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ABSTRACT

This paper provides a new geometric concept for a
stability margin for feedback control systems which is
applicable for any number of inputs and outputs. The
measure of stability margin employed has the advan-
tage over standard measures of exposing certain addi-
tional internal stability properties of a feedback
configuration employing dynamic compensation.

The stability margin is based on the essential
topological features of an abstract Nyquist criterion
proposed by Brockett and Byrnes. This abstract
Nyquist criterion for multivariable systems involves the
topology of intersections between certain pairs of sub-
spaces of the direct sum of the system inputs and out-
puts. The measures employed here are derived from the
idea of principal angles between a pair of subspaces.

Some examples are given which highlight the
differences between these measures and other more
standard measures.

1. Introduction

In classical design of feedback control the use of stability
margins plays a role not only in determining system performance
but also in providing guidelines for the choice of dynamic
(lead/lag) compensation. In contrast existing stability margin con-
cepts for MIMO systems focus on analysis of performance and
robustness of control once the compensation has been chosen. This
is accomplished by applying perturbation analysis for matrices
(using for instance SVD analysis) to a matrix return difference.

In this paper we discuss an alternate construction of a stabil-
ity margin for feedback control. This "geometric” stability margin
is based on natural topological considerations for linear systems
and can be readily computed using the notion of "principal
angles” between a pair of subspaces. Moreover, unlike margins
based on the return difference which reflect the loop transmission
for some fixed loop breaking configuration, this geometric stability
margin reflects a certain »distance” between two (possibly
dynamic) transfer functions (one for the system or plant and one
for compensation). Thus in certain cases where possible cancela-
tions occur in forming the return difference this geometric stabil-
ity margin can provide additional information about the potential
for internal instabilities which would not be evident from the
usual methods.

We begin by motivating the idea of a stability margin for
feedback control in terms of the distance between a "critical
point” and a Nyquist contour. We review the abstract Nyquist

{ Research supported in part by NSF grant ECS-82-10123A01 2t the Unjversity of
Maryland, College Park.

contour suggested by Hermann and Martin as a “"curve” on a
Grassman manifold. The natural topology of the Grassman mani-
fold involves angles between subspaces. We next provide a review
of the gap-metric and the principal angles between a pair of sub-
spaces. Based on this circle of ideas we define a geometric stability
margin in terms of the gap-metric and discuss its properties for
this application. Finally, a few simple examples serve to illustrate
the properties of the geometric stability margin.

1.1. Background

Despite the popularity of the classical notions of gain and
phase margin we will take the viewpoint (following [HE1}) that a
slightly more conservative measure of stability margin is appropri-
ate. Given the usual feedback equations

g(s)u(s)=y(s). ul(s)=-/J y(s) (1.1)

where g(s) is a rational transfer function and f is a constant feed-
back gain.

Definition : The combined gatn-phase margin, ggm €R_, is given
by

Gom 2 inf |1+ fg(s)] . (1.2)

1=juw

Clearly ¢4, is just the euclidean distance between the Nyquist
locus resulting from some loop breaking configuration and the
»critical point” at -1. As a measure of stability margin gg, is
more conservative than gain and phase margins since it accounts
for possible simultaneous gain and phase variations. The practical
extension of these ideas to MIMO systems is probably most mean-
ingful by generalization of ggn - This is at least in part due to
lack of general significance of any other notion of multivariable.
phase which can take into account the individual phase of each
scalar transfer function g;; (s ) appearing in G (s).

Some recent work on extending these notions of stability
margins to MIMO feedback [DO2,LE1] has focused on the
characterization of specific classes of allowable (non-destabilizing)
perturbations in terms of a measure of stability employing the
minimum singular value of a matrix return difference (say
I, + FG (s)) depending on loop breaking location. That singular
value analysis is an appropriate tool in studying perturbations has
been well known by numerical analysts (cf. [BJ1]). However for
this analysis it leads to the possible definition of several different
measures of stability margin; e.g.,

9 :—e inf FrinlFm + FG(s), 1
r=jw

o

(1.3)

9o mf_ Umln[]p + G(s )F] ’
s=juw

N

inf ompllm + {FG (s 1IRE

e=jw

inf omll, +{G(s)F}'].
r=jw

9

e

9o

1 We use the notation O (A ) to denote the mimmum singular value of
the matrix A
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each of which may lead to different characterization of allowable
perturbations since in general these measures all achieve different
values. These measures are however pot completely independent
as discussed by Safonov et al [SA1].

2. A Geometric View of MIMO Feedback

In this section we provide background on a particularly use-
ful geometric construction of an abstract Nyquist contour for
MIMO systems. We focus on some particularly salient properties
of the abstract Nyquist contour for MIMO systems as discussed in
[BR4). We start with the general MIMO feedback equations with
u GU=C"‘ , yGY-——C"

G(s)u(s)=y(s), u(s)=-Fy(s) (2.1)

with G (s)ER? X™(s), FER™*7 which we write suggestively as

In F (u (s )] =0

G(s)-l, y(s)' —
The geometric theory of linear systems and feedback centers on
the relative orientation of the two objects,

G(s)sker[G(s),—I,]

(217

(2.2)
and

F = ker [I,,, , F] (2.3)
which for any s €C are a pair of subspaces in UgY = cCc**m
Following Hermann and Martin [HE2] we can state the following.
Theorem 2.1: [HE2'. A complex number s, is a closed loop pole of
the feedback equations (2.1) if and only if

dim (G(so)nF] >0. (2.4)

Hermann and Martin [HE2' suggested the following definition
of an abstract Nyquist locus.

Definition: The (abstract) Nyquist locus, T, of a p Xm transfer
function G (s ) is an algebraic »curve” given by the map

s — ker[G(s),—l,,]

as the image of the closed contour D. T'g is contained in the com-
plex Grassman space consisting of all m -dimensional subspaces in
C?*™ . We consider a curve in a more general sense as an analytic
map from a Riemann surface to a complex analytic manifold, viz.,
the complex Grassmanian. In this sense a curve has complex
dimension one or real dimension two.

The complex Grassmanian is the set of all p-dimensional
complex subspaces of C", which we denote as Grass(p ,n).
Grass(p ,n) admits the structure of an analytic manifold in this
case of dimension np - p"’. A fundamental property of
Grass(p ,n ), which was successfully exploited in |[BR4] toward the
construction of a generalized Nyquist test, is the duality between
Grass(p,n) and Grass(n-p.n ). In particular, a canonical
representation of a point XecGrass(p ,n) is as a hypersurface
o(X) C Grass(n-p,n). This so called Schubert hypersurface is
given by

oX) = {Ye Grass(n - p. n): dim (XNY) 2> 1} ;o (2.5)

ie., all Y € Grass(n-p,n) which intersect X € Grass(p ,n) non-
trivially. .

The most significant aspect of the abstract Nyquist locus,
T'¢, as constructed above is that it is fixed with respect to choice
of feedback compensation, F, in contrast to methods which focus
on eigenloci or determinants of a matrix return difference.

However, the construction is quite general and allows connec-
tions with more standard analyses. For instance, by change of
basis in the space of inputs and outputs, U@Y, one can generate
a new "rotated” Nyquist contour, I'y. In the particular case

[G(s).—],] ‘cl'("s) —7,, = [o,c(a)r+1,] (2.6)

reveals a "rotated” curve, I', as
ker[o. G(s)F +I,]: D —T,.

However, the transformation

[GI'("s) —II:,]

represents a valid change of basis in C?*™ only for s not a closed
loop pole. To say this another way I', is a valid curve contained
in Grass(m,p +m) whenever s is not a closed loop pole for s on
D. (Of course the standard construction of D does not guarantee
this.) Thus, from this geometric point of view one can see the
advantage of working in the "patural” basis (given by (2.1')) in
defining a "legitimate” Nyquist contour.

A geometric viewpoint is taken in Brockett and Byrnes [BR4
in describing a generalized Nyquist criterion. Here for the first
time the general case of G(s) € R? *™(s) with p Fm is treated,
although somewhat abstractly. Significantly, their approach
avoids formulation of the return difference matrix and as a result
allows the separate characterization of an abstract critical point
(resulting from F) and a Nyquist locus (resulting from G (ju)
This formulation preserves most nearly the practical aspects of
Nyquist criterion exploited in SISO system design [BR4'.

Using this dual structure (cf. [BR4] and {BY1! for details} the
following theorem is provided.

Theorem £.2: (Generalized Nyquist Theorem)

Suppose G (s) is a proper rational p X m transfer function matra
with no poles on Re s =0. Suppose the abstract Nyquist locus T';
does not intersect the Schubert hypersurface o(FB ) defined by the
feedback matrix F. Let p, be the number of open loop poles of
G (s) in the closed right half plane (CRHP) and p, be the numbe:
of closed loop poles in CRHP. Then

N(FG;U(F) =P P (27

where N(e;e) is the number of encirclements of the abstract
Nyquist locus I'¢ about the Schubert hypersurface o(F) taken 12
a positive direction on the Grassman manifold.

Proof : (cf. [BR4)).

Clearly theorem 2.2 does not admit any readily obviiit
graphical representation that would permit the determinatiol o
the winding number N (except in trivial cases). However tbr
theorem does permit us to ascertain the stability of 8 MIMO fee
back system involving a plant G,(s) with feedback F, by testizé
for homotopical equivalence with some other feedback $)sir~
G J(s) with F, (of appropriate dimensions) which is knows t- te
stable. To show such equivalence we will need a measure ofbh®
close a point G(s )EGrass (p,m +p ) is to some Schubert hyper.”
face o(F)EGrass (p.m+p).

We next consider a special class of transfer functions whow
Nyquist loci have special properties. )

Definition: A transfer function G(s)ERF XM (s) i sart “,, ?_'
degenerate if and only if there exists some Schubert hyperm-"3"
o(X)C Grass(m ,p +m) associated with some X€Gras'y m°F
which contains the abstract Nyquist locus. | e

According to [BR4] degenerate transfer funcuo
special.

ne are £’

with MoV
can e 8T

Theorem £.8: |[BR4] Let G (s) be strictly proper
degree n. If mp <n thep nondegeneracy is gener!
of strictly proper transfer functions. If mp >n. then ¢
is degenerate .

Gt

Proof: (cf. [(BR4), Thm. 4.2).
The notion of stability marginsv
involves a measure of how close the NY

as discusseC 18 % -
»

quist contour re:”

bat nosdegede ®Y ® s
re 0t !

N
ussion, the statement t
t In the context of this disc g

eric means that the set of all degenerate transfer
by algebraic equations
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i

. "cmical point”, 2 in the complex plane. In this geometric set~

g We will be concerned with how nearly I'g intersects the

opriate fixed hypersurface o(F) for F = ker Um F). In

) ..'..'qration for these results we discuss in the next section the
;:-.logy of the Grassman manifold.

; Angle Topology of the Grassman Space

¥ ). Plucker Metric
s discussed above the Grassman space, Grass(p ,n), is the
gt of 8ll p-dimensional subspaces of C". Clearly for any
'\::Grass(p.ﬂ) we can express p basis vectors for N in terms of
\;e coordinate systems by writing an n Xp matrix say B,;. In
_ .ems Of some other coordinate system we can write a new matrix
, 2, In this case there exists a nonsingular p Xp matrix A such
B,=B.A and conversely. Thus
¢\ = image (B,) = image (B,).
{ Following Byrnes, et al [BY1] we state

1 afinition: The Plucker coordinates of a p Xn matrix B is the
/| dimensional vector of determinants of all p Xp submatrices
%

+B.

1t is easy to show that for any B, and B, as above their
gspective Plucker coordinates will differ by a scalar multiple of
ach other; i.e., their Placker coordinates are aligned. One way to
.rovide a notion of distance on Grass(p ,n) is then to think of any
"o subspaces of dimension p say N,Megirass(p ,n) in terms of

4eir Plcker coordinates (say ¥y, VM €C'"’"). Then the function
(1 - “1; vy )
lun ll2 llvas ll2
<ap "angle” metric and obeys the property
1< d(NM)<1.

d(N.M) = (3.1)

39. Gap Metric

Another sort of angle metric can be described by thinking of
points in Grass(p ,n) in terms of the p-dimensional subspaces of
C" that they represent. Here we take an abstract »basis-free”
viewpoint in describing the subspaces.

Let MNCC" be subspaces. Let dim M = p and dim N
—m. The following function called the gap (or aperture) between

M and N is defined in Kato [KA1,pp.197}.

Definition: The gap between M and N is
M ,N) =

max
{1

The gap function obeys the following préperties which follow
immediately from the definition.

(3.2)
sup  inf ly -zl }

sup inf |z - ¥l
N I I lly =1
yEN

x j=1 y€
z2eM

P1) SMN)=0 I and only if M =N.
P2) SMN) = &N.M).
P3) o0< §MN) £ 1.

Furthermore, the gap function obeys the following property which
will be significant for us:

P4) SMN)<1if and only if dim(M)
pg. 200)).

In general, the gap, §M,N), is not 2 metric.} However, after
modifying the definition slightly by taking infimums over the
appropriate unit ball in each subspace, the resulting modified gap,
5(M,N). obeys the triangie inequality and thus becomes a metric.
Property (P4) clearly indicates that using this modified
" gap-metric” one can actually form a basis for a topology of the
Grassman space via neighborhoods of the form

= dim(N) (ef. [KA1,

—— e
t In the sequel we will consider the gap based on the euclidean vector
porm. In this case the gap is & metric

B M) = {NEGra.ss (pn)dMN)<e< 1} .

3.3. Orthogonal Projections in Unitary Space and the
Gap Metric

In a unitary space, E", we can employ the notion of an
orthogonal projector to represent a subspace MC E™; ef,, take
E™ = C" and the natural inner product <z, y> =7 y. If
Pu(resp. P) is an orthogonal projector whose range is the sub-
space MCE™ (resp. NCE") then using the natural Euclidean
norm we can state the following:

Theorem 8.1:
M, N) = [Py - Pnllz-

Proof: (cf. Kato (KAL)
Property (P4) of the gap is then related to the following fact.

Theorem 8.£2: Any two orthogonal projectors Py PN which
satisfy [Py - Pnll <1 are unitarily equivalent. That is, there
exists a unitary transformation U such that UPM(" =PN (U
is unitary if U U =1).
Proof: (cf. Kato [KA1)).

Unitary transformations have an intuitive geometric appeal
because they represent orthogonal rotations of the given vector
space coordinate system. Thus we see that with the structure of 2
unitary space the gap-metric (here the gap function &(e,8) becomes
naturally a metric) takes on a particularly patural geometric
appeal. Indeed, in finite dimensional unitary spaces, for which we
have interest, the transformation U of theorem 3.2 can be
represented by an easily computable matrix. In Kato [KA1] these
results (and others) are used to study perturbations of linear
operations on infinite dimensional spaces. In Stewart [ST1] similar
ideas are applied to certain numerical problems in the computa-
tion of invariant subspaces for matrix (finite dimensional) opera-
tors. As we discuss in the subsequent sections our concern is
slightly different but will follow along the same line of reasoning.

3.4. Near Intersection Between Subspaces and the
Minimum Gap Function

From the statement of the generalized Nyquist criterion
above it is clear that we will be interested in characterizing the
»near” intersection between certain pairs of subspaces. On the
Grassmanian manifold this is characterized by near intersection
between a point MEGrass(p ,n) and 2 Schubert hypersurface
o(N)CGrass(p .n ) associated with the subspace
NeEGrass(n—p .n).

Towards this end we provide the following:

Definition: Let MCC" be a p-dimensional subspace and NCC"
an m-dimensional subspace. Then the minimum gap (or min-gap )
between M and N in C" is given by,

“M'N)=

min inf inf jz - ,
{ fixlj=1 yeN I vl
zeM

(3.3)

inf inf -z
lyil=t 2eM ly I }
veN

Obviously, the minimum gap satisfies the properties:
(P1) 0<YMN) < §M.N)
(p2) ~"MN)y=o0if and only if dim(MNN) > 0.

Based on (P2) it is clear that, for the abstract Nyquist cri-
terion described in section 2, the min-gap can provide a measure
of distance between the abstract Nyqyist contour I'g and the
abstract critical point o(F) as

min YG(s). F).
Res = 0
where G(s)EGrass(m ,p +m) and FeGrass(p .n). In section 4.0
we consider this further.

Following the line of reasoning of section 3.3 we make the

following claim.

(3.4)
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Corollary 9.8: 1f Py and Py are both orthogonal projectors in
C" with image(Py) =M, image(Pp) = N then

M, N) = [Py, - PNl } (3.5)

Remark : Here we introduce the notation [A] Let |e| denote a
vector norm on the subspace X of C". Then denote the matrix
infimum or reciprocal norm as:

JA{= inr LAz
:;)g [z ]

Clearly if A is nonsingular then
AL =AY,

3.5. Canonical Angles Between Subspaces

There is a natural notion of angles between pairs of sub-
spaces in a unitary space. In finite dimensional spaces these angles
can be computed from singular values of a particular matrix. If
we let MN be a pair of subspaces of C" with dim M=p, dim
N=m . Assume m >p. Then we say the smallest angle between

M and N (e [BJ1]), 6,(M.N) = 016[0,%}, is given by

cos §, = max max u’ v . (3.6)
veM  veN
flulig=1 fjv[l,=1
Following Bjbrck and Golub [BJ1] we define recursively the princi-
pal angles, 6, , k=1,...,p as follows.

Definition: The principal angies 0 G[O,—;r-] between M and N are

given recursively for k=12 - ,p by
cosf, = max max u'v =1y "y (3.7)
vueM  veN
liufig=1 LY lig=1
subject to the constraints
* *
Ui u =0, v;"v =0 (3.8)
for 7= - k-1 We  call the set of vectors
{uy gy, vy v, } the principal vectors for the pair of

subspaces.

In this section we review how the principal angles can be
computed for a pair of subspaces. The relation between certain
principal angles and the gap will be clarified using orthogonal pro-
jectors. The result will be a computational procedure for deter-
mining the gap, é(e , @), and the min-gap, (e, ), between a pair
of subspaces M, N. Moreover using the principal vectors we can
compute a basis for the intersection, MAN. For the problem of
multivariable feedback such a basis can be used to describe how
certain modal behavior of the system is reflected from an input-
output view point.

The main computational result which we exploit requires
that we have a unitary basis for each of the subspaces M and N.
Since this can be obtained conceptually using a Gram-Schmidt
procedure (and in practice using Householder reflections) we
assume that we have a pair of matrices Q) €C"*™ Q, €Cn *?
with  Qn*Qn =1, and  Qu " Qy =1, such  that
image(Qp )= M and image(@y)= N.

Theorem 8.4: Given @y and @n such that image(Qy ) = M and
image(@x) = N each a subspace of C". Compute the singular
value decomposition (SVD) of '

Q' Qv =Yy C Yy’ (3.9)
where
Yu* Yy =Yy Yy’ = Yy* Y =1, (3.10)
C = cos ® = diag (a,,‘..,a,]
with singular values o, > - - > o, and
e=diag[€,,...,0p) .

—_—
t Note that in finjte dimensional unitary spaces that the right hand side of
(35) 15 just the minimum singular value of the matrix difference
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Then 6, < - - < 6, are the principal angles between M and \
The columns of and U=gQ,, Y. V=Qn Yy are the princip‘,,
vectors. i
Proof: (cf. [BJ1,thm.1}).

Corollary 8.5 Let Pym=QuQy*

be an orthogonal Projector o,
M. Then compute the SVD of -

(1,, —PMJ QN = WM S YN. (3_”)

where S = sin®. Here WM gives the principal vectors ip
orthogonal complement, MP*', associated with the pair of syh
spaces M,N.
Theorem 8.6: As above, let Py and Py be orthogonal
on M and N respectively. Then the nonzero eigen
Py - Py are tsinb, for i =1, - - - D
Proof: (cf. {ST1,thm 2.5]).

Finally we can state as a corollary to theorem 3.6:

Projectors
values of

Corollary 8.7: With the above notation
M, N)= ”PM -~ Pyl = sing, . (3.12

A

M, N)= IPy - Pyl = sin f,. (3.13,
Proof: See Theorem 3.1 and Corollary 3.3.

3.8. Computational Procedures for Obtaining the Gap
and Min-Gap

Following the procedure suggested by coroliaries 3.7 and 35
we can provide a straightforward, numerically stable, procedure
for computing the gap or min-gap between a pair of finite dimen-
sional subspaces M\N€C” in terms of some matrix representa-
tions. In this most general form, the procedure is computationally
intensive.

Let M,N be represented as Mi=image(M), N=image(N)
where MeC">*> NeC"X™ Ty, following procedure can be

coded directly for computer solution using, for instance, LIN-
PACK routines [DO1].

Procedure for Computing the Gap or Min-Gap

Given: M, N, apairof n Xp (resp. n X m ) matrices
Step_1: Obtain a unitary basis for M. Conceptually, this is
done by obtaining a QR factorization of M
Ry
M = [QM»ZM} [o J
where Ry, is right triangular matrix and [Qy , 2yl is
unitary. Then @ is the required n X p matrix of uni-
tary bases for M.
Step_2: Obtain a unitary basis for N4 Again, employ a QR fac-
torization as
RA'
N = [on.2v] [o}
with Ry right triangular. Now, Zy is the n X(n -p)
matrix of bases for MP*"
Step_3: To compute the gap, &M, N), (resp. min-gap, (M, N))

obtain the maximum (resp. minimum) singular value of
the (n — p)Xm matrix

Zn Qu -

Remark: The QR factorization outlined here can be performed
using a numerically stable algorithm involving the use of House-
holder reflections to compute the transformations. This has been
implemented efliciently in LINPACK routine CQRDC {DO1].

Remark: The product of unitary matrices can be obtained in &
numerically stable way. Then application of a standard algorithm
can provide the required singular value. The routine CSVDC is
available in LINPACK for computing these quantities {DO1].



. Generalized Stability Margins from a Geometric
Viewpoint

For the purposes of designing feedback compensation, it is

- ysuslly more convenient to consider a slightly different stability
R margin; viz.,

g’ om —'irel;)lf“+g(5) P

which is the euclidean distance between the Nyguist contour, I'y
/ixed with respect to g(s)) and a critical point, s=——1—, depend-

jng on the choice of feedback. Furthermore, insight can be gained
for the design of dynamic (lead lag) feedback compensation in this
setup by considering a locus of critical points, I‘, where
JYs): D—Ty [RO1, pp. 56-59].

Clearly any generalization of ¢' am
feedback based on regularity of the matrix function F71+ G(s)
on D can be meaningful only in special cases (e.g. p=m and F
ponsingular). However, the geometric Nyquist criterion discussed
in section 2.3.2 suggests applying the topology of the Grassman
space to construct a measure of how nearly the subspaces
G(s) = ker [G(s)-{,] and F = ker [I, F(s)] intersect in
UsY.

41. Definition and Properties of a Geometric Stability
Margin

We employ the minimum gap function, ~(N, M), between a
pair of subspaces N and M of a unitary space to measure the dis-
tance between the abstract Nyquist locus, F(;g Grass(m ,p+m)
and the Schubert hypersurface, a(F), representing the fixed criti-
ca) point F = ker {I, . F] € Grass(p,m+p ).

to the case of MIMO

Definition (Geometric Stability Margin): Given G (s)ER’ M (s)
and FER™*? the geometric stability margin. gym . is a real
number 0< g,m <1 given by,

9 2 inf A G(s). F). (4.1)
2€D

In this section we focus on some properties of the geometric
stability margin which clarify its relation to more traditional sta-
bility margins.

Theorem 4.1: A point soeC is a closed loop pole of the feedback

equations (2.1) if and only if either of the following holds
@
det [, + G (so)F ) =det i, + FG(so) = (4.2)
(ii)
q(kerLG(so)'—I,,‘;, ker I, . F]) =0 (4.3)

Next we would like to show that for,
6,(5) = Omni Im + FG(s),
$a(5) = Omnldy + G()F |,

ss(5) = nGs) . ).

which map the closed contour pCC into R (resp. lO.l}ER for
¢5), if for some §,, ¢,(s,) achieves its minimum on D then ¢o(s,)
and ¢4(s,) also achieve their respective minimums at 3,. To do
this we consider some further aspects of the topology of Grassman
manifolds.

Lemma 4.2: With YEGrass (p.m +p) the set
B(Y) = {XEGrass (p.m+p) 86X Y) < (} , (4.4)

is a convex, neighborhood of Grass(p ,m +p ) for e<1.
Lemma 4.8: Let T CGrass(m,p+m )} be the abstract Nyquist

contour associated with the G(s)ERP "™ (s) and
F = ker {I,, F]. For any XEB,M(F)(_:Gra.ss (p.m+p)
N ;oF))=N(Tg:oX)). (4.5)

Proof: (cf. [BE2])

Finally, we clarify the extent to which g, Pprovides similar
information with respect to gain variations in F. With respect to
an appropriately constructed contour D (which avoids poles of
G (s) on jw axis) the values ~+Gi(s), F') on D form a proper sub-
set of {O,I]QR which is both closed and bounded. Therefore, we
can replace the definition (4.1) with

Gom — MiN +Gs). F). (4.17)
scD

In the following theorem we will consider the case (which is
most typical in practice) when the set

arg min '7(G(s ), F)
s€D

consists of a single point s *eD . More generally, this set will con-
sist of a countable number of points on D.

Theorem 4.4:1f

gom = min w(Ges). F)>o0. (4.7
seD
and
s* = arg min '7(G(s),F), (4.K)
sl
then there exists a "gain” K .,eC’ XP such that
min FG(s), X) =+«G(s"). X) =0, (49)

3
for some X = ker [I,, FK,] if and only if there exists a
K ,€C?*? such that

ixéfD det[l, + G(s)FK,] = detll, + G(s*)FK, = 0.(4.10)
’
Moreover, K, and K, both satisfy

Kl 2 (4.11)

1
IG(sHF
Proof: (cf. (BE2])

5. Application of the Geometric Stability Margin and
Some Examples

In this section we seek to demonstrate some salient features
of the geometric analysis of stability margins for feedback systems.
We indicate, by way of illustration, that the geometric stability
margin proposed in the previous section has some peculiar proper-
ties which can extend its application to more general settings than
the classical case. Indeed, even for SISO analysis, the geometric
analysis can provide additional useful information which can be
lost using the classical approach.

As in the previous section, our discussion focuses on the pro-
perties of the maps

¢1(s)=amlnilm +FG(S)J ’
¢2(S) - amln”y + G(S')Fj ,
6ss) = «(Gis) . F):

viz.. their respective local minima on D,

Gom 1= Inf &y(s).
s€D

= inf s).

9om 2 = I0b éq(s)

Gom 3 = inf da(s) .
s€D

In the SISO (classical) case where p=m =1 we get

¢(s)=1+ fgls)= #a(3)
is broken. However, ¢3(s) is
@o(s) even in this case.

regardless of where the single loop
fundamentally different from d(s) =
Corollary 5.1: In the SISO case where p = m = 1 the geometric
stability margin becomes,

(5.1)

9em = :ng ¢8(s)
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for each sGCU{oo} in terms of the set of all possible ordered
pairs in UX X ; ie.,

graph{G (s)} = {(u(s), G(s)u(s)) EUXY}.

So the geometric viewpoint focuses on identifying the equivalence
between graph{G (s )} and ker (G (s ), =L ] for s ECU{oo}4

Next we remark that given a (left) coprime factorization
G(s)=D"Ys)N(s)
then clearly
G(s) = ker (G(s),~I,] = ker [N(s), =D (s)]

bas rank m over the fleld of rational functions. This means that
rok G(s)=m for s €CU{o0)} - {Pu} . Thus G(s) can be
thought of as an element of Grass(m,p+m) for s €CU{co} -
{p.i }; but for some sequence Sy — Poi the sequence G(sn) does

not have a limit on Grass(m,p+m). Nevertheless, if we think in
terms of graph(G (s)) it is clear that

X, = lim graph {G (s, )} € UgyY

is a subspace of U@Y such that
dim Xo YY) > 1.

Thus we make the following observation based on the angle topol-
ogy of the gap.

Theorem 5.2: Let Po1€{P,; } be an internal closed loop pole of
2.1). Consider any sequence s, EC which approachs D,,- Then

1im»7(G(s,,),F(a,.))=0~

Proof: (ef. [BE2]).
Ezample 5.2: Consider again example 5.1 where we reveal another
possible internal loop breaking configuration as illustrated in Fig-
ure 5.4. Here H(s) is the 2 X1 transfer function

25 + 1

His)= |° (s + .0125)2 + .01]

25 + 1

and

(s + .025)% + .01
s +1

, —4

F(s)=

A hidden mode is revealed. We plot in figure 5.5 the curve
vH(s), F(s))for s = ju with w€0.1,8.].

Finally, we state a caveat. In the case that a hidden mode
exists for some dynamic feedback configuration; eg.,
J(s)= f'(s)/a(s)and g(s)=a(s)g’' (s), then the function,

1 1
et 9(s8) | = la(s)| | ———+9g' (s)].
| I (s) S (s)
amounts to a scaling which can degrade the numerical condition-
ing of the computational problem. Use of the min-gap function
does not mitigate this problem. Indeed,

[1/%(3)(1)] [g'l(S)II—l(S)] [GE)S)’(I)] - [g(IS)I—(IS)]'

is again a scaling of the feedback equations which can degrade thev

numerical conditioning of the problem of computing the principle
angles via singular value analysis in the neighborhood of a root of
a(s).

8. Conclusions

We have presented a new concept for a stability margin for
feedback structures which is broadly applicable without regard for
the number of inputs or outputs. The geometric stability margin is
fundamentally different from the standard measures used even in
the SISO case. It appears that this stability margin may be useful
in many cases where p5m and where guidance is sought for the
choice of dynamic compensation. The metric employed can be
readily computed using numerically stable algorithms.
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S -1 0 1
real part fg(jc)

Figure 5.1: The Nyquist plot for Example §.1.

11+ fo(i)

re

4 o)
0.0 0

o 1
© = frequency (rod/sec)

Figure 5.2: ¢,(jw) vs. w for example 5.1.

min-gap — ¥(.G)

Ton 1
w - frequency(rad/sec)

Figure 5.3: ¢3(jw) vs. w for example 5.1.

> 1,,(8) > 8y p(s)
1 -

Figure 5.4: The Loop Breaking Configuration for Example 5.2.



where
| g(s)f +1 |
$a(s) = .
) Vit g Ha+ 119

Proof: We consider a constructive approach based on the compu-
tational procedure given in section 3.6. We can represent the two
subspaces alternately as,

G(s) = ker |g(s) . -1} = image [g (15)] '

(62)

and
F = ker [1, [ | = image [-‘f]

Thus we obtain normalized basis vectors for the pair of 1-
dimensional subspaces as.
]
1

F = image ——————
Vit |f|*

and for the orthogonal complement,
-g(s)
1

1+ lg)|?
Then (cf. (3.13)) from step 3 of the computational procedure we

obtain
-F ) -f
(7o) o]
Vi + Jes) I+ i f | %)

G’ = image

'7(G(s).F)=sin€:

f

and the result follows.

Thus we see that &;(s) in this case involves a "normalized”
return difference in order to make 0<6é,(s)<1. In the general
MIMO case (p 5%m) the procedure of orthonormalization is more
complex. Computation of the matrix product reveals,

¢ )| [-F] _ -F
] [£] - beera) 7]
= G(s)F + 1, .

Then as the computational procedure suggests, obtain QR factori-
zations,

['Gz;(s)] = [%(s).za(s)] [RGO(”) — Qs(s)RG(s).

where for each s on D, Qg (s) is (p +m)Xp and Rg(s) a right
triangular p X p matrix.

{,f] er.z] 5] = errr

with @Qf is (p+m yX m and Ry a right trianguiar m X m matrix.
Thus we can compare ¢,(s) and ¢q(s) by comparing the singular
values of Q& Qp with those of

G(s)F + 1, = R§(5)Qc(=)Qr Ry .

(The relation (5.4) amounts 10 nothing more than an algebraic
statement of the computational procedure used.)

(5.4)

Ezample 5.1: To illustrate these ideas we consider a simple SISO
example. For some loop breaking let the loop transmission be
1
(s)= .
Je(&) =TT + 1)
The resulting Nyquist contour for 8 = jw with w€[0.25,8.0] is

displayed in Figure 5.1. The relevant euclidean distance between
this curve and the critical point at 8 =-1 is given by ¢{(Jw) which

is displayed in Figure 5.2 giving ggm = 0.7 occurring at W' =1
rad /sec. The curve $4( jw) is displayed in figure 5.3 giVing ggm =
041 at W' =1 rad./sec. The value g,m = 041 suggests a
minimum principle angle between

ker |1,1

and

1
ker [s(s +1)(2s + 1) '_1]

for 8 =jw of §=24.2 degrees. The significance of the asymptotic
value ¢,(0) = 0.707 (or 6 = 45 degrees) comes from the following
observation. With reference to (2.1") for
g(s)=1/s(s + 1) (2s + 1) we see that g (s) has a pole at the
origin. (Of course D would be appropriately indented to avoid this
pole.) Thus g(Jjw)—00 as w—0 which in the geometric picture of
(2.1°) implies that
' kerlg(j@).-1] = Y

in terms of the angle (gap) metric. Thus 45 degrees is just the
angle between U = ker{1,0f and F = ker{1,1}.

It is important to recognize that the geometric stability mar-
gin analysis we are discussing appropriately generalizes, from clas-
sical frequency domain analysis, the notion of "distance” between
a Nyquist contour and 2 fixed point without employing the return
difference. Horowitz has observed [HO1, HOZ2; that any physical
feedback control system will involve dynamic compensation with a
dynamic plant (e, g(s). f (s )GR.,p (s)). The complication for
stability analysis involves the possible existence of snfernal poles of
the resulting closed loop transfer function. Such internal poles
exist due to possible cancellations in forming the loop transmission
F(s)G(s) when the McMillan degree of F(s)G (s) is strictly less
than the sum of the respective McMillan degrees of F(s) and
G (s).

In terms of the geometric picture of feedback.

L. F(s)
G(s) -1,

we see that we may have difficulty in estimating the tegularity,

|s}. for all s on D of
Im F(S)
L= [G(s) -1,

as a map on U@Y in terms of a transformed basis,

e

I, + F(s)G{(s) ¢]
2 __
= 0 I + G(s)F(s) (56)
The basis given by the right hand side of {5.6) suggests we can
estimate [T] in terms of the regularity of an operator on or

However, for s, in the neighborhood of an internal pole the

transformation
I, Fi(sy)
G(sy -1,

will be poorly conditioned despite the fact that I, + F(s,)G(s1)
and I, + G (s,)F(s,) may be relatively well conditioned. More-
over, this observation holds despite the fact that,

. Im ) .
-~ det {G(S)F-(I‘:)l = det{l, + F(s)G(s), =
det [I, + G(s)F(s)l -

We remark that Idet(0)| (in contrast to the matrix infimum,
{e]) is not a measure of regularity which admits any useful pertur-
bation analysis [DA1,DO2-4].

Before we consider the question of dynamic compensation
further we discuss some aspects of the geometric theory of linear
systems with respect to a characterization of open loop poles.
First, we recognize that the map

s — ker (G(s), -1,]

is well defined on the domain CuU{oo} - {Pai }. where {p,; } is the
set of n open loop poles of G (s YERF *™(s). More generally, we
can consider the equation

y(s) = G(s)u(s)
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B
w ~ frequency(rod/sec)

Figure 6.5: ¢3(J w) vs. w for example 5.2
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