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ABSTRACT

In a previous Paper the notion of a block
diagonally dominant transfer function matrix is used to
provide criteria for the design of decentralized
feedback control. 1In this raper we develop computer
implementable algorithms for determining the block
diagonsal dominance condition. The algorithms are
developed with consideration for numerical stability.
Implementation of the algorithms in an interactive
computing environment is suggested.

1.0 Introduction

In [3] the present authors described a new design
methodology for decentralized feedback control based on
a frequency dependent notion of low-interacting
subsystems. Using a generalized Gershgorin theovem for
partitioned matrices we provided a definition of block
diagonal dominance of a matrix rational transfer
function on a contour in the complex s plane. This
criterion was used to establish conditions under which
a2 plant can be stabilized by constant gain
decentralized linear feedback. Moreover the dominance
margins (analogous to the radii of the Gershgorin discs
in the standard case) are shown to be wuseful in
determining robustness of the closed loop decentralized
structure to modeling uncertainty.

In this paper we concentrate on the computational
problem of determining whether a matirix transfer
function is block diagonally dominant (BDD) along a
significant portion of the imaginary axis. The
flexibility inherent in the method in terms of .choice
of matrix norms and partitioning leaves us with several
computational problems which do not arise in the
standard case [1]. The structure of the paper is as
follows. In section 2.0 we give some notation,
definitions, and describe the fundamental computational
problem. In section 3.0 we discuss the development of
computer implementable algorithms for determining BDD
over a closed interval of the imaginary axis.

2.0 The Computational Problem of Determining BDD

2.1 Notation/Definitions
Throughout this paper we will use the following
notational conventions. An nxn matrix, A, will often
be considered in an mxm block partitioning. The Aij
will denote the ijth submatrix of dimension kixkj where
m =
%F1ki—n.

Given a vector space norm |*}, in addition to the
usual induced matrix norm,
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_ sup |Ax| 1
LATRE e (1)
we can define a matrix infimum or reciprocal norm as
inf |Ax|
= . 2
020 x#0  |x (2)
. -1 -1 .
Clearly for A nonsingular [JA([] = |IA7 |17, Wwe will

denote the set of singular values of a matrix A as

sing(A). Let
A min a
omin(A) = gesing(4)
(8) max [+

“nax = gesing(A) °
Thus using the Euclidean vector norm omin(A) = [a D2
and omax(A) = [|A||2-

Definition: An nxn matrix vational function A(s)

partitioned into mxm subblocks is said to be block

diagonally dominant (BEDD) on a contour I in the complex
plane if

dA,r = Zt? {max[ ?2; di(s), ?é; di(s)]} > 0,
for all s on T where
m
a() = Dag ()0 - = liag (o)1
k#i
. m
4= D0 - 2
and m = {1,2,...,m}.

2.2 The Computational Problem

As discussed in LB] we ‘are concerned with the
design of decentralized feedback compensation which can
be expressed formally vies the equations,

u(s)

Fy(s) + v(s)

y(s) = a(s) -

u(s) =

where G(s) is the nxn plant rational transfer function
matrix and F is an nxn block diagonal (decentralized)
constant feedback compensator. We are concerned with
conditions which guarantee, the regularity of the matrix
return difference, R(s) = I + FG(s), for s along a
significant portion of the jw axis. The relationship
between BDD_ and regularity of R(s) suggests that the
quantity [R(s) [J, thought of as a measure of
regularity for R(s) at s, will play an important vole.
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The relationship between matrix regularity conditions
on K(s) and inclusion regions for its spectrum (as
provided in this case by the generalized Gershgorin
theorem) is intrinsic since k(s) - Al is singular it
and only it X is an eigenvalue for R(s). Considerable
freedom is available in defining [J*[] (since we can
choose any vector norm), but for computational readsons
there is an obvious natural choice. Similarly, the
quantity ||H (s)|| provides a measure of closed loop
robustness in the face of modeling uncertainties, where

H(s) = G [I + F(s)G(s))™'. This
m m

considering uncertainty as an additive perturbation
4G(jw) to the true plant response G (jw); i.e., G (jw)
= G (jw) + AG(ju), with known bound “£(w) > |[8G(:)]].
If H|H (juw)||<2(w) then the closed loop structure
remains’ stable for all perturbations satisfying this
bound {10].

follows simply by

The computational problem considered here is to
determine for 'some desired partitioning of the plant
transfer tunction matrix, G(s), if G(s) is bDD along a
closed interval, @ = [-jw ,jw ], of the imaginary axis.
This criterion can be exp?essgd as

* min

d, =

1
i wed {max[di(u). d;(w)I} >0

(4)

tor each i ¢ m, where

m
di(u) = DGii(ju)D - kii IIGik(ju)II,

m (53
'
d; @) = [Je;; Gw[ - Ly G Gl

and m = {1,2,...,m}. Futhermore, to establish certain

design objectives ot closed loop robustness we

may need to compute estimates for the dominance
*

margins, di for ieg.

3.0 Development ot Computer Implementable Algorithms

3.1 Computational Considerations for the Choice of

Norms

The matrix norms ||A]]|_, the matrix absolute
row-sum, and |[|A||,, the matrix absolute column-sum,
offer obvious computational advantages over ||a|l|,, the
maximum singular value of A. However, computation of
the associated infima, [JA[J, and [JAQ_ . is more or

less equivalent to computing the matrix A~ and

then computing the norm of At

first,
By construction of the

closed contour T, we know that Gi.-TCs) will exist on T
[11. Inversion of Aii(s) at "a finite number of

irequencies w, oﬁ“i“ , can be
standard algorithms for the solution of systems ot
linear equations; e.g., an LU or QR factorization
method may be used, both of which are available in
LINPACK [6]. The computational cost for this approach
3

will be dominated by approximately k: multiplications
required to compute these factorizations for each w.
(Typically a QR method requires twice as many
multiplications as the LU method but is potentially
more stable numerically.) However there is no
guarantee that‘the matrix condition number with respect
to inversion, k(A (s)) = HAii(s)H/[]Aii(s)[j. will
not be large for ‘'some s on T. 1f this is true it
indicates that the calculation of A;;(s) and therefore

DAi.Cs)[]: Ill\ii_I(s)ll_1 may be largely dominated by
roundotf errors:® From (4) and (5) we see that this may
occur when the accuracy of the calculation is most

implemented using
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crucial tor BDD considerations. This suggests that
independently of the norm used, estimates of the
condition number, K(Aii(s)). should be also computeq.

Alternately, A;;(s) can be computed over the field ot

rational functions via a modified Faddeev algorithp
[5]. However, this algorithm may be numerically
unstable in practice [9].

Let sing(A) denote the set ot singular values of A,
Then the maximum and minimum singular values of A(s)
are:

||Alf, =0 __{A} = 'max ]
max o ¢ sing(A)
DAD2 =0 . {A} = min g .
min ¢ £ sing(A4)

We can theretore exploit standard, numerically-stable,
algorithnis for determining the singular values ot A(s)
tfor a finite number of values of s on I'. 1t is our
opinion that the use of the Euclidean vector norm on
all subspaces s most appropriate for general
application ot our results, primarily because of the
availability of standard 'software which has been well
tested [6]. 1n section 3.3 we discuss the application
of this standard 'soitware to the problem ot finaing
Oa(jw)d, and propose an algorithm for doing this.

The price we pay for using the 2-norm is the
computational cost. 1f standard software is used to
find the full singular value decomposition (SVD) of the
submatrix Ai.(s) then typically four times as many
multiplicatioﬂs are required as for either an LU or Gk
tfactorization. method at every value s on I'. We wish to
point out, in detfference to the former conclusion, that
in special cases there may be other (perhaps more
gross) estimatés of the dominance margins involving
other matrix norms which will suffice tor our
applications. For instance, by recognizing the
equivalence of norms on tinite dimensional spaces we
can state that a sufficient condition for A, an mxm
matrix partitioned as above, to be EDD using the «®-norm
on all subspaces and having margin of dominance di for
iem in that norm;

: m N
i.e., DAiiDm =Ty HAijl |, 2 d; tor iem
is that
=1/2 m .
k] [:]1\11[12 > Ty ||Aij||° +d; for iem.

This follows from the well known fact that for B ¢ cmxn
YT||Bl|, > [1El]l,. Or equivalently that /u[JB[]_ 2>
B[], (ct.[141).
Thus we can calculate an estimate (lower bouna) for
the row (or column) dominance margin, di(s) (or d{(s)).
measured in’the ®-norm as
o m
- I .
Oa;; 0. #i

d. = kf1/2

i i
which is tight for k., a small integer. In such cases
we can take advantage of the computationaleffi€éiency ot
the matrix «®-norm for the off-diagonal blocks. However
in many cases (e.g., k.>>1) this may be a conservative
estimate of the actual” dominance margin. (In fact you
may not be able to determine if a matrix is BDD from
such estimates at all!) Wwe wish to emphasize that such
computationally efficient estimates for the margin of
dominance otffer signiticant advantages in the
determination of partitions “"natural" to the problem at
hand.

gl

3.2 Determination of Block Diagonal Dominance: A Line

Search Problem

Clearly the computational problem of solving
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equation (4) over the closed interval 2 of the
imeginary axis may involve a very costly line search
unless conditions are available which can characterize
a finite point subset of & within which the minimum
must lie. Usually this would be done by finding the
roots of the derivative (as long as it exists) of the
function being minimized. Except in simple cases where
these roots can be found algebraically, we would
usually employ a recursive root finding method (e.g-,
Newton's method) whose convergence would depend on
either:

(i) an assumption of differentiability of the
function everywhere on R,

or (ii) an assumption that the function is unimodal on

Q.

In the case of (4) neither of these assumptions
holds on & Given a rational matrix function, A(w),
weR and any vector norm the associated matrix norm
|{A(w) || and matrix infimum, A(w) d, are each
continuous functions of w which are not continuously
differentiable on Q. Thus clearly di(u), d%‘(u), and

W w)émﬂ[di(u),di(w)] are each continuocus on wefi. In

such cases the best one can hope for is to solve (4)
approximately by recursively refining a finite grid of
points, Qk(_: ﬂi i.e., Qk c SH(HE;“QH. The resulting

sequence, {d'}k=1’ converges to di in the sense that d.
<a k.
— i - 1

From a practical standpoint we would like to make
use of some additional problem structure so as to more
intelligently direct recursive refinement of the grids,
q{. For this reason and because of the discussion in

3.1 we will consider only the Euclidean vector norm in

defining di( w), and d:'.L( w). Thus we rewrite (4) and (5)
as

- ) > o
) 4")
wi(u) = max ]_di( W), di( W)}
for iem and with
m
4w = fe,Gul - T g {6, (3wl
k#i
(5")
1 m .
4;(0) = o 16, (Gl - k;. O s (JW) 1+
1

This puts us in contact with the spectral properties of
the singular values of matrices. Let A(w) be an fxp
complex valued rational matrix function of the real
scalar w. (A(w) will be used to rvepresent generically
the submatrices Gik(ju).) Without loss of generality,

take p. We prefer to define the % nonzero singular

values for A(w) as Gi(u) i=1,..., % which satisfy the
symultaneous equations

AW 37 () = o () x (o)

) + . (6)

AW x () = o, (w) v (W)

for the unit length vectors (0 e c? and yl(u) e cP
called the 1left (resp. right) singulacr vectors

associated with the ith singular value, oi(u).

Proposition 1:

The derivative of some oi(u) € sing {A(w)},

dci(u) A lim Lai(mh)-oi(u)J
dw h-0 h ’
exists and is continuous for all weR where o (w) is
A s

distinct; i.e., ci(u) # aj(u) for j € 2, j # 1.

(ef. [16]).

Proof:

.Indged when ci(u) is distinct we can calculate the
derivative as

doi(u) _ i :

L yl () da(w) i

du X (w)

%
+ xi*(“) [_dg(uu)
L J

. i i
where x (@) and y (v) are the right (resp. 1left)
singular vectors for A(w) associated with 9 (W). This

formula is easy to see by recognizing that1(6) can be
written

(7
7w

( 1 ( ]
(i*( 5 “<)>> - egar |
\ J

. = 0.
v (o)
( J

Then differentiation of () leads to (7).

(8)

Next we observe that the following assumptions will
hold in most design situations.

Assumption 1: The rational matrix transfer function

G(s) will be analytic for s = ju wef,

Assumption 2:  Let wi( w = max[di(u),di(u)] for iem.

Then the set 2 & @ of points in @ at which dv,/de does
i

not exist is a finite countable subset of 9 with the

property that the points w EE Qi are isolated in 9

~

i.e., for any two points w,,w, € yl

1772
an open neighborhood Be( 81) of
contain Yy

Remark:

Qi there exists
u1 which does not
W e R in the set

% Qi is associated with one of three possible events:

The inclusion of a point

(1) cmin{(}ii(u)} is not distinct for some iem
or  (ii) cmax{Gik(G)} is not distinct for some

i,k em, ifk

(1i1) 4,(D) = a;(3) for some iem.

For the above class of functions v.{w over 2 we
i

can q‘eflne uniquely upper znd lower limitirg values for

d‘bi w) " ) ~ ~
——L_du at uieﬂ in the following sense. Take w € & and
i

choose two sequences i_u_)k} and {w } converging to & from

X
Lelow_(resp. above); i.e., :(32<...<gn<a and Ko <w
- n

<...<u1). Then n-1
lim dwi(gk) ) '(A\ lig du‘_(uk) _n
ko do B U (w).

-~

Cleatrly if Ei(w) TL]-_(@ < O thern Wi(u) is & local

extremum for V¥,(w).
With the above framewotrk for the class of functions

V. (W), we willl propose a algoritim for generating a
séquence of refined grids % €5 C .’:2 C *** € G based

on the idea of bisection in rtoot finding. To do this

481



e ————

we need the following assumption. algorithm will be most useful in an intervactive
computing environment whevre the user can apply

Assumption 3: We can choose an initial grid & ¢ @ engineering insight.

with the property that for any two adjacent points Wy

3.3 An Algorithm for Computing [Ja(jw) [, Along w ip @

u2, € ﬂo there exists no more than one point w ¢
[‘_01’(.,2] at which ¥(w) has a local extremum. Sevgral sta.ndard procedures are. a_vailable for
calculating the singular value decomposition (SVD) of a
Thus we offer *he following algorithm. matrix (see [6]-[8]). These procedures are numerically
Algorithm for Recursive Grid Refinement : stable and well tested. Since A(s) is rational in s we
. see that amax{A(s)} and ominiA(s)} are both continuoug
Purpose: To compute wi( w) = min \I)i(w) real-valued functions of s for s on I Thus if we
wef evaluate omax{A(s)} (or aminiA(s)} ) for a finite set

(cf. eqns. (4') and (5'))
of values of s equally spaced azlong T then for adjacent

Given: <0, a finite point set ("grid") on @ values of s the corresponding maximum (or minimum)
. is ordered s.t. w > w singular values will be close. In this section we
n+ n lgorithm which determi the mini (
forn=1,..., N -1 propose an algori whic etermines e minimum (ov
N, = cardinality of @ maximum) singular value of A(s) for s along a.
and o is a miminum’ desired grid point  significant portion of the juv axis.
resolution

To see how this might be done consider an inverse
SteE 1: Compute v.(w) for w € ﬂk (cf., section -~ 1lteration on A ,i.e.; solve recursively

i,
.3 for details)
33 a1 LG o
Step 2: Compute for w ¢
nk ) starting with some judiciously chosen E(O). From the
la.( )] spectral decomposition of A it can be seen that the
d ld.(w
— Ll Lifd (W > a'(w sequence of vectors {E(k)} will convergence to the
dvy, (w) dw 1 1 space spanned by the eigenvectors associated with the
P S eigenvalues of A of smallest modulus. If the vectors
duw
d[d{w] are re-normalized at each iteration so that ||_1_(_(k) Ia=1
1 ,if dal(w) > d.(w then for k large enough a good estimate of the smallest
dw 1 1 eigenvalue is
f. (7 *
(cf., eqn.(7)) Aio =_}ﬁ(k) A_x_(k)
* _ min { } N
Step 3: Set b, = wel “’i(”) In practice this works well [13] in the important case’
when |[A . | << |a I; i.e., A is ill-conditioned with.
&* = arg v* min max
1 respect to inversion.
Step 4: Now recall that if o ¢ sing(A) then there exist
Upet ¥ vectors x and y with appropriate dimensions so that
nk+1—ﬂlch{“_("nér 2 Gprlpeq € 8 _
Ax =gy (.1)
= 1,2,.00,N -1
for n 1<y i ’ A*_z - 02
dy. dav. | | > e} * 5 3
El( Un+1) <0« El(un), Yt < Yy € where A* is the complex conjugate transpose of A. Here
x and y are called the right and left singular vectors
Set Nk+1 = cardinality of nk+1 of A associated with the singular value 9, respective-

ly. The right singular vector, x is also an eigen-
vector associated with the eigenvalue *=0? of A¥A and

Step 5: 1If = veturn ¢, and w* and stop. Y 1s an eigenvector for the .same eigenvalue but
Gt 7 % 1 associated with AA%.

Else return to step 1. )
An inverse iteration applied to the pair of

The computations required in step 1 and step 2 equations

above involve finding the minimum (or maximum) singular oy (k+1) (k)

value and associated right and left singular vectors A(ju)x =¥

for certain matrix subblocks of G(s) (see equation oy (k+1) (k) (3.2)
(7)). Although this information is available from ¢ A*(J"’)X =X

full singular value decomposition we propose an . . . .
algorithm in section 3.3 which concentrates on finding <S5 the basis for the algorithm which follows.
the minimum amount of information necessary in an

effort to decrease computational cost. Algorithm for finding [JA(ju) (. :

We wish to point out that construction of an Given: A(ju), a pxm matrix rational in ju with p>m,
initial grid, , which meets assumption 3 may be Aw,w_, _ the frequency increment and bandwidth
difficult for lafge multivariable problems even when a Trespectively, and e<<, a tolerance based on computer
transfer function model is known. However via an precission aund required accuracy.

appropriate partitioning of G(s) for decentralized .

control we hope that this construction may be more Degin:

physically motivated by looking at the subsystem and X

interconnection dynamics separately. Clearly the Step 1: Set N := “’O/A“ and find the full SVD of
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A(J0) by a standard procedure [6].
A(J0) = wz*

Zz* = 1 _,
m

non-zero diagonal elements {o,, 0, ..., %m} ordered
such that o, > ... > a > 0.

Save the righf7l§%€_ singular vectors associated

where Ww¥ =IP, and I is a pxm matrix with

with %W in

Z =2 r M iE oW

For i := 1 until N,Do:
Step 2: Set Ui := i1 Aw and factor

N -~ = ~
A(Jjuw,) = Q. R, = =
(ju) =@Q; Ry = lq, CJ R, =@ [gl
8

%~ *
where QiQi = IP, QiQi = Im, and Ri is right triangular
matrix which is the first m rows of R.. ©Note that Q.
is the first m columns of Q.. Remark: Standard
routines are available to perfo%m the QR factorization

above which require approximately m3 operations {15]-

Step 3: Set

ROR
) ,_ .*
Y - Qi ¥
Note that 3(1), X(l), 2z are m-vectors while w is a
p-vector.
Step 4: Set k := 1
Step 4.1: Solve sequentially
RY L) ()
and R, x(k+1) = v(k)

i= -_

by forward and, backward substitution.
approximately m operations.

This requires

Step 4.2: Normalize the new vectors
a - E*(k+1)£(k+1)] 1/2
a, = l*(kﬂ) l(kﬂ)] 1/2
L) e
v(k+1) 1= v(k+1) / d
- - v
Step 4.3: Compare the new vectors with the last
pair
* *
Ir |x (k)z(k”)‘fx (k)l(kﬂ)_1 | < e
Then Go To Step 4
Else set k:=k+1 and return to step 4.1
Step 5: Compute the minimum singular value of
A(jui5 as
; *
0(%) :=Re { v (k1) R. x(k+1) }
min - i=
+1
Step 6: Save z :=.§(k+1) and W := Qi l(k )
While i<N Increment i:=i+1 and Return to step 2
Else re?ugn the sequence of singular values of
. i)y N
AGo), Lol N
This type otf iterative algorithm offers a

computational advantage over the standard methods for
finding the full singular value decomposition only if

the iteration (i.e., steps 4.1-4.3) converges rapidly
to the desired accuracy. This is why we initialize the
algorithm with a full SVD at w=0 and wuse the
appropriate singular vectors to initialize the next
iteration. Whenever convergence is slow we recommend
re-initializing by computing another full SVD. This
should provide reasonable savings over certain regions
of the jw axis.

Since for the intended application the computations
will be applied to submatrices of the overall system,
it is reasonable to assume that these matrices will be
of relatively low order. The above algorithm should
then have both the efficiency and numerical stability
nescessary for the relatively 1large amount of
computations needed.

We mention that a related method for finding
singular values that would require the formation of

AT(-ju)A(jU). A naive approach here would require
approximately m  floating point operations to form the
Hermitian matrix at each w. However when A{jw) is
ill-conditioned with respect to inversion this product
could easily be dominated by vroundoff error. A more
sensible approach would involve again obtaining the QR

factors of A(jw) where the Hermittian form AT(_-ju)A(ju)
= R*R reveals the Cholesky factors [13,pg.158j. If we
then apply inverse iteration to the Hermitian form we
would find an algorithm similar to that above except
that we have masked the use of the left singular vector
of A(jw) in the iteration. This could have a

potentially detrimental effect on the convergence of
the algorithm [14].

Another related method would be to solve for the
singular vectors by inverse iteration on the matix
A(ju)-Iolast. Here we use the last singular value

found at say w,, the last data point, as an estimate
for the next singular value at w,=dw+uw,. However if
the estimate is not close enough we may instead of
finding omin(A(jwz)} find some other singular value for

A(jw,) which is closer to o than is o . {A(ju,)}.

last
This can happen due to too large a step, Au,
clustering of the singular values of A(juz).

or due to

To change the algorithm to find the 2-norm,
[l1A(jw) |], = ¢ _A(jw) merely exchange the indexing of
the vectors v and x in step 3.1 so as to implement the
usual power method iteration.

3.4 Considerations Relative to Form of Plant Model
Data

We have considered here problems in which the
plant model is available as a rational matrix
expression in- the Laplace variable s. The algorithm
above also works well for the case where we obtain real
data on the system frequency vresponse from measurements
on the system. n this case we have a series of
matrices {G(j“i))i=1' In the case that we have a state

space realization, G(ju)=C[juﬂ—A]_1B it appears that
more work must be done. However efficient algorithms
exist for calculating G(jw) for a large number of we@
L94-

4.0 Conclusions

The advantages associated with decentralized
feedback control for large scale multivariable plants
are well known. For many practical large scale
engineering problems the modeling problem can be
greatly simplified with decentralized control since
useful physical insights can be brought to bear when
modeling subsystem and interaction dynamics separately.
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Notions of closed loop robustness and parameter
insensitivity are perhaps best established from
frequency response models (cf.[10]-[12j). By basing
design of decentralized feedback control on certain
frequency response measures of subsystem interaction
one can obtain measures of closed loop robustness which
include robustness to model uncertainties in
interaction dynamics. [3]

In the INA method developed by Rosenbrock and his

colleagues the decentralized .control viewpoint is not
emphasized primarily because of a desire to reduce
subsystem interaction through the use of series

multivariable compensators to the point that single
loop (classical) feedback design technigues can be
applied. When decentralized control is the objective
we prefer (rather than attempt to adjust subsystenm
interaction) to investigate and exploit "natural”
system partitionings and frequency response measures.
The flexibility available to exploit these system
partitionings for decentralized feedback control based
on_block diagonal dominance is discussed more fully in

[3].

Our purpose in this paper has been to show that the
determination of the generalized notion of block
diagonal dominance of a partitioned transfer function
matrix requires a sizeable~-but manageable-burden of
computation. In this paper we address the problem of
determining whether for a given partitioning the open
loop transfer function matrix is BDD. Thus we postpone
the design problem of choosing decentralized feedback
compensation until BDD has been established for the
open loop plant (cf. [3]). We have emphasized two
aspects of the computational problem.

First, the design of numerically stable algorithms
for computing the frequency dependent matrix norms and
dominance margins. Here we emphasize the use of
singular values in computing the matrix norms primarily
because their spectral properties permit the design of
the algorithm in section 3.%. This algorithm is based
on a modified inverse power method iteration with well
known convergence properties (cf.[15j).

Second, the design of a search algorithm with known
convergence properties for evaluating the BDD condition
of (4) and (5). Convergence of the proposed grid
refinement algorithm is based on assumption 3 which may
be difficult to guarantee in practice without applying
additional engineering or problem specific insight.
Thus we conclude that the natural environment in which
to implement these algorithms is an interactive
computer-based code. In such an environment the
engineer or designer can apply the above algorithms
together with engineering insight and problem specific
knowledge towards the goal of assessing feasibility of
decentralized feedback control for a variety of system
partitionings.

These algorithms have been coded on a VAX~-1170
computer in the Ratfor language at the Naval Research
Laboratory. They are currently being integrated into
an interactive package which will be used to assess
feasibility of some large space structure decentralized
control schemes. Results of these studies will be
reported elsewhere.
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