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1. Introduction

The simplest modeling problem for stochastic processes can
be described as follows. We observe a scalar, finite valued, sta-
tionary stochastic process {V:} (FVP) and try to model it as
a probabilistic function of a finite Markov chain. The underly-
ing assumption is that the probabilistic mechanism generating
{Y:} can be reasonably well explained in the following way.
There is an (unobserved) finite stationary Markov chain {X:}
such that:

(1.1) p [X:+1,Yt+1|Xt,Yt] = P{X41, Y| Xi]

Without loss of generality we can assume that the chain {X:}
satisfying (1.1) is such that:

(1.2)  P[Xe+1, YVerr| Xe] = P [YVera| X1 P [ X X:]

Once {X;} has been found it is easy to describe {V}} as a
deterministic function of a Markov chain. The standard con-
struction is to define the new process Sy := (X, Y:) with values
in the cartesian product § := X x Y of the state spaces of {X:}
and {Y:} and the function f: § — Y as f(i,¢) = €. It follows
from (1.1) that {S;} is a Markov chain and Y} := f(S:) has
the same law as {Y;}. We can now give the following inter-
pretation: the process we observe, {Y:}, is just a component
of a process, {S:}, which is Markovian. As one would expect
the “completion” of {¥;} to a Markov chain {S;} is inherently
non unique. Define as size of the model the cardinality of the
state space of {X.}. Between all possible models for {Y:} we
would like to select one of minimal size (order). The status of
Realization Theory for FVP is rather unsatisfactory. The main
result here is the characterization of the class of FVP that ad-
mit realization [1], [2] but characterization and construction of
minimal ralizations are still poorly understood aspects of the
theory [3]. The lack of a Realization Theory for FVP makes
therefore impossible to follow Kalman’s prescription {4]: Iden-
tification = Realization + Parametrization. To surmount the
impasse and solve the identification problem we must follow
the classical approach: select a parametric class of models P
containing the observed process and estimate parameters on
the basis of the data {y1,¥2,...,yr}. In section 2 we define P
as a class of probabilistic functions of Markov chains {the or-
der considered as a parameter) satisfying conditions sufficient
to guarantee identifiability. In section 3 we show how the order
can be consistently estimated from the data. We present the
results without proofs here. Further details and proofs can be
found in [9]. Let {Y:} be 2 FVP. Denote by r its state space,
where r := (1,2,...,r) and by r* the set of finite sequences of
elements of r. We assume that r is known a priori (at most
this will cost the elimination of a null subset from the state
space of the observed process) and denote by P the set of pdf
of stationary r-valued sequences.

2. The class of models

Our objective is to obtain a finite dimensional parametric
representation for P. Finite dimensionality of the parameter
space forces us to restrict attention to a subclass of 2.
Definition 2.1
’ P :={ps; 6 € O}

where .
"9:= (k,A,B,7);k €N, A€ RM*,
0= Be R*™ nc IR
A, B, stochasticand 7 =74

and, defining Ve €r
B, := diag {bie,b2es.--,bke}s
the pdf
pp: 1" — [0,1] is given by :
(2.1) €16z ...60 — po(er€z... &) = TAB AB,,... AB..e

where e := (1,1,...1) € R*.
Remark 2.2 .

In terms of the under]ying Markov chain {X.} we can make
the following identifications:

k = cardinality of the state space of {X:}.
A = transition matrix of {X;}

& = invariant measure of {X:}
bje = PYi=¢lXi= 7l

For notational convenience we define M(e) := AB,. The inter-
pretation of M(e) is:

(22) M(E),‘j =P [},l+1 =g, Xg.+.1 = Jng = 1] .

As one would expect the class P just defined is not identi-
fiable.
Assumption 2.3
A and B in definition (2.1) are such that:
) ;>0 Vi
i) b;>0 Vi€
iii) A is invertible
iv) B, has distinct diagonal elements for some € € r
Definition 2.4

©' := {0 € ©; assumption 2.3 is satisfied}
P' = {p; 00}

The main result of this section is theorem 2.9 which guarantees
the identifiability of a subset of ©' of full (Lebesgue) measure.
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Definition 2.5
Let ps € P. Define the set of compound sequence matrices
of py relative to € € r as:
C(6,e) = {M; meN, MeR™™,
M;; := po(siet;) si,t; €x'}.

Definition 2.6
Let ps € P. Define the rank of p, relative to € € r as:

re(e) ;== sup (rank M)

M€eC(d,¢e)
Remark 2.7 If py € P and 0 = (k, A, B, ) then:
po(siet;) = nM(s;)M(e)M(t;)e

and, from Sylvester’s inequality, rs(e) < k.
Definition 2.8
Let ps € P and 8§ = (k, A, B, «).

ps 1s said to be regular if r¢(c) =k, Ve€Er.

8 is regular if 6 € © and p, is regular.

Definitions 2.6 and 2.8 are analogous to notions defined in {5]
for deterministic functions of Markov chains.
Theorem 2.9

Regular points of ©' are identifiable modulo permutations
of the states.
Remark 2.10

It is interesting to observe that under the same hypotheses
theorem 2.9 has been proved in [6] in the case of fized order of
the model. For identification it is convenient to have compact-
ness of the parameter space. Define, for 6§ > O:

@:5 = {0 S @'; a5 > 6, bj, > 5, Vl‘,j,E}

In what follows we will assume that the observed process {Y:}
has a regular pdf py(-) € P', i.e. there exists a regular point
8o = (n, A%, B®) € @' such that py(-) = ps, ().

In practice the choice of § is reduced to the choice of an
upper bound K to the order n of the observed process. If
n < K and K is large enough taking 6 := % we have §, € Of

3. Order Determination

We want to analyze the following question: given observa-
tions (y1,y2,-..yr) with T arbitrarily large, can we determine
the order n of {Y;} ? The answer is yes if ps, € F; and is
regular.

It is convenient to decompose @) as follows: 0% = UK 05,
where ©f, is the section of @; along k. We identify § =
(k, A, B) € 05, with its projection § = (4, B).

Define the random variables on r*:

f1(8,Y (1)) = Fa[¥o]
fr(6,Y () = Po[YolYZry]

Vo € O
v O and T > 2

Lemma 3.1(7]
f(9,Y(-)) = 1!1_{20 fT(a’Y('))

exists VY (-) € r* and is continuous on 0}, Vk € K.
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Define:

hi() : ©5 R, — hi(8) := Eg,[log f(6,Y (-))]
1
hir() : O, = R, hir(8) = 7 log PlYT8)
he : K — IR ,hy 1= sup hi(8)
€04 &
hk,T :KxN-—-IR 1hk,T = Ssup hk,T((?)
8EDs k

Lemma 3.2(7)

i) () is continuous on O, Vk € K
il)  hel’) = limr—eo her()) V8 € ©f) and a.e. Py,
Theorem 3.3

1) he(0) < ha(80) VkeK, 0€ 0y,

i) hg(8) =ha(bo) iffik=n

This is an important consequence of theorem 2.9. Com-
pactness of @ allows us to conclude with:
Corollary 3.4 h, > ki vk e K, k # n.

From the abstract point of view this solves the problem of
order determination. To compute the sequence hp we must
start from the data and therefore from the sequence of nor-
malized maximum log-likelihoods hxr. In our situation the
asymptotic behavior of kg r is easy to analyze.

Lemma 3.5: 67 < P[Y[9] < (1-6)T V6€0;

and therefore:

Lemma 3.6: hi oo := limr_co her exists Vk € K
To be able to apply corollary 3.4 we need hro = hi and
this is true if:

(3.1) lim sup hyr(8) = sup lim her(6)
T—o00 9692',‘ . seel, T—oo

The interchange of limit opera'tions (3.1) is allowed under uni-
form convergence (for T — oo) of hir(d) on ©5,. Using
the previous results one can verify that actually the sequence
hi7(6) satisfies Dini’s criterion for uniform convergence.

Observe that (3.1) is verified for every trajectory Yi(w) and
from Lemma 3.2 we conclude that Ay — hy for almost (Ps,) '
every trajectory.

Theorem 3.7
i) arg mazy{her} is a strongly consistent estimator of 7.

ii) For (almost) every trajectory there exists T, such that:
n = arg maz {hi1} (VT > T,)
Remark The practical computation of ke r (and of the max-
imizing 8 = (A, B)) can be done using the Baum-Eagon algo-
rithm; see [8] for a description and the analysis of its numerical
properties. p
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