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Abstract:

A CAD methodology is developed for the design of controllers
for linear distributed systems incorporating the following key
components: (i) Transfer function models of distributed systems
and their approximations; (ii) Recent frequency domain design
methodology for multi-variable control systems; (iii) Interactive
optimization packages (DELIGHT) in the search for feasible designs
satisfying practical engineering spacifications. Primarily
specifications on the shape of the frequency response and of the
unit step response will be considered. The application of the
method for large space'structures is explained via simple examples

including beams and plates.
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1. Identification of the Problem and Its Significance

Satisfactory performance of large space structures, especially
antennae, depends on the competence .of their control systems. Several
kinds of control systems are required for each device including:
shape, attitude, deployment, and orbital transfer and stationkeeping.
In a global sense the control systems cannot be totally divorced since
the operation of each affects the dynamics of the others. 1In
particular, since the attitude motion is described by coordinates
depending on time alone and the elastic deformation of the device by
coordinates depending on the spatial position and time, large flexible
spacecraft are hybrid dynamical systems [1]. If the device is a
composite of several articulated structures, then the complexity is
compounded. For example, it is impossible to choose principal
coordinate axes in a continuous way as the configuration of the rigid
segments 1is changed [2]. This means that the principal coordinate
systems in which observations and control actions are made will not
always Dbe the most natural. This is one major difference between the
behavior of these systems and the usual rigid body dynamics.

Another consideration in the design of 1large, high-precision
antennae 1is achieving the minimum feasible mass per unit area.
Reflector surface mass densities as low as several grams per square
meter can be approached with the use of a membrane reflector such as a
wire mesh or a metalized plastic film [3][4]. To achieve low antenna
mass densities, the mechanical rigidity of the reflector is
sacrificed. This, however, does not preclude the maintenance of a
very precise reflector configuration provided the deflection of many
points on the reflector can be rapidly and precisely controlled.
Guidelines for estimating the number N of control points necessary to
achieve a particular tolerance may be readily determined [3][5]. In
typical cases N will be on the order of 1000 [3].

There are several different kinds of disturbances which tend to
distort the shape of the flexible body following deployment and

attitude acquisition. These include solar wind effects, thermal
gradients, residual aerodynamical momenta, controller errors,
gravitational gradients, and material non-uniformities. To counter

these disturbances, one can implement pointwise active figure control
systems using N control elements, or one can .consider the use of
distributed control based on electrostatic forces as described in
[3][4]. In either case the resulting control problem requires
techniques which go beyond the state of current control theory.
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In this research we plan to concentrpate on the problem of
controller design for large space structures. Actuators in space
structures can be implemented in a 1localized fashion, such as
thrusters or torquers at a finite number of locations, or in a
distributed fashion such as the electrostatic cotnrol of antenna shape
[3.,4]. The controllers utilize available measurements, which may be
noisy or incomplete, from on board sensors to estimate critical
parameters of the large space structure. The typical formulation of
controller desing for large space structure follows the so called
"Linear Quadratic Gaussian" (LQG) approach. Namely, the dynamics of
the flexible parts are described by a continous, distributed state
which satisfies a self-adjoint, 1linear boundary value problem,
together with a set of observations and actuators applied at a number
of discrete points on the structure. The performance criteria is
quadratic, leading thus to an infinite disensional regulator problem
[19]. Resolution of this problem requires’ effective interaction of
structural dynamics modeling algorithms with control. and estimation
algorithms. Sophisticated analytical methods are needed to develop
this interaction to the advanced level required - recent surveys of
the state of the art in the control of large flexible structures
clearly indicate that this level has not been achieved [1,8,9].

While the control theory for large space structures is relatively
young, dating perhaps from reports like [17], there has been an
extensive investigation of the use of state variable control theory
for the desing of controllers. Most of this work has, at some point
in the analysis, invoked a finite dimensional approximation and then
used finite dimensional linear control theory, e.g., the "LQG" theory,
to arrive at specific control algorithms. These techniques, which
almost always involve some form of a modal expansion in terms of the
eigenfunctions of the linear operators involved in the model, have led
to two kinds of problems: the "spillover effect" articulated by Balas
[8], and a high dimensionality of the resulting model. While ad hoc
techniques have been found to deal with these kinds of problems,
including the use of bandpass prefilters in the controllers, and while
the theory of modal control has been advanced to a considerable degree
(18], basic problems still remain, including the solution of large
systems of linear equations and Riccati equations, and the lack of an
effective framework in which to assess the convergence of the
resulting finite dimensional control .structures to the optimal
infinite dimensional ones. (In [19]1[20] Gibson has shown that
convergence is in fact impossible if the most commonly used models are
not augmented to include the system's natural damping which 1is a
parasitic effect in most designs.) We believe that the lack of a
consistant approximation theory incorporating approximation bounds as
required by the design criteria and objectives is the major stambling
block for the development of an efficient, computationally feasible
design methodology for controllers in large space structures. In fact
it is quite apparent that the currently employed finite dimensional
approximations [8][9], based either on modal truncation or finite
element analysis cannot be 1linked tightly to such practical
engineering specifications as shape of the transfer function (in
steady state, as function of frequency), or shape of the step response
(e.qg. as it results from specifications on settling time, rise time,
overshoot, etc). The so called “"spillover effect"” is a precise
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manifestation of this phenomenon, and is due to the inability of
current design methodology to predict the effect of "closing the loop"
with a controller designed on an ad hoc approximate model of the true
system.

Our approach to the design problem is based on the combination of
three methodologies from control theory: (i) the systematic analytical
and numerical investigation of the input-output description of the
infite dimensional part of the system using transfer functions [25];
(ii) the employment of recent advances in the design theory of
multivariable control systems and in particular the resulting
parametriztion of stabilizing compensators [21]; (iii) the
utilization of advanced optimization methods (e.g. infinite
programming formulations) via highly interactive optimization packages
[34], to incorporate in the design realistic engineering
specifications for the controllers [32].

In the proposed research program we are interested in developing
this design methodology for the whole spectrum of large space
structures control problems: antenna shape control, control during
'slewing meneuvers, attitude control. A particularly desirable feature
of our approach is that requirements for decentralization (an
increassingly attractive specification for the control of large space
structures) can be implemented as a simple constraint on the form of
controller transfer function (i.e. it must be block diagonal) and
accounted for directly int he design process.

As we shall argue in a later section, the reformulation of the
controller design problem in the frequency domain using optimization
based design software, permits the use of fast and effecient algorithms,
including fundamental methods like the fast Fourier transform, to
determine the transfer functions of the controllers, in a way which
can be easily programmed in a production grade software.

It 1is clear that the further unrestricted use of finite
dimensional models for the analysis and design of control laws is not
productive. The usual formulation of the linear quadratic Gaussian
control problem even 1in the distributed prameter case involves the
solution of a nonlinear operator Riccati differential equation; in
view of the above remarks there is little incentive to pursue this
formulation of the problem.

It is well known that the 1linearized dynamical equations
describing the distributed parameter subsystems (e.g. panels,
antennae, flexible appendices) are hyperbolic partial differential
equations capable of producing very weakly damped oscillatory
solutions. On the other hand the controllers designed will be finite
dimensional control systems. The first objective of our - I
work © is to demonstrate that the recent developments in the

frequency domain design of multivariable control systems [21][25-31]
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can be extended to the class of transfer functions appearing in large
space structures (which are not going to be rational). Recently Baras
[35][36] has demonstrated that extensions of fundamental constructs in
the transfer function theory of 1linear ,systems design (such as
minimality, coprime factorizations, Bezout identities, dynamic
compensator design) can be extended to some very interesting classes
of irrational transfer functions. We are particularly interested in

extending the work of Youla et al. [21], since it incorporates
several design criteria very appropriate for large space structures
design, and because the resulting controllers have additional

desirable properties such as adjustable stability margins, robustness
with respect to system model perturbations. The main reason for our
interest in this methodology, is our conviction that it provides a
fundamental framework for the consistent development of approximate
models on which to base the design of finite dimensional controllers
for the infinite dimensional system representing the large space
structure. Consistent here means that approximation errors in
modeling can be quantitatively 1linked to performance measures or
engineering specifications degradation.

The second objective of our work is the utilization
of powerful optimization packages for numerical study of design
procedures in multivariable control systems. The system used is
the DELIGHT [32] [34] system developed at the University of
California Berkeley. The approach is aimed at combining the
consistent parametrization of controllers developed by the first
objective with DELIGHT's capability to search. through parametrizations
(i.e. controllers) satisfying a plethora of practical engineering
specifications such as frequency shape of the transfer function, shape
of the unit step response, robustness tolerances, etc. It is our
conviction that with the combination of these two objectives many
intuitive design ideas (as may occur to a designer at various
intermediate steps) can be quickly and inexpensively tried out prior
to the final design recommendations. '

2. Main Technical Contributions

The main technical contributions of the paper are:

(i) Determine how transfer functions for the distributed
parameter parts, of the large space structure can be computed
efficiently from the dynamical equations model of the system.
Determine also necessary sampling rates (in frequency, i.e.
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for how many frequencies we need to Xknow the value) for
transfer function data.

This part of the work is directed at the following questions?

l. What type of irrational transfer functions arise in such
systems?

2. What is an efficient approximation of such transfer
- functions by sampling or rational interpolation?

3. What are appropriate error estimates and the numerical
performance of these approximations?

(ii) Extend thevfrequency domain design of Youla et al. [21] and
of Baras [35,36] for this class of transfer functions. .

This research is directed at the following questions:

1. Can the necessary numerical computations be supported by
theory when rational or sampling approximations are used?

2. What are the appropriate parametrizations of the
controller for use in the optimization phase?

3. Can consistent error estimates be developed reflecting
the design philosophy and engineering specifications?
For example can coprime factorizations of a rational
approximant be considered as approximants of the true
irrational factors? Also can spectral factors of an
approximant be considred as approximants of the true
spectral factors? )

(iii) Develop a combined methodology using the structure of the
controller developed in (ii) and optimization based design
in order to satisfy explicit engineering constraints on frequency
shape of transfer functions, or time domain spec1f1cat10ns on
unit step responses.

This research is directed at the following questions:

l. Can we show that the two methodologies will work
synergistically? Is the optimization phase and the
related feasible directions search consistent with the
structural constraints on the controller?

2. Can we develop a quantitative (even if computable by
numerical methods) relationship between the degradation
of performance and engineering specifications on the one
hand and the approximation errors for the transfer
function on the other?
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. 3. 1Is the overall method computationally efficient and
accurate? Does it lend itself to efficient
implementation of the resulting controllers?

3. Outline of the approach

As already mentioned the proposed methodology combines three
ingredients of control systems modeling and design theory.

The first component on which the methodology is based is the
transfer function modeling of distributed parameter systems which
constitute subsystems of large space structures.

Following Balas [8], the usual abstract model for a flexible
large space structure (LSS) is the distributed forced oscillator
equation ‘ '

(3.1) m(x)utt(x,t) + Dout(x,t) + Aou(x,t) = F(x,t)

where u(x,t) is a vector of generalized displacements of the structure
from its equilibrium configuration - displacements caused by transient
disturbances and the applied force distribution F(x,t). The mass
distribution m(x) 1is positive and bounded on the spatial domain S
occupied by the LSS; St is simply connected. Since the mass density
of most of the structure may be very small [3][4], the system (3. l)
may be "stiff" in a suitably defined sense [23]. The term Aju with Ag

a differential operator represents the internal restorlng forces of
the structure. It 1is generally assumed that A, has a discrete
spectrum, i.e.,

(3.2) Ao¢k = wﬁ¢k s K =1,2,...

with , the "mode frequencies" and ¢ (x) the mode shapes. The domain
of A, is generally a dense subset D(A,) of some Hilbert space H,
equipped with an "energy" inner product <-,->. The damping term 1n
(3.1) is generated by an appropriate (A -bounded) differential
operator representing gyroscopic damping mechanlsms of the LSS. (As
Gibson [19][20] has shown, it may be critical to represent this term
to produce a stable control system.)

In most studies [1][8] the applied force distribution is given by

(3.3) F(x,t) = Fy (x,t) + Z b (x)f (t)

i=1
where F represents external forces and the sum includes the control
forces "due to discrete actuators, with bL(x) the actuator influence
functions. Observations are generally of the form

(3.4) yj(t) = <cj,u> +<c5,u> ; J =1,2,...,n

6
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with c,,c! the x-dependent influence functions (e.g., delta functions
for p01né sensors) . Accelerometers may also be used. Distributed
controllers like the electrostatic system described in [3][4] require
different models.

By taking v(x,t) = [u(x,t),u (x,t)] in H= D(A_) x H, with the
energy norm t ) A

= % 3
(3.5) Ilvl]]2 = <mu,,u, > + <A’‘u,A’u>
produces the state variable form
A =
3.6 ! -
( ) y = Cv _-A, D, _
with B and C clear from (3.3)(3.4) (and Fp = 0 assumed) . The

homogeneous system is very oscillatory in the sense that the semigroup
generated by A has very ' little damping [8]. ‘Since the LSS is
distributed over a large volume with low mass density, its dominant
modes are slow and oscillatory.

There are two other aspects of the model (3.1) which have
received 1little attention 1in the past. These are the fact that the
low mass density of the LSS makes the mathematical system singularly
perturbed, or stiff in the sense of numerical analysis. This means
that there are boundary layer and initial layer effects associated
with any transient motions. Fattorini has described the mathematics
of these phenomena for a related class of equations in [23]. As oOne
might expect the analysis is considerably more sophisticated than the
variations on finite dimensional methods which have previously been
used to analyze the dynamics of large flexible structures [8], p.
528, [24]. The transfer function of the system is obtained by taking

Laplace transforms of (3.6) and is the operator valued (in general)
function
(3.%) P(s) = C(sI - A ) B.

In actual applications since the mumber of controllers (or actuators)
and the mumber of sensors is finite, the function (3.7) is matrix
valued. For the sake of specificity, let us say it is nxm, i.e., m
actuators and n sensors. The major difficulty with (3.7) is that P(s)
will not be rational as a function of the complex variable s. It may
have discrete singularities (typical in the case of distributed
controls), or it may even display branch points (typical in the case
of boundary (i.e. point) actuators and sensors. On the other hand,
due to the slight damping which is always present in (3.1) the matrix
valued functlon P(s) will be analytical in the right half plane, Re
s>0 (denotedTT ), and uniformly bounded there (a manifestation of the
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Bounded Input Bounded Output Stability of (3.1)). In other words,
Pc H:;m(Trg in the terminology of Baras [35,36]. As it was
demonstrated in [35], appropriate and efficient approximation schemes
for such transfer functions exist, although the work in [35,36]
concentrated on some important subclasses of H® only. Further work is
necessary todemonstrate that the resutls of Baras, and efficient
‘approximation schemes can be developed for the transfer functions
arising from flexible space structures. ’ .

With respect to approximations we have two techniques in mind:
(1) Rational interpolation based on minimizing the L® -norm on the jw
ax#s between the true transfer function and the approximant. That is
find a rational P, such that

sup I 'Pa (;w)y - P ™) i s 'mi-r»i'mized_)

w

where “ . " is a matrix norm. There will be infinite approximants
depending on the upper bound we are willing to place on P, . (ii)
Matching the singularities of the true transfer function up to a
certain region of the complex plane. This second method is less
developed and requir~s further work in developing measures of the
approximation error. .t is needed because on the surface it resembles
modal approximation. For both methods the behavior of sampled
functions has to be investigated. By that:we understand the following
problem.  The computation of P(.) in (3.7) will be per formed
numerically (for - example by FFT - Fast Fourier Transform), resulting
in a sequence of sampled values P(jw; ), i =1,...,Ng, where Ng will be
large. We need to investigate how approximations developed on the
basis of these samples behave under changes in sampling rate and model
perturbations. This”necessary for both approximation methods.

The second component of the proposed methodology is the extension
of certain recent developments in the frequency domain design of
multivariable control systems to transfer function classes appearing
in large space structures. A major development in the theory of
multivariable control systems design was established in [21]. The
solution developed in [21] is based on a least squares Wiener-Hopf
minimization of an appropriately chosen cost functional. The
methodology provides an analytic frequency-domain design, which is
valid for inherently open loop unstable systems, improper and
non—-minimum phase systems. Although the method 1is somewhat
"theoretical", it produces a multiva;}able controller design that is
able to cope with disturbance rejection, plan saturation, measurement
noise, process lag, sensitivity reduction, and at the same time
incorporate suitable engineering specifications on transient behavior
and steady state performance - obviously qualities of great practical
value. The derived optimal controller is proper and guaranties a
dynamical asymptotically stable closed-loop design possessing a proper
sensitivity matrix equal to the identity matrix at s = c© . The
methodology and problem formulation presented in the seminal paper
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[21], is quite different fromthe "Linear Quadratic Gaussian" (LQG)
methodology that dominates the literature on design of controllers for
large space structures [7-20]. It is worth emphasizing that the
methodology permits incorporation of feedback transducers such as
tachometers, rate gyros, and accelerometers with nondynamical transfer

- functions.

The basic multivariable closed loop configuration considered in
[21], is shown in figure 1 below.

W
L® | i
1
Lo -~
Re
o [ _'T—(y_— 0

Fe) f—

+w ©)

£ . .

Fig L. Multivaviable cJosed -loop cown {i g“"&{:w"‘
P(s) is the system closed loop transfer function matrix which is
assumed n x m. F(s) 1is the transfer function of the feedback

compensator and is assumed to be n x n. In practice

(3.8) F(s) = Fe(s)EF(s)

where Fg represents feedback sensor dynamics, while Fe 1is a known
pre—equalizer. The methodology of [21] assumes that F, is known,
although the designer has some flexibility in choosing F,. Similarly,
L(s) 1is the transfer function of the feedforward compensator which is
assumed n x n and also has the form
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(3.9) L(s) = %C(S)PQ(S)'

In applications to large space structures the available choices
of physical sensing devices L, (s), F (s) are severely restricted and
more or less dictated by the préblem at hand. 1In the sequel L wil be
assumed known also. C(s) is the m x n transfer function matrix of the
controller to be designed. Plant disturbance d(s) and instrument
noise w (s),wl(s) are incorporated into the model in a general way:

£
y(s) = P(s)r(s) + PO(S)d(S)

(3.10) v(s)

i

F(s)y(s) + Fo(s)wf(S)

z(s) L(s)d(s) + Lo(s)wl(s)

The models P,,L,,F, are assumed to be known in advance with certain

accuracy. Furthermore the disturbance and noise models are known
within certain class of models. Let
R(s) = C(s)s (s)
(3.11) S(s) = (I+F(s)P(s)C(s))
Pq(s) = F(s)P,(s) + L(s)

In the absence of measurement noise and plant disturbances we have Yy =
PRu , and therefore

T(s) = P(s)R(s)

is the closed 1loop transfer function matrix and S(s) is the
sensitivity matrix, which has attracted quite an interest lately [37]
in control theory design. Followoing [21] we shall call the pair of
compensatecc F and plant P admissible if each individually is free of
hidden modes and if there is no cancellation of unstable poles and
zeros between P and F.

One of the most significant results in [21] is the
parametrization of all stabilizing compensators for the above
configuration. Namely, let P,F be admissible . and let
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. -1 -
(3.12) F(s)P(s) = B (s)B(s) = B, (s)a, ! (s)

where A,B, and B, ,A
respectively. Now

are left-right coprime factorizations of FP,
Bezout equation

choose polynomial matrices X and Y solving the

(3.13) A(s)X(s) + B(s)Y(s) =1
Then the closed loop system of figure 1 is asymptotically stable if

and only if

(3.14) R(s) = H(s)A(s)

where

(3.15) H(s) = Y(s) + Ai(S)K(S)

and K(s) is any m x n real rational matrix, anlytic in Re s 3> O,
such that

> and
(3.16) det (X(s) - B (s)K(s)) # o.
3
Furthermore, the stabilizing controller associated with a particular
chiice of admissible K(s) has the transfer function
- -1

(3.17) C = (Y+A;K) (X-B;K)
This is the controller parametrization described earlier. The
solution for ‘"optimal choice" for C,

provided in [21],

is based on
solving the optimization problem

(3.18) min E
C
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where C is allowed to varry over all possible transfer functions
defined by (3.17), and K constrained as above. Here E is a
performance measure, or penalty function

(3.19) E = E£ + kES

where E measures deviation of steady state response e(s) =
u(s) - yts) from =zero, while Eg; measures excitation of "sensitive"
plant modes which must be especially guarded against excessive dynamic
excursions. the complete solution to this optimization problem is
provided in [21], as -

= -1 -1
C=H (A "R - FPH_)

Hy = A0 “({A, 710, o+ {AAllYQ}_)

where.A,,Sl* are matrix spectral factors of some positive definite
spectral matrices (which can be explicitly computed from the system
data), +And{ S_ denote the part of a rational matrix associated
with its poles in Re s< 0, and Re s 3 0, respectively. This is indeed
an explicit solution and appropriate numerical algorithms have been
developed as reported in [21] and elsewhere.
The objective of the work presented here is to establish a

similar result and parametrization for irrational transfer functions
of the type described by (3.7). The feasibility of these extensions
has been demonstrated in recent work by Baras [35,36], who has
provided extensions of the basic constraints for certain classes of H®
transfer functions. In addition we intend to investigate how the
whole scheme behaves under approximations. Namely, suppose B (s) is
an approximation (rational) to P(s). How close is the controller
transfer function C,(s) based on Pfs),to the true controller transfer
function C(s) based on P(s)? These estimates constitute the
cornerstone for a consistant design methodology.

The third component of the proposad ) methodology involves
development of programs for the controller design using advanced
interactive optimization package DELIGHT [32, 34]

‘ The DELIGHT package is characterized by two main features that
make it ideally suited as a supporting tool for the study we are
proposing. :

First, the package is designed as an extremely flexible tool, and
a complete environment for interactive computer aided analysis and
desing. In particular, it has the following characteristics:
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1. It is built around the RATTLE language that permits easy (on
line) formulation of a program; the flow of computation can
be affected at run time, in addition to the more usual

preprogrammed sequence; configuration of the program is
flexibile and can be customized to many different
applications. Just as an example, from the 1library of

programs for matrix operations, only ' those needed for the
particular application may be invoked and processed by the
program; the others can still be used when and if needed,
but until such time they reside somewhere on a disk, instead
of the fast memory. This powerfull property of the language
was realized by combining most relevant features of several
computer languages, including, C, MODULA, RATFOR, FORTRAN,
PASCAL, and others.

2. The program is open ended, ie. by wutilizing defines, and
macros, often used body of code can be invoked by a single
name .

3. Interfaces with fortran programs,

4. Allocation of memory to variables and programs is dynamic and
in large part transparent to the user; this allows for great
productivity in writing a program.

®

The second feature is a result of a particular application that
motivated its development, which is optimization based computer aided
design. Consequently, the package already contains an extensive
library of routines (that exploit earlier mentioned entensibility
property) to aid in solving even very complex (read realistic)
optimization based problems. Typical of this capability is the
followig example [32]. Suppose we want to design a regulator for a
given system, so that in addition to the system being stable the step
response falls within certain region, like in Figure 2,

Overshoot
. Setamp
] Se—— i i = = Fig 2. Engineering
specificat ions
on step vespose.
Risamp
Trise Tset Tfinol

and the sensitivity to disturbances has certain properties as defined
by a given band of the singular values of the return difference matrix
across the frequency spectrum [32]. (Note the natural definition of
the control problem, consistent with engineering intuition and
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experience - not readily available for state space approaches, like
LQG). .

The solution of the problem by using DELIGHT requires that all
the constraints be qualified as soft and khard. The soft constraints
are modeled as a composite cost, while the hard contstraints appear as
simple inequalities

(3.21) gi(x) < 0, for j =1,2,...

or as semi-infinite inequalities in the form
k

(3.22) h (x,wk ) <0, kx =1,2,...

where x is the design vector. The last thing required is a suitable
initial design for the controller. For example, LQG design gives such
a controller, that garanties stability, but may (and most likely does)
fail to satisfy the requirements posed through the step response
quality, and the sensitivity.(Recently work has been done at the
University of Maryland on coupling ORACLS, a NASA developed package
for LQG design, and DELIGHT, and reportedly a succesfull solution of
several optimization problems has been achieved through the sequence
outlined above [38]).

The methodology desctibed in this paper couples DELIGHT with the design
methodology described above, based on frequdency domain ideas. Namely

the structure of the controller will be as defined earlier (i.e.
equations (3.17) and (3.20)), and DELIGHT will be used to find
admissible controlls so as the closed loop transfer function satisfies
various types of engineering constraints with respect to its shape,
sensitivity etc (as described above). Questions related to
approximations of transfer functions and their relation on engineering
specs will also be addressed.
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