrix
described by (3.1) - (3.5). Moreover (3.8) has a
unique solution.

*
Let g4 (*,*) be the function : X x][

+{0,1} that defines the optimal policy. That is
* * * * 3.9
Ya,8 ™ (8,5 Ba,p7 Ba,prc) (3.9

It is determined implicitly from (3.8) via

*
T G e g
> | Sl A S 28 )

*
v (jl,jz)}-

]

(3.10)

We have the following result:

*
Theorem 2: The optimal rule 84 is the "uc rule”

and is independent of 8. That is, if u2c2>ulc

1



1, when 12 = 0
R (3.11)
g4(1),1,) :
#
0 , when 12 0

1 2
le i >
while if u c1 u c2

1 , when 11#0
*
gd(il’iz) = (3.12)
0 , when il =0

The proof of theorem 2 follows from direct
manipulation of (3.8) and is omitted.

Remarks: 1. The optimal strategy is open loop.

A similar result holds for nultiple classes (more
than 2), although the proof is more involved.

2. The optimal strategy does not depend
on the arrival rates Xl,xz. For more than two
classes this is no longer valid.

3. When queues are finite the "uc rule”
of theorem 2 is not optimal. These problems can
only be treated numerically. We refer to [8] for
details.

*
4. It is clear that both gd and
*

V depend implicitly on the unknown parameters Ai,
i . * i
W, 1=1,2. More precisely 84 depends only on -,
i=1,2. We shall emphasize this dependence by

* *
writing V (e,il,iz) and g (9’11’12)’ where 6 =

Al,Az,ul,uz), when discussing adaptive control.
Similarly we shall write P(0,v) for the transition
probability matrix (3.5).

We consider next the average aggregate delay
per unit time problem (see (2.6)). Again to over-
come the unbounded cost difficulty we use modifi-
cations of arguments from Lippman [19] and Kushner
[21]. From the discussion in the beginning of
this section (see in particular (3.6), (3.7)) for
each policy the Markov chain of the problem has
states comprising a single ergodic class. Our
analysis follows closer Kushmer's development [21]
with appropriate modifications. The result can be
obtained by taking the limit B+l on a normalized
discounted cost following arguments similar to
Lippman [19]. Let v = (g,g,...) be a general sta-
tionary Markovian policy. Admissible stationary
Markovian policies are only those for which P(g)
corresponds to a single ergodic class. Here P(g)
is the transition probability matrix (3.5) under
policy Y. Let w(g) be the corresponding row vector
of anymptotic probabilities

n(g) = w(g)P(g) . (3.13)

A
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Let C denote the vector with components

Ci,,4, =ci +ci . Let f(il,iz) = 1 and

2 171 272
define
aw) = 1 (2 - Faeedde (3.14)
n=0
and
I'(v) = z T (v) (clj1 + c2j2) . (3.15)

S IS DL A N Y
By definition T'(v) is the limit of
I p(n)
S IS P 11,5301,

with this notation, state our next result.

(cljl + CZJZ) as n+», We can,

Theorem 3: There is an optimal stationary policy

*
Y, for the average aggregate delay per unit time

*
problem. The optimal policy and optimal cost Va
are determined from the functional equation

%*
A(il,iz) + Va(il,iz) = cli1 + c212 +

+ min L P

8(3,,3,),
L . 2
ve{0,1} 3 ,3,eX 11,1,33,,3, !

(3.16)

forall 1, 1. e X

1 2

The proof of theorem 3 involves modifications
of arguments from [19] [21]. Again optimality is
in the sense of nonanticipative policies [21, P.

*

158-159]. Let g (*,*) be the function defining the

*
optimal strategy Y, of theorem 3. We have then the

following result.

*
Theorem 4: The optimal rule g, is the "pc rule”

described by (3.11), (3.12).
. *
We note that an alternate expression for Va is
'R * +c,1) (3.17)
Va = (g niphlp) (ef) +cyt) .
1,1 ¢
1772
*
where w(ga) is the asymptotic probability vector

corresponding to the "pc rule”.

Remarks: 1. Optimal strategy is open loop.

2. Optimal strategy does not depend on

b2,



3., Results are valid for more classes.

4, Finite queues can only be treated
numerically (see [8]).

5. Again we explicitly denote depen—
dence on parameters by writing

* *
Va(e,il,iz), ga(e,il,iz) and P(6,v).

To complete the certainty equivalence adap-
tive control scheme we need only to estimate

ul, u2 since the optimal strategy with known para-

meters does not depend on xl, Az. We use maximum

likelihood estimates of ul, pz based on the obser-

vations nz(s), s<t, 1 = 1,2, Namely let u = (ul,

uz) and
_ Pr(x(r), x(e+l); u(e), u)
HEW = o), x(erD); wo), w, Ot
where p. is the true value. Then if
0 -1
L(t,u) = T 2(s,w) (3.19)
s=0
the max likelihood estimate is given by
w(t) = arg max L(t,n). (3.20)

We obtain then the following result in the case

Mi (see section 2) i=1,2 are finite sets.

* *

2

Theorem 5: ul(t), uz(t) converge to ul ,» W° with

*
probability 1 as t+w. Furthermore if g (u,il,iz)

denotes the optimal feedback strategy with para-
meter u

P ( * ok : *
i.,1,33,,] g (u ,11,12).u )=
177227172,

Pil’iz;jl’jz(g (u ,il,iz),uo). (3.21)
The proof of theorem 5 uses modified and

simpler arguments than [22] due to the special

structure of our model. In particular note that

the “"pc rule” (3.11) (3.12) is open loop. Thus

(3.21) in view of (3.1)-(3.5) implies

°1 1
wie) *» u,

as tt= w.p.l. (3.22)
W2

For example applying (3.21) with i =1, 1

1 = b

i, =0, 3, =2ve get

1

*

wboamaly a2 = b

*

for any Al, XZ which implies u1 -

110-
%
Corollary 1: The control values u{t) = g (u(t),
11,12) converge a.s. as t*e to the values u(t) =
TR
g (u0’ 1427

In view of the special structure of the
problem the likelihood functions (3.18) (3.19) and

the maximum likelihood estimators ul(t), uz(t)
obtain a particularly nice form. Indeed [12]

oo
z nd(s)
s=1

wl(e) = < (3.23)
I u(s)

s=]1

t

T ni(s)

“y s=1

wi(e) =<
I (l-u(s))
g=1

(3.24)

In case the denominators are zero we keep the pre-
vious estimate. Recursive expressions for (3.23)
are easy to obtain

t

I né(s) + né(t)

~y s=1

wi(trl) = ¢
L u(s)+u(t+l)
s=1

;1(t) + né(t)/U(t)

= (3.25)
u(t+l)
1 +-ﬁ?;7——
where )
U(t+1) = U(t) + u(t+l) (3.26)
Similarly
2o + nﬁ(t)/v(c>
2
no(e+l) = 1o (e D) (3.27a)
v(t)
where
V(e+1) = v(t) + l-u(t+l) . (3.27b)

Finally the adaptive strategy is



1 if xz(t) = 0, or if xl(t)$0

u(t) = and ﬁl(c)c1>ﬂ2(c)c2 (3.28)

0 if xl(t) = 0, or if xz(t)¢0
and ul(t)c1<u2(t)c2

It is seen that the adaptive strategy changes from
time to time. However corollary 1 establishes con—-
vergence to the correct policy.

There remains to obtain estimates on the
costs obtained by the adaptive strategy. Work on
this part of the problem is underway.

4. ADAPTIVE CONTROL AS STOCHASTIC CONTROL
WITH PARTIAL OBSERVATIONS

The main utility of the second method is to
obtain performance estimates for practical sche-
mes, such as the one studied in section 3. As

. 1 2 1 2
explained in section 2, we treat A", A, n ', u
here as additional states with transition probabi-
lities

P =1, P = 0 for i#j (4.1)
Al Al Al A
174 b |
and similarly for the others. Here Al =
1.1 1
{Xl,kz,...xK}. The augumented state is
x={1,i, i, ,4, , i ,i }. (4.2)
172 AT )
queues arrival departure
rate rate

The observed variables are

y(8) = {al(e), ni(v), nX(e), ni(0)} . (4.3)

We are thus in the framework of [7] with
Sij(t,v,w) = Pr{x(t+1) = j,y(t) = wlx(t) =1,

2xAleZ.

One can formulate and solve the infinite horizon
discounted cost problem (eq. (2.7)) and average
cost per unit time problem (eq. (2.6)) for this
semi Markov model. The results allow treatment of
finite queues numerically. Work on comparison
between the two methods is continuing.

we) = v}, 1,50 Tx e x

REFERENCES
[1] T.B. Crabill, D. Gross and M.J. Magazine, "A
Classified Bibliography of Research on Opti-
mal Design and Control of Queues”, Operations
Research, Vol. 25, No. 2, March-April 1977,
pPpP. 219-232.

(2]

M.J. Sobel, "Optimal Operation of Queues”, in

434

(6]

(7]

(13]
[14]

[15]

[16]

[17]

Mathematical Methods in Queueing Theory (A.B.
Clarke, Edt.), Lecture Notes in Economics and
Math. Systems, 98, 1974, pp. 231-261.

S. Stidham, Jr. and N.V. Prabhu, “"Optimal
Control of Queueing Systems"”, Ibid, pp.
263-294.

B. Hajek and T. Van Loon, "Decentralized
Control of a Multi-Access Broadcast Channel”,
IEEE Trans. on Aut. Control, Vol. AC-27, No.
3, June 1982, pp. 559-569.

P. Bremaud, "Optimal Thinning of a Point
Process”, SIAM J. Control and Qptim., Vol. 17,
No. 2, March 1979, pp. 222-230.

Z. Rosberg, P. Varaiya and J. Walrand,
"Optimal Control of Service in Tandem Queues”,
IEEE Trans. on Autom., Control, Vol. AC-27, No.
3, June 1982, pp. 600-610.

J.S. Baras and A.J. Dorsey, "Stochastic
Control of two Partially Observed Competing
Queues”, IEEE Trans. on Autom. Control, Vol.
AC-26, No. 5, Oct. 1981, pp. 1106-1117.

A.J. Dorsey, "Adaptive Control of Simple
Queueing Systems”, Ph.D. Thesis, Electrical
Engineering Department, University of Mary-
land, College Park, 1982.

P. Varaiya, "Notes on Stochastic Control”,
Unpublished Class Notes, University of Cali-
fornia, Berkeley, Department of Electrical
Engineering and Computer Sciences.

R.D. Smallwood and E.J. Sondik, "Optimal
Control of Partially Observable Markov Pro-
cesses over a Finite Horizon"”, Oper. Res.,
Vol. 21, No. 5, pp. 1071-1088, 1973.

E.J. Sondik, "The Optimal Control of Partially
Observable Markov Processes over the Infinite

Horizon: Discounted Costs™”, Oper. Res. Vol.
26, No. 2, pp. 282-304, 1978.

D.P. Heyman and M.J. Sobel, Stochastic Models

in Operations Research, Vol. 1, McGraw-Hill,
1982. -

D.R. Cox and W.L. Smith, Queues, London:
Methuen, 1961.

V.V. Rykov and E. Ye. Lembert, "Optimal Dyna-
mic Priorities in Single Queueing Systems”,
Eng. Cybern. Vol 5, No. 1, 1967, pp. 21-30.

J.S. Kakalik, "Optimal Dynamic Operating Poli-
cies for a Service Facility”, Technical Report
47, Operations Research Center, MIT Cambridge,
MA 1969.

J.M. Harrison, “A Priority Queue with
Discounted Linear Costs”, Operations Research,
Vol. 23, No. 2, March-April 1975, pp. 260-269.

, "Dynamic Scheduling of a



s A o A <

(20]

Multiclass Queue: Discount Optimality” Opera-
tions Research, Vol. 23, No. 2, March-April
1975, pp. 260-269.

V.V. Mova and L.A. Ponomarenko, "On the Opti-
mal Assignment of Priorities Depending on the
State of a Servicing System with a Finite
Number of Waiting Places”, Eng. Cybern., Vol.
12, No. 5, 1974, pp. 66-72.

S.A. Lippman, "Semi-Markov Decision Processes
with Unbounded Rewards”, Managm. Science,
Vol. 19, No. 7, March 1973, pp. 717-731.

E.V. Denardo, “"Contraction Mappings in the
Theory Underlying Dynamic Programming”, SIAM
Rev., Vol. 9, 1967, pp. 165-177.

H. Kushner, Introduction to Stochastic
Control, Holt, Rinehart and Winston, 1971.

V. Borkar and P. Varaiya, "Adaptive Control
of Markov Chains, I: Finite Parameter Set",
1EEE Trans. on Autom. Control, pp. 953-957.

435



