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Abstract

In this paper, optimality results are given for the problems of
Bayesian and Wald sequential (simple, binary) hypothesis testing
on the rate of a counting process. An explicit formula is given
for the Bayes risk, and the system to solve for the exact optimal
thresholds is also given.

Introduction

Space limitations do not permit a gentle introduction into
the nature and importance of sequential testing problems. For-
tunately, these notions have been extensively documented since
Wald’s original contribution [6] until the present [5]. For a dis-
cussion of their importance in applications see [2]. In an earlier
report [4], sufficient conditions are given to prove Bayesian opti-
mality results for general semimartingales, along with complete
proofs of the results herein. These results will appear elsewhere
with recent extensions and improvements.

1. Problem Framework

The Bayesian sequential, simple (binary) hypothesis testing
problem is outlined as follows. One is given a probability triple
(8,0(8), P) and some o(B)-measurable, binary-valued random
variable (r.v.), 8, where © defines a set of hypotheses consisting
of two elements, o(©) is the trivial o-algebra on ©, and P as-
signs § mass according to P{§ =0} = 1—m; P{§ =1} = m,
for some arbitrary, fixed real number # € [0,1]. One is also
given a measurable space ({1, ¥) upon which there are defined
two F-completed probability measures Py and Py, independent
of P. The hypothesis testing problem takes place on the prod-
uct space defined next. Construct the complete probability triple
(", 7™, P") where " =8 x Q, ¥* = 0(©) ® 7, and with the
probability measure P*™ defined via,

P {{#=i}nF}=P{§ =i} B{F} VYFeF;i=0,1 (L1)

Hence,

P {F}=nP{F}+(1-n)P{F} VFe?  (12)

It is assumed that the random variable 4 is unobservable, but that
one can observe a counting process whose statistics under each of
the hypotheses—@ = 0, # = 1—are governed by the probability
measures P; and P, respectively. To be precise, for each w” =
(6,w) € O™, one observes a counting process, {n; : t > 0}, with
semimartingale representation,

mlw) = [ Ta-2) 1031 dotmefun) 20, (19

where {m; : t > 0} is a (P7, #;")-martingale, and the intensity,
{A% : ¢t > 0}, is a nonnegative F-predictable process satisfying

E; fc: M ds < o0, ¥t < oo, and for each { = 0,1. Denote by

{O¢ : t > 0} the family of g-algebras generated by the observation
process. Based on this family, the manner in which the true value
for 4 is chosen has two parts. First, the decision to terminate the
observation procedure is made according to a (P™, O:)-stopping
time, say r, and second, a judgment as to the true value of ¢
is made according to a (P", 0,) binary-valued random variable,
say §. Any such pair, (r,6) is called an admissible policy and
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one seeks an admissible policy which minimizes the P"-average
Bayes cost, p(r,7,5), here defined as,

p(m,7,6) = E”[/OT c0 ds + w(8, 6)], (L.4)

where if for ¢, ¢! > 0. one defines,

: ¢®, ifd=1andé=0;
‘w(0,6)=< ¢!, f§=0and =1
: 0, iff=s,

then E™[w(8,6)] yields the PT-average cost of (incorrect) deci-
sions, and where E™ fof ¢, ds gives the P™-average waiting cost
when {c; : t > 0} is some nonnegative 0;-adapted process which
models a desired costing behavior and satisfies,

t
E”/ esds < o0 Vit < oo. (1.5)
0

Note that it is without loss of generality that no cost is levied
for correct decisions in 1.4. Using 1.4 one can now define the
Bayesian optimality criterion.

Definition 1 An admissible policy, (r.,6.) is said to be
Bayesian, or Bayesian optimal, if )

p(m, 7., 6.) = (inﬁf) p(m,m, 6), Vr & [01 1, (1.6)
Ty

where the infimum is over all admissible policies, and then p(n) =
p(m,7e,6.) is called the Bayes cost.

The minimization indicated in 1.6 can be greatly simplified,
as is pointed out next. Define the a posteriors probability of the
“g = 1” hypothesis as,

m =P {§=10} t>0. (1.7)

With only reasonable assumptions on the nature of {¢; : t > 0},
one can prove the following lemma [4,5]:
Lemma: Define,

p(m,7) = E”[/OT ¢, ds + e(m,)], (1.8)

where, e(r) = min{c®r,c'(1 — 7)}. Let T denote the class
of (P™,0;)-a.s. finite stopping times, and suppose 7. satisfies,
p(m,7,) =inf,er p(m, 7). Also, let 7, = ;n—‘_:—cr and define,

1 m, 27
b, =48(r.) = {0 . <. (1.9)
Then (r.,86,) satisfies 1.6; e(,) is called the terminal cost.
Thus, the search for a Bayesian optimal policy can be reduced
to a search for an optimal stopping time. In the light of this and
other facts [4,5], it becomes clear that an important subclass of
admissible policies are the threshold policies.
Definition 2 A threshold policy based on the a posteriors
probability process, is an admissible policy pair, (7,8), with

F=inf{t >0: m &I}, (1.10)



and,

5= 1 mr 28 (1'11)
0 L4 S a,

where 0 < @ < x, < b < 1 are the thresholds, and I = (a,b) is
called the thr—eshold, or continuation interval. Ifa =, = b,
the threshold policy is said to be degenerate and one defines
f=0and§ =1 ifro = .. From 1.9, note that § = 4., i.e., both
yield exactly the same decisions.

In the next section we indicate that a Bayesian threshold
policy exists in the problem of testing two simple hypotheses on
the rate of a counting process, and show how to compute the
optimal thresholds.

II. Testing on the Rate of a Counting Process

With the set-up given in the previous section it remains only
to specify the nature of the intensities under eack hypothesis,
and to choose a reasonable form for the waiting cost. For sim-
plicity, consider the important special case where the count-rate
intensities are given by

M=Xx.2 WVt>0 =01, (2.1)

with A1 > A0 strictly positive constants and {At : t > 0} some
nonnegative (P;, #;)-predictable process. A reasonable choice for
the average waiting cost for this problem is,

T T T
/ cods = / c.(:\}-:\s)ds,=/ e (M =X, ds (2.2)
0 0 4]

with ¢ > 0 a known constant, and where :\g =E; [z\g[Ot_], vt > 0.
This choice of cost avoids analytical intractability and is the one
used in the theorem to follow. For technical reasons, it is required
that the common factor intensity satisfy,

P.~{/0°° A, ds =00} =1. (2.3)

With this set-up, one can state the following theorem [4].
Theorem Assume 2.3 holds. In the problem of Bayesian se-
quential hypothesis testing, based on the partial observation
process {n; t > 0} (see 1.3 and 2.1), with running cost,
E™(f] ¢, ds] = E7| N (A1-19) ds], (see 2.2), and terminal cost
e(m,), the threshold policy, (.,6,), based on {m; : ¢t > 0} and
with threshold interval I, = (a+,b,) is Bayesian optimal. The
Bayes cost is defined as,

p(m) = {e(n‘) 7 & (a.,b.);

ro(r) € (a.,b.),
and the subcost (4], r,(x) = r(m;a.,b.), is given by,
r(m;a.,6.) = D(m;b.) + H(m;a.,b.) Vre(0,1),
where,

H(m;ja,b) = c'(1— ) + K(a,b) H(m;b);
D(mb)=c %ﬂ[d(w;b) + D(m;b)];
d(m;b) = (A'(1 - 7) + 2%7) (1+ Ny(n));

Ny(m) = |=2(8) - =(m) - 1],

with, z(r) = log[{Z=]/log %;—, and with |-| denoting the floor
function. The subcost definition is completed by specifying,

D(m;8) = -AY1 - n) e Xo(*) Do (3 8) — AOx e Xe(mp, (73 8);
H(m;b) = AM(1 — ) e=*0%(™) Hy (m;b) + Am e~ =(") 1, (m; 5),

with H;, D;, ¢ = 0,1 defined via,

1583

Ny(x)

Hi(nm;b) = Z (_nl!)"[(Xb(w) — n)pe Vi,
n=0
'Nb(ﬂ')'—l n (—1)""
Di(m;b) = e Z e~vin Z -~ “[(Xs(r) = n — 1)pi]™,
n=0 m=0
where,
_ Xilog %«lr

Xy(m) = z(b) - z(r); v = PYISSUE 1=0,L

The constant K (a,b) is given by,

% — [c!(1 - 8) + D(a; )]
K{a,b) = — 2,
(@5 = H(a;5)
The interval I, = (a:,b.) is the unique solution to
r'(as; a.,b.) = ¢
1=, — ¢ . §
r'(b7;a.,0.) = ___b.(l =5 ch.

Note, that the ‘empty sum equals zero’, and 0° = 1’ conventions
are used.

There is no easy extension of this result to the more general
case where the ratio of the intensities of the counting process
under each hypothesis is not deterministic. In general when the
ratio of the intensities is stochastic, the state-space of the process
must be enlarged to include the ratio. This can be shown to
lead to a partial functional differential equation for the cost in
two variables. In addition, since one is forced to consider a 2-
dimensional process, this has the immediate consequence that in
general, one must extend: the notion of threshold policies from
intervals to include open sets.

In the Wald problem of sequential testing [6], # is viewed
as deterministic and unknown, and one uses a threshold policy
with threshold chosen to minimize the P;-average waiting cost 1.5
for both ¢ = 0, 1, with fixed probabilities of error of both types.
Using the theorem above and the lemma due to Le Cam [3], it
follows that a unique, Wald-optimal threshold policy exists. See
[1,2] for the system to solve for the optimal thresholds. It is clear
that solving this system and the one in 2.4 is quite difficult in
general. However, their availability in closed form is certainly
necessary to judge the efficacy of approximation schemes.
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