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Summary

We present an observer design for systems with controlled nonlinear dynamics and nonlinear
observation. Fhe design is a development of carlier work, which was motivated by noulincar
filtering asymptotics. The basic design requires that the initial conditions belong to a bounded
region determined by the data and design paraneters. However, for a certain class of systems, no
such a priori knowledge is required. To illustrate the utility of our design, several examples are

given.
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1 Introduction

In this paper we present a design for an observer for the nonlincar control system

i o= f(r,u), x(0) = xq, (1.1)
y = kz)
where r € ™, we IR™, hy| <1 i=1,...,mand y € HP. The initial condition 7 is unknown.

The observer problem consists of recursively computing an estimate 2(t) of x(¢) for which the

error decays to zero as { — co. ‘That is, to design a system

mo= F(n,uy), m(0) = mo, (1.2)
z = G(m)
such that
'l_i_fglf(l) —-2()]=0 (1.3)

for all 2¢ in a suitable class Z. Here I represents a priori knowledge concerning the initial condition,
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We prove Lhe following result for our observer design: provided that we have some knowledge
of rq (in the form Jro — 20| < p, where zo is the initial estimate) and assuming that (1.1) satisfies
a ddleetability condition, then the observer estimate z(t) converges exponentially to the system
trajectory a(f) as & — oo (‘Theorem 2.1). 'The radius of convergence p depends on the nonlinearities
in Lthe dynamics and observations as well as on certain design parameters. For a certain class of
systems, no knowledge of xg is required (Corollary 2.1).

Our design is a development of the design given in Baras, Bensoussan and James [1], which
treats systems with uncontrolled nonlinear dynamics and linear observations. The main contribu-
tions here are Lhe results for n(;nlinvar observations and controlled dynamics. We remark that these
designs do nol involve coordinate transformations, canonical forms, local hnearization, etc, and
scem robust when compared with other designs. llowever, the designs do involve solving Riccati
equations and computing certain matrices and constants.

In Section 2 we give the observer design and state the main convergence results. The design
involves Riccati differential equations with lime-varying coellicients, and in Section 3 we obtain
bounds on the solutions of these equations under certain detectability and rank conditions. These
bounds are used in Section | Lo prove the convergence result. Finally in Section 5 we give several

examples.

2 Observer Design

We assmme that f.h are smooth with bounded derivatives of orders 1 and 2. Let N €
Lo, ), R e Ly, ItP) and assume rank N = n and R > 0. Assume t + u(t) is con-

tinuous. )
Write A(z,u) = Df(r,u), H(x) = RB7'Dh(x), where D devotes gradient in the z variable.
Set
Al = sup (A, 0l - = € B, Jul < 1)
and similarly define || 17{], and so on.

Consider the coupled system

() = fn(t),u(t))+ QU ()Y R (y(t) — h(m(1)) (2.1)
m(0)

(1)

myp

An(0), (D)Q) + Q) A(m(e), u(t)y
—QO)H(m(O)Y H(m(1)Q(1) + NN’ (2.2)
Q) = Qu>0.
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This is our observer for (1.1). It is essentially a modification of the deterministic or minimum energy
estimator, as discussed in Baras, Bensoussan and James [1). Note in particular that the Riccati
diflerential equation (2.2) depends on the control. This is not necessary when f(z,u) = f(z)+ Bu :
set A(x) = Df(x).

Refering to Section 3, we will assume that the pair (/(x), A(z,u)) is uniformly delectable.
Since N has rank n and [|A|| < oo, the pair (A(z,u), N) is uniformly stabilisable (refer to Section
3), and NN' > rol for some g > 0. Let Py = Qg P(t) = Q1)1 and let p,q be the bounds for

PO QM) (given in Scction 3).
Regard Ao, N, R as design parameters. Define p = p(Qo, N, R) by

T ~ 1
p= oz (VPIDUN + VA I DR D) (23)
Tl

Our main theorem is the following convergence result, similar to Theorem 8 in [1].

Theorem 2.1  Assume there exists Qu, N, R such that

|ro — mol < p(Qo, N, R) (2.4)

Then the system (2.1), (2.2) is an obscreer for the nonlincar conlrol system (1.1) provided that
(H(z), A(z,u)) is uniformly detectable and the above assumptions hold. That is, there exisls con-
tants K > 0,7 > 0 such thal

lz(t) — m(t)] < Klzg ~ mole™ ™ (2.5)

Jor allt > 0.

Remark There is a trade-ofl between the decay rate v = 4(Qq, N, R) and the radius of conver-
gence p. The designer can optimize his choice of 7, p by varying the design parameters. 11/

By using different estimates for the nonlincaritics, we obtain an observer for (1.1) without any
contraints on the initial conditions zq, ng for a class of systems. Included in this class are systems
for which A(z,u) is uniformly negative definite (sce the example in Section 5.2).

Define § = §(Qo, N, R) by
r
6= ;o,' = Ap| DS = AR DR, (2.6)

If D?f or D*h is zero, we omit the corresponding term from (2.6).

Corollary 2.1  Assume there exisl Qo, N, R such that

0 < 8(Qo, N, R). (2.7
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Then the system (2.1), (2.2) is an observer Jor the control system (1.1) provided that (H(x), A(z,u))
is uniformly detectable and the above assumplions hold. That is, there erists contants I\ > 0,y>0

such that
fr(t) — m(t)] € K|ro — mole™™ (2.8)
Jor allt > 0 and all xo,mq € ™.

Remark Our design can readily be extended to time varying systems, provided one extends the

definition of uniform detcctability. ///

3 Riccati Equations

Write X = J* x [-1,1]" and £ = (r,u)e X, Ift s & = (ze, ) is a continuous curve, we

write Ay = A(&) = Az, ), etc.

Consider the Riceati differentjal equations

Q. = AQi+ QA - QU HQ, + NN’ 3.1
Poo= —PA - AP~ PNN ENIHA (3.2)
Qo = Py'>o0

Existence and uniqueness for {3.1), (3.2) are standard, and note that I = Q.

3.1 Uniform Detectability and Stabilisability

In this scction we present sufficient conditions that ensure boundedness of the solutions of the
Riccati equations (3.1), (3.2). The bound for Il @ |} requires a detectability condition which we

now define.

Definition  The pair of matrices (11(£), A(8)) is uniformly detectable if there erist a constant

a9 > 0 and a bounded continuous matriz valued function A(€) such that

(A€ + MONE))n < —ao [ ] (3.3)

Jorallpe M, te X.

This condition is similar to the well known detectability condition for linear time-invariant
systems. The pair of matrices (C, A) is detectable if there exists a matrix A such that the eigenvalues

of A+ AC have strictly negative real parts; uniform detectability implies detectability, but not
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conversely. A disadvantage of this condition is that it is in general difficult to check, and Az, u)

may be hard to compute. No simple rank-type condition exists to date. In the case that H(z)is

uniformly of full rank, that is,
H(z)H(x) > sol, (3.4)
for some sg > 0, it is possible to bound || Q, || without using (3.3).
To obtain a uniform bound for || I ||, we assume that rank N = n and use the following uniform
stabilisation result, based on Kalman [2]. Let ®g(1,t,) denote the fundamental transition matrix

corresponding to a time varying matrix F. Recall NN’ > rol.

Lemma 3.1 Assume rankN = n. Consider the control system
2 = —Aizg— Nuy, 2(0) = 2, (3.5)
where Ay = A(§) for some curve L v £. Then there erists a feedback control ug = I'yz¢ such that
st 1 o (510 ) (1.9
Jort > 1, >0, where Ay = —A, — N1, and Jor any o >0,
folo) = ae @M (1 4 el N )

Au(er) = ool (1 LN II’)'

ro0
TFASHEN T Bie) = I ||

Note that the bounds are independent of the curves t v+ £,.

3.2 Bounds

Theorem 3.1  Assume that £ — A(E),11(£) are continuous and bounded, (II(£), A(£)) is

uniformly deleclable, and rankN = n. Then we have

NI+ JAl?
lorl < (iqun+ BMEHIAE) o g o, (41
oy AT
rrll < (5|1 ] = p < 00. 3.8
et < (Bopreg I o, < (38)

These bounds are independent of T' > 0.

Note The bound ¢ depends on the choice of A, while p depends on a. To obtain the best bound,

one can optimise over these parameters. For linear time-invariant detectable systems, one can also
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obtain a bound for || Q/||. ///

Proof:  We modily an argument in [1]. To prove (3.7), consider the following lincar optimal
control problem with time-varying cocllicients:
— = A+ Hvy, nr = h, (3.9)

where h € IR" is given and v is the control. The cost functional is

T
(0 T) = rh',Qur]o+/0 (v v + 5 NN'ny)dt. (3.10)

Define a value function

Vi(h, T) = inf{Jy(v,T) : nr = h}
The Hamilton-Jacobi-Bellman (ILIB) equation is

%V, + mvax[D,,V.(-—A: ~Hp)— v —y'NN]] =0

Let @y be the solution of (3.1). Then

V(nt) =n'Qm

is the unique (viscosity) solution of (3.2) with V(5,0) = 5'Qon.

Consider the (suboptimal) fcedback control law
v(t) = Ap.
Then by (3.9),
= e = (Ay+ HA)ne, nr = h (3.11)
Then we have
T
Vg, T) = K'Qrh < 9Qor0 +/ (NN + AADdt (3.12)
o
Now using (3.11),
2 T teoAr Y 2
Inol* =2 [ wi( AL+ H{ Noymedt = i

Ilence using uniform detectability (3.3), {no]? < |h|? and

T {h?
2dt < .
/0 Indt < 209

Combining this with (3.12) we obtain

12 4 AL
o< (jaur + LXELIAE)
2

which proves (3.7).
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Similarly, to prove (3.8}, consider the oplimal control problem
i;:A;A,—{-NU., Ar=h

with cost

T
Ja(v,T) = Ny Po A +/0 (0! v + N, HI T A,

One uses the control v(t) = I'yA¢ from Lemma 3.1, The details will be omitted.

(3.13)

Corollary 3.1 Assume that £ v A(€), 1(£) are bounded and continuous, and that H(¢) is

uniformly of full rank. Then

a0 NI +IALR
ol | =2 LB S | R
IQr i< (m Qo+

) =q X oo,
Jor all I' > 0, wherc for any T > 0,

ap(7) = re~ 2l (l + e N ]|7)_‘ )

() = retn (14 L "’) .

ToT

WACK<h I en(r) =T

4 Asymptotic Convergence

Using the bounds (3.7), (3.8) we prove Theorem 2.1, and Corollary 2.1.

Proof of Theorem 2.1:  The error e(t) = x(t) — m(t) satisfics

S0, u() = f(m(0),u()) ~ QI (meY R (y(8) = h(m(1)))
= [A(m(0), u(t) = QI (D)) H(m(t)le(?)

HU (0, () = Sim(0), (1)) = Df(m(t),w())e()]
—QOH(m(O)Y R [h(z(1)) = h(m(£)) = Dh(n(t))e(0)

é(t)

i

Therefore using the Riccali equation (3.2) for P(t),
%e(l)' Ptye(t) = —e(t) PONN'P(t)e(t) — e(t) H(m(t)) H (m(t))e(t)
+2¢(8)' (1) /0' /0' rD? f(m(t) + rse(t), u(t))e(t) drds

—2e() HI(m()YR! /Ol /ol rD?h(m(t) + rse(t))e(t)’drds

(3.14)
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d L

JIPOIF < ) (=rofd® + 1P eILVRID (@

+Vall R P I DRIID?RY)) e()

Let C = (IO ]| + Jall 7P | DR [ D). By hypothesis (2.1) we have
~2 4 pdelc <o.

q

Since l’(t)%e(t) is continuous, there is an interval [0, {o) such that
ro e .
—a + Pt e(1)|C <0 on [0,¢).

But then (4.1) implies

d

E]l’(t)*t(l)ﬁ <0 on |{0,t),
and thus

[P0 e()] < [P eol

for t € {0, tp). By continnity this inequality holds for ¢ € [0,t]. lence we can proceed from tg on.

Thus there exists § > 0 such that

ol

il < & (22 -4)
q
for all t > 0. So (4.1) implics
d
ZIPO )" < ~8le(n)]”.
But from (3.8)
(Y P()e(t) S I PO (O < pled?,
so that
d 'p 5 .,
W POe(t) < —;e(l) P(t)e(t),
which implies
e(t) P(t)e(t) < c(0) Poe(0)e™5", ¢ > 0.

Therefore, using (3.7), we have

A

le(* < qe(t)I(t)e(t)

&

ge(0) Poe(D)e™ %', £ >0,

IA

which implies (2.5). |
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Proof of Corollary 2.1:  We have

;—ic([)'[’(l)c(l) —c(Y PIYNN'P()e(t) — e(t) H(m(E)) H(m(1))e(t)

+2e(8) P()(S((t), u(t)) ~ f(m(t), u(t)) ~ Df(m(t), u(t)))e(t))

=2¢(t)' (R Dh(n(8)) R (A(x(t)) — h(m(£)) — Dh(m()e(t))
< (N;—;’ +Apll DSl + "‘ll”"'llzllf)“l’) fe(t)[?

By assumnption (2.7) there is a § > 0 such that

r -
=22+ AplIDII+ AR DA = =8 < 0.

Therefore

SIP@D < ~sle)?
<€

for all £ > 0 and all eg € 2", This implics (2.8). |

5 Examples

5.1 Bilinear Dynamics, Linear Observation

Consider the general bilinear system

™S
i

(A ¥ Z u;l].-) z, z(0) = zo, (5.1)
=1
y = Cz.

We assumne Ji;] <1, p=1, and here ¢ = u € [—1, 1™ = X. Write
A(u) =A + zu;l}.'.

Define, for 7 > 0, the observability grammian
fodr ’ ’
Oltoto + 7) =/ ® (o, )C'C ¥y (1o, ),
to

where A, = A(u(t)). Assume that (5.1) is uniformly observable in the sense that there exists 7 > 0

such that for all £, > 0

Yo(r)] < Oto,to + 7) < m{r)l
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for constants y(7), 71(r) > 0, independent of the control. The we can bound || Q, || as in

Corollary 3.1.

Then the following system is an observer for (5.1), with no contraints on the initial conditions.

m(t) = A(u(t))m(t) + Q(1)C'(y(t) —~ Cm(1)), m(0) = my, (5.2)
Q1) = A)QD + QUAGWDY - QUICCQU) +1, Qo= 1.

For simplicity we have taken Qu, N, R to be identity matrices. To improve the decay rate 7, one

conld try other values for Qg, N, R.

Compare this design with the design for linear Lime-varying systems in Wiltems and Mitter [5],

and O’ Reilly [4].

5.2 Linear Dynamics, Nonlinear Observations

P9 I ) GO B R

sinry.

Consider the system

<
It

‘This system is controllable and obscrvable. Ilowever, the pair of matrices (Dh(zx), A) is not

obscrvable for 7, = k%, where L is an odd integer. The system has eigenvalues —1,—2 and A is

symmetric, hence (Dh(x), A) is automatically uniformly detectable, with ag = 1, A(r) = 0. Let

R=rI, N = frol, Qo =~%I. Here, I(x) = }(cos z1,0). Now
§=ry(7? +1o/2)% — 4272,

Set r=3,1r0=0.2,v=0.1. Then § = 7.82.

The observer for (5.3) is

m(t)
Q1)

Am(t) + Bu(t) + %Q(t) H(m(t)) (y(t) — sinmy (1)), (5.4)
AQ(t) + Q(O)A' = Q) H(m(t)) H(m(1))Q(t) + 0.21.

Il

By Corollary 2.1, m(t) converges exponentially to z(t) for all xo,me € ™.
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