PROCEEDINGS

@SI’IE———The International Society for Optical Engineering

Real Time Signal
Processing XI

J. P. Letellier
Chair/Editor

18-19 August 1988
San Diego, California

Sponsored by
SPIE—The International Society for Optical Engineering

Cooperating Organizations

Applied Optics Laboratory/New Mexico State University

Center for Applied Optics Studies/Rose-Hulman Institute of Technology
Center for Applied Optics/University of Alabama in Huntsville

Center for Electro-Optics/University of Dayton

Center for Optical Data Processing at Carnegie Mellon University
Georgia Institute of Technology

Institute of Optics/University of Rochester

Optical Sciences Center/University of Arizona

Published by

SPIE—The International Society for Optical Engineering

P.O. Box 10, Bellingham, Washington 98227-0010 USA Volume 977
Telephone 206/676-3290 (Pacific Time) e Telex 46-7053

SPIE (The Society of Photo-Optical Instrumentation Engineers) is a nonprofit society dedicated to advancing engineering
and scientific applications of optical, electro-optical, and optoelectronic instrumentation, systems, and technology.

SYMBOLIC AND NUMERIC

REAL-TIME SIGNAL PROCESSING

John S. Baras

Electrical Engineering Department

and

Systems Research Center

University of Maryland

College Park, MD 20742

Abstract

We consider real-time sequential detection and estima-
tion problems for non-gaussian signal and noise models. We
develop optimal algorithms and several architectures for real-
time implementation based on numerical algorithms, including
asynchronous implementations of multigrid algorithms. These
implementations are of high complexity, costly and cannot
easily accomodate model variability. We then propose and
analyze a different class of algorithms, which are symbolic,
of the neural network type. The preliminary results presented
here demonstrate that these algorithms have remarkably lower
complexity and cost, work well under model variability and
their performance is nearly optimal. We also discuss how these
type of algorithms are incorporated in the DELPHI system for
integrated design of signal processing systems.

1. Introduction

One of the basic activities of electrical engineering today
is the processing of signals, be they in the nature of speech,
radar, images, or of electromechanical or biological origin. By
“processing” we generally mean conversion of the signals into
some more acceptable format for analysis, Examples could be
the reduction of noise content, parameter estimation, band-
pass filtering, or the enhancement of contrast, as required
for imaging systems. The signal theorist develops algorithms
for performing these functions by constructing mathematical
models of signals and the operations conducted on them. The
result of this work over the last twenty years has been a rather
sophisticated theory, which utilizes advanced concepts from
stochastic processes, differential equations and algebraic sys-
tem theory. For a survey of such work the reader is referred
to {1], where it can be seen that researchers have gone far
beyond the classic work of Doob [2] and Wong [3]. Much of
this theory is inaccessible to “mainstream” signal processing

engineers, who often deem such research impractical, due to-

its apparent analytical intractability, algorithmic complexity,
and difficult numerical implementation.

One of the reasons for the lack of impact of the more
theoretical work on the field has been the failure to meet eco-
nomic as well as real-time processing constraints imposed by
the problems engineers face. The electronic circuitry needed
to perform the kind of advanced algorithms required by theory
must still be cost-competitive with existing techniques before
workers in the field will consider the trade-off between pay-
ing more for what could be only a few percentage points in
improved accuracy. Even if a problem is shown to be more
readily and accurately solved by methods, such as, say, Lie
algebras or differential geometry, it usually turns out to be
a highly specialized case. So limited demand often precludes
the introduction of expensive computational techniques. In
general, engineers will settle for cheap but suboptimal ad hoc
methods of their own invention, rather than master totally
new concepts.

The other issue to be resolved for at least a wide class
of signal processing problems involves meeting the time con-
straints implicit in the design. The problem is that such tech-
niques will have much greater demands for their numerical
analysis. As this translates to mean a greater number of arith-
metic operations per second, meeting real-time processing con-
ditions will be all the more difficult. And in addition to this,
the necessary electronic components must be kept small in size
as well as durable and reliable.

This is indeed the trend throughout much of signal pro-
cessing: a greater volume of signals must be processed in &
lesser amount of time, in addition to requiring more sophis-
ticated analysis and relatively inexpensive electronics pack-
aged on a small scale. To better understand these issues, we
should examine in more detail the nature of some of these
advanced techniques of signal processing. In addition, ‘d’
vances in computer-aided design tools for application >
microelectronic chips, have created opportunities for an inte~
grated design environment, from the system level {where @
performs statistical test on time series data, model bui
and algorithm development) to technology selection and
plementation. The DELPHI system [4] is such a system
design tool for real-time signal processing. Finally, we

Rescarch supported by NSF Engineering Research Centers Programm NSFD CDR 8803012

and by a grant from Texas Instruments, Incorporated.

112 / SPIE Vol. 977 Real Time Signal Processing X/ (1988)

consider carefully trade-offs resulting from conventional nu-
merical algorithms, and non conventional symbolic (associa-
tive type) algorithms. This type of analysis will become crit-
ical in the future as designers begin to assess model accuracy
on device performance, cost of production and other factors.

2. Key problems

The typical problem considered in this paper is described
below. There are two hypotheses Hy, Hz each representing
that the observed data y(t) originate from two different models

H’ MODEL L

/

p———0

Hx MODEL 2

Figure 1. The typical sequential detection problem.

as shown in figure 1 below. The decision maker receives the
data y(t) and has to decide which of the two hypotheses is
valid.

This problem is generic to a plethora of digital and analog
signal processing problems, such as: pulse amplitude modu-
lation, delta modulation, adaptive delta modulation, speech
processing, direction finding receivers, digital phase lock loops,
adaptive sonar and radar arrays, simultaneous detection and
estimation.

To fix ideas consider the example of radar data, where
one wishes to discriminate whether the received data are due
to a ship target or to a decoy like a chaff cloud. Appropriate
models have been developed by us [5, 6] for the pulse by pulse
radar return as samples (sampled at the interpulse period)
from the model

dz(t) = az(t)dt + Sdw(t)
dy(t) = exp(z(t))dt + dv(t) : (1)

in the case of ship data, where z(t) is scalar and w(t),v(t)
Wiener processes, while a,f are parameters of the model,
controlling correlation time. A similar model can represent
received pulse-by-pulse data from “chaff clouds” as samples
from the model

dz(t) = Az(t) 4- Bdv(t)
dy(t) = fle(t)ldt + dult) (2)

where z(t) is two dimensional, A, B diagonal with identical
elements, || - || is the Euclidean 2-norm. This discrimination
problem can be thought of as the sequential discrimination
between lognormal (1) and Rayleigh (2) data.

There are of course many problems of this type. As a
matter of fact almost any sequential detection problem can be
formulated in a similar manner. The underlying mathematical

models can be diverse: diffusion processes, point processes,
mixed processes, Markov chains etc. In this paper we shall
concentrate on diffusion process models. That is to say, under
each hypothesis the model for the observed data is

da'(t) = f(z' (1)t + g'(x'(1))dw' (1)

dy(t) = hi(z'(t))dt + dv(t) (3)
where 7 = 1,2 correspond to hypotheses Hy or Hy. If we let
hi(t) = Ey {R (2 ())FY) (4)
the likelihood ratio for the problem is
1 . . T
Ay =exp </ (hi(s) — }12(3)) dy(s)
0

3 [(b = ke as 09

In [7] we showed that the optimal sequential detector utilizes
threshold policies under both Neyman-Pearson and Bayes for-
mulations and the likehood ratio Aq.

First it is clear that the detector has to select two things.
A time 7, to stop collecting data, and a decision é which de-
clares one of the two hypotheses. Given the miss and false
alarm probabilities @, 3 one computes thresholds A, B [7] and
then the optimal detection strategy is given by

7* = inf {t > 0|A, & (4, B)} (6)
* 17 AT' Z B
§ ={2, A < A. (7)

This is shown graphically in figure 2.

It is therefore clear that real time implementation of this
rule is based on our ability to compute iz(i) in real time. This
is related to the so called Zakai equation of nonlinear filtering
[1]. This is so because

i Ju'(z,)R (z)dz
hi(t) = “Tu(endz (8

A

”~
-

Figure 2. Optimal sequential detection rule.
where u'(z,) is the unnormalized conditional probability den-

sity of z(t) given y(s),s < t, under each model 1, or 2. This
density satisfies the stochastic partial differential equation

SPIE Vol. 977 Real Time Signal Processing X/ (1988)/ 113

du'(z,t) = Lju'(z, t)dt + u'(z,)" (z)dy(2)

u'(z,0) = py(z)
Liw'(z,t) ZOI 5o ok w'(@,)= (9)
-2 a—“(fi(r)lt‘(x,t))
k
. 1 . T
o'(z) = 59'(2)g' ().

It can be shown that the likelihood ratio (5) can be represented
as
Jul(z, t)yde

A= Ju?(z,t)ds’

(10)
As a consequence the real-time implementation issue, is re-
duced to the real time implementation of (9), (10), by a dig-
ital circuit. In [7] we described a special architecture, which
can achieve real-time operation for many applications, utiliz-
ing systolic arrays. We emphasized in [7] that this architecture
solves the problem for dimensions of z*, less than or equal to
2. The higher dimensional problems are not addressed in [7].
In the next section we provide a solution to the higher di-
mensional problem based on the so called multigrid method
applied to (9).

3. Multigrid Algorithms for Zakai Equations.

In this section we show how multigrid algorithms [10, 11]
can be developed for the Zakai equation (9) in a systematic
manner. In particular we employ an implicit full discretization
scheme that provides consistent time and space discretizations
of the Zakai equation, in the sense that for each choice of dis-
cretization mesh, the problem can be interpreted as a nonlin-

ear filtering problem for a discrete time, discrete state, hidden

Markov chain.

To discretize (9), we choose a time step A and a space
discretization mesh of size € which determines a “grid” in R?,
the space where we wish to solve the Zakai equation. In other
words z € R?. Using results on estimates of the tail behavior
of u(z,t) as jlz]] — co. we can actually select a rectangular
domain in RY, D, where we are primarily interested in solving
(9). Let us suppose that there are n(e) points on each di-
mension of the grid of size . Let Ga(¢) denote the hypercube
generated in R® by the spatial mesh of size e. We assume for
simplicity here uniform grid spacing.

Given this set-up we can construct following the methods
of Kushner {12] a matrix A(e) which approximates the opera-
tor L* in (9), in the sense that A(e) defines an approximating
Markov chain to the diffusion (9). Let

Ay(k) =y((k+1)A) -
Hi(e) = h(zi(e))

where z;(€) is a generic point on the grid G4(e). Finally let

Vk+1(e) be the vector of samples u(x;(e),(k + 1)A) of the

unnormalized conditional density over the grid Ga(e). In (7]

we proved the following, using semigroup techniques.
Theorem 1: Let

y(k &) (11)

D(e,k) = diag {exp(H[(e)Ay(k) - -IIH (a1 a)

114 / SPIE Vol. 977 Reel Time Signal Processing X! (1988)

and consider the implicit iteration

(I — AA(e))VHH!

= D(e,)V (e 12
s (e, VA(e) (12
Ve(e) = {po(zi(e))}.
Then as kA — ¢, with ¢ — 0 (along some sequence)
lim sup |V(e) —u(zi(e), kA)| = 0. (13,

€—0ieG,(e)
In other words Theorem 1, provides a uniformly convergent

uniform scheme. Once we have this the likelihood ratio (10)
can be easily approximated since

/u(x,t)d:c ~ Z VE(e)Az(e); for kA <t < (k+1)A
1€Gy
(14)
where Az(e) is the approximation to the volume element in
Ga(e).

Therefore the real-time solution of (9) has been reduced
to the analysis of the real-time computation of (12). We note
that the matrix A(e€) does not depended on time, and that the
only part of (12) which depend on the real time data is the
diagonal matrix D(e, k).

We shall use in the sequel certain important properties of
the matrix A(e) which we now wish to touch upon briefly. For
further details we refer to [8], [9]. Let G4(€) be a sequence of
hypercubes (where we have varying dimension d) with n?(e)
points (n(e) being fixed). We consider the matrix I — AA(e)
on Gy(e) and Gayi(€). There is a convenient way to label
the states of the resulting Markov chain so as to have some
recursion between these two representations. Indeed let the
two matrices be denoted as I'y and I'y4; respectively. Then

(8]

v T 0 --- 0
T
Taus = 'a T 0 (15)
0 T s T
0 - 0 T T,
where T is a tridiagonal matrix with positive entries. [y4y

is an n X n block matrix. Furthermore it is straightforward
to establish [8, 9] that for any d TI'g is strongly diagonally
dominant. Furthermore I — A(¢)A has finite bandwidth [8].
The strong diagonal dominance of J — A4(¢) implies that we
will need no pivoting. As we shall see this property will help
also in the selection of the relaxation scheme in the multigrid
iteration.

The fundamental idea of multigrid (MG) algorithms is
relatively easy to understand. Let us suppose that we want to
solve a partial differential equation (p.d.e) in two dimensions
(i.e. on the plane). We now introduce two grids (as opposed
to one). The finer grid G,(¢), with uniform mesh spacing e

* where an approximate solution u; to the discretized p.d.e.

Llux = f;

is given. Suppose U; was the true solution of (16). If we con-
sider the difference 1, — Uy, in the Fourier domain, it will have
substantial high frequency error. To reduce this we conduct
a few relazation sweeps on the fine grid. Let the smoothed
approximate solution on the fine grid, resulting after several
relaxation sweeps be denoted by ;. The value of the solu-

(16)

YWFWEW!w-W -

05

tion after smoothing can be measured by examining the defect The finest grid contains the problem:
equation] ’
dy = fi - L'd;. (17) LAUX = fK. (21)
The latter is derived by considering
Smoothing Part I

v =-u+U Given an initial approximation to the problem in (21),
and observing that L'U; = f), so that smooth j; times to obtain uk.
L', = ~L'uy + L'U, = f — L'u, (18) Coarsc-grid correction:

Compute the residual df = N — LFy K,

So we can consider the computation of & as solving Inject the residual into the coarser grid Gy -y,

d'=L'v (19) d¥-1 = 1K,
in such a manner as to make d' as small in norm as possible. .
Gauss-Seidel, Jacobi, etc. are common relaxation methods Compute the approximate solution #% = to the residual equa-
for affecting this smoothing. Because of this smoothness the tion on G —y: . . .
defect equation can be transferred to a coarser grid without L=t oR=t = gh, (22)
loss of too much information. since the highly oscillatory error

components have died down. Let G, denote this coarser grid,
where we consider the defect equation

by performing ¢ > 1 iterations of the Multigrid method, but
this time we will be using the grids Gy, Gr_2,...,G| ap-
plied to equation (22).

dy = L?v,. (20) Interpolate the correction 8% = I _| %1,

. Compute the corrected approximation on G¥,
The correction vy can be found by solving (20) which is less

computationally expensive. Clearly one can consider multiple uf 45K, (23)
grids by iterating the above process. Now once the correction

is computed on Gy, it is transferred back to the finer grid by Smoothing Part II.

interpolation, which yields v; and the sum v, + @, is used as
a starting point for more smoothing. This is the basic idea of

nested iteration: the use of coarser grids to obtain good initial . . e
approximations for relaxations on finer grids. The recursive structure of the algorithm entering just af-

The primary reasons for using MG methods are as fol- .ter o4 (.22) is apparent. Here the .al.gt?rithm simply repeats
lows. Direct solvers of discretized p.d.e’s have computation ltsglf’ so 1 t}.le case of ¢ = ! we haV"e initial smoothx'ng, compu-
ime o gt ey i, Vi f e B e, 7 LSO S, fton o conser g, ol et
while MG methods can actually do I.nUCh better Fhan this as solved. Then we have interpolation upward through the grids,
we shall see. What is perhaps more important, direct solvers offering each finer grid an approximation for relaxation. This
tﬁke lonhge; tg solv}e)z problems in higher dimensions than do would gbe a “V-shfpe” stru}?t)ure as opposed to a “W:shape
the methods described here. ' : ‘

As for relaxation schemes, slow convergence is a typical struture [8, ?] Only. 1f‘c T 1, V;rlouldhwe haveba ‘W shape:”
problem, although they are perfectly suited for parallel im- ‘structure. 0 course 1t1sc ear that there can be many vari-
plementation, as they rely only on “local” information when ants of th.e .alg(‘)nthm, dePendmg on the number of interpola-

: : tion and injection operations.
& sweep 1s.performe‘d) .Thus, relaxation sch.emes have 3 rort The convergence of the multigrid method is based on the
}\)}lt;ﬁ.t:lol:l time t.hat is independent of the size of the grid. In following representation of the algorithm. For the general grid
Multigrid algorithms, such schemes are used only for smooth- . - -
ing the high-frequency error as a prelude to intergrid transfers, G we will have the equation
which we note, can also be done in parallel. The Multigrid al- . LUp=fi ,k=1,...,K. {24)
gorithm is thercfore an attempt to preserve the highly parallel
structure of relaxation algorithms, while overtaking their slow
convergence rates by reducing the original linear equations to
systems of lower dimensions. The only direct solving to be ar = (I = ML*)uy + M fi (25)
performed in the Multigrid algorithm is on the coarsest grid
which can be made as small as we like, at the cost of increased
grid levels. Because of its naturally paralle] properties, it turns Here S is the smoothing operation on the grid Gx, and we
out that the Multigrid method has a computation time that ' assume that M is invertible and the smoother is consistent.
is essentially independent of the dimension of the problem. With this notation S} denotes the smoother that uses j relax-
Because we wish to compute in real-time, such a numerical ation sweeps, or is applied ; times.
method is an ideal candidate for investigation. As examples of smoothers, define D to be the matrix

We now described a one-cycle full Multigrid algorithm whose diagonal entries are equal to those of L*, and which is
program. Let there be K point-grids which we will denote zero everywhere else. Then m = wD™1 is the modified Jacobi
by G1,Ga,...,Gk with the finest being G and the coarsest method. If T is the “upper triangular part” of L*, and zero
being G;. elsewhere, then we have the Gauss-Seidel method by setting

Compute a new approximation to UX by applying relax-
ation sweeps to u¥ + &K,

The formula for obtaining a new approximation to the solution
Uy from the old one u; can be written as

= Skuk.

SPIE Vol 977 Real Time Signal Processing X/ (1988} / 115

M = T~ In fact, M is usually some approximation to the
inverse of L*, which forces p(I — ML*) to be close to zero.
We already have the interpolation (coarse to fine) and in-
jection (fine to coarse) operators: If_, and I,’:"l respectively.
We also define I; to be the identity operator on grid Gy.
By constructing the “Multigrid operator” we can show
that, like any other iterative process, convergence is guaran-
teed under certain conditions.
Given u* as the old approximation, the new approxima-
tion ¥ will be

i = My wp + IF_ (L) 15 £y (26)
M. will be the Multigrid operator on grid G we will concen-
trate on, for it is its spectral radius that determines whether
the iteration converges or not. By M} we will mean ¢ multi-
ples of the MG operator anplied on the k grids. The following
recursion will define this operator, which begins at grid level
2 and proceed up to k = K — 1 where we have K grid levels

in all:
j 2,71y=1 ylr2y ch 7

My, =57, - I{(L")y" I,L*) S}

Migy = SP(Tpy = I (I = MELM) T IR LAY ST

These equations can be easily shown by induction.

Note that the coarsest grid G; uses a direct solver (L!)™!,
(although it need not actually require this inverse; this is just
operator notation.) Once again, note that we are only in-
terested in that part of the formula in (27) that determines
convergence; in particular, we must show p(M;) < 1.

There is another way of writing the above that is useful
in studying convergence properties. For k =23,... K ~1
and K grid levels, let

M:—l = Siz(Ik _ I:_I(Lk_l)—l I'I:—lLk)Sil

APYY =S I Gy - Gy (28)
Afp = (57 I (L) St : Gesr — Gi
Thus we can write,
Mgy = ME, + AN ME AL (29)

Now if “]\[f“”,”A:“” and ||Af,, || for k < K -1 are
known, then one can obtain an estimate of ||My||, where || - ||
represents any reasonable operator norm.

Theorem 2 [13]: Let the following estimate be assumed
known for k < K — 1,

IMEll S0 AT ARl S C
Then,
Mkl < v, (30)
where vy is recursively defined by
=0, v =0+C), k=23,...,K-1. (3])

We have not described how to obtain a value for ¢. We
could simply set ¢ to be a function of k, and this is often done.

116 / SPIE Vol. 977 Real Time Signal Processing X/ (1988)

The first case is simply a constant

c=2, for k=23,... K1 (32)

which yields the W cycle. The second case makes ¢ dependent
on k,
1, kodd
Cr = {

2, k even
Theorem 3: [13]: For the case of eq. (32) if 4Co <1

(33)

Mkl <v= (1 V1= 4Ca) /2C <20, K>2, (34)

and for eq. (33), if 4C%(1 + C)o < 1,

(1 - V1-4C(1+ C)a) /207
<25(14C), (K even)

Myl < (35)

(1 —2C% — /T -4C?(1 + C)a) J2C?

< o(142C)/C, (K odd)

If ¢ = 2 for all k, which implies that W-cycles are used,
and if o is small enough, then » = ¢ for the bound in eq (34).
For example, if C' = 1, then (34) yields,

v <0113 if o<0.1

Typically, C > 1, but not very large. Further insights along
this line show that if a problem on a given 2-grid method
converges sufficiently well for small enough o, then the cor-
responding multigrid method with ¢ = 2 will have similar
convergence properties. Thus, MG practitioners have found
that for reasonable problems, one need only analyze the 2-grid
method and assume the results hold for the general multigrid
case. Also, there appears no need to work with ¢ > 2.

For the case of interest here, i.e. the discretization of the
Zakai equation (12), following well known methodology for

MG application we first identify a simpler, albeit character-
istic problem. This is the problem with no input, i.e. when
the right hand side of (12) becomes V*(¢). In other words if
one understands how MG is applied to the discretized Fokker-
Planck equation
(I - AA(e)) VI*(e) = Vi(e), (36)
then complete understanding of the application of MG to the
Zakai equation is straightforward.
It follows [8, 9] that the spectral radius of the associated
MG generator (see (27, 28)) is determined entirely by the ma~ .
trix I — AA(e), along with the choice of relaxation scheme.
Also note that because I — AA(e) is not time dependent all
program parameters are precomputable. In particular for the
Zakai equation, they do not depend on the sample path W)
A highly recommended relaxation method in MG applice
tions is the so called successive overrelazation method (Son)')
To define it suppose one wants to solve :

5
N

¥t

itz

a1

Az =}
with a;; # 0. Then define B to be the n x n matrix

—a,-j/a;,-, 1%]
0, i=j

and define the vector ¢ in R"™ to have components,

Cy = b,-/a,','.
Then let us consider the L — U decomposition of B

B=L+U

where L is strictly lower and U is upper triangular matrix.
Choose a real number w, and define the iteration

Tut1 = W(Lanp) + Uy +¢) + (1 —w)T,. (37)

This is the SOR method. If w = 1, the SOR method reduces to
the Gauss-Seidel method, with w > 1 implying overcorrecting,
and w < 1 implying undercorrecting.

Recall that the matrix I — AA(e), for the discretized Za-
kai equation, is strongly diagonally dominant. Furthermore
this matrix is also an L-matrix, i.e. it has positive diagonal
elements and non positive off diagonal elements. Finally this
matrix is consistently ordered [8,9]. Thisis a consequence of
the natural ordering on a rectangular grid. One can measure
the properties of smoothing operators with a variety of mea-
sures [8]. So one can describe “optimal” smoothing operation.
We thus have (8, 9].

Theorem 4: Because of the properties of I — AA(e), the
MG operator converges. The optimal relaxation scheme for
the Zakai equation is the SOR method. There is an optimal
choice for w in (37) with respect to convergence as well.

4. Architectures for Implementing MG in Real-Time.

In this section we analyze the complexity of the MG
schemes described in section 3, in particular with respect to
real time implementation. We shall see that the result is a
multilayer processor network. Here the processors and the in-
frreonnections are more complicated than the ones used in the
sxstolic architecture of [7]. So fabrication may be a problem.

The computing network will be a system of grids of iden-
tical processing elements. Therefore, we have two kinds of
grids, one of points and one of processors, and these will he
lavered one on top of another. For cach 1 < k < I processor
grid Py has {ng)Y clements, where v is a positive integer not
greater than the problem dimension d. Also, we have ny = n,
and n, < nj, if 7 < ;. ‘

Similarly, in keeping with the above notation, there are,
freack 1< h <K a corresponding point grid Gy with (n)¢
peints. (Note that the number of processors per grid is never
greater than the number of points). Again we have ny = n
while n, <« ny il i < j. A key assumption, which is quite
realistic, is that for cach step of the multigrid algorithm on
point grid Gy, the processing grid Py requires O((n4)4~7) time
to perform its computations.

As in the last section, we also have injection and interpo-
lation operators, If'l and I,f_1 respectively. We will also be
needing the operator My later in this chapter.

An important consideration is the notion of speedup and
efficiency. With any given design, one would hope that the
addition of processors, which might be drafted for the exploita-
tion of parallelism, would lead to a decrease of computation
time, or specdup, of the algorithm. We therefore define effi-
ciency to be the ratio of speedup achieved to the number of
processors employed. If this ratio remains bounded from be-
low as the width of point grids, n, tends to infinity, then the

design is said to be efficient. Recall that the number of proces-
sors is a function of n, since processor grid Py has nY elements.

Chen and Schreiber (14) showed that when ~ < d, some algo-
rithms can be implemented efficiently. But when y = d, which
is the most parallelism one can reasonably expect to use, no
algorithm can be implemented efficiently. To design a parallel
machine capable of performing the MG algorith, we assume
our problem is in d dimensions over a rectangular domain us-
ing a regular point grid of n¢ points. We further have

Ny =n (38)
ey =a{ni+1)—-1, k= 1,2).. A -1

for some integer a > 2. We map grid points in such a way
that neighboring grid points reside in the same or neighboring
processors.

Smoothing sweeps of at least some type can be accom-
plished in O(n?=7) time with this given connectivity; (we will
give more details on this in the next chapter.) Let ¢ be the
time taken by a single processor to perform the operations at
a single gridpoint that, done over the whole grid, constitute
a smoothing sweep. Then, setting S as the time needed to
perform the smoothing sweep over the whole of grid G on
processor grid Py, we have,

S=tnl (39)

Obviously, it is to our advantage to conduct as few smoothing
Sweeps as necessary and still assure sufficient accuracy.

Now processor grid P, is connected to processor Pyy;.
Processor i € Py is connected to processor a(i +1)—1 € Py
where 1 = (1,1,... »1). These connections allow any intergrid
operations, such as interpolation, to be performed in 0(S)
time. Now define the system of processor grids {P\, Py, ..., P}
as the machne M} for J = 1,2,..., K. Then the execution of
performed by M} proceeds as follows:

1. First, smoothng sweeps on grid Gy, are done by Py;
all other processor grids idle.

2. The coarse grid equation is formed by Pi and trans-
ferred to Py._,.

3. MG is iterated ¢ times on grid Gy_y by Mi_,. Py is
idle.

4. The solution v*~! is transferred to Py by iterpola-
tion: Itf_, vh-1,

5. The remaining m smoothing sweeps are done by Py.

Now we let W(n) be the time needed for steps 1,2,4,5
and find

Wn)=(+m+s)tni, (40)

SPIE Vol. 977 Real Time Signal Processing Xi (1988} / 117

where s is the ratio of the time needed to perform steps 2 and
4 to the time needed for one smoothing sweep. Note that s is
independent of n,d and 7.

We discuss now the time complexity of MG. We will de-

note by T(n) the time complexity of MG algorithm on a grid '

of n? points. It turns out that T(n) solves the recurrence:

T(an) = cT(n) + W{(an)}, (41)
where W(an) denotcs the work needed to pre-process and
post-process the (an)-grid iterate before and after transfer to
the coarser n-grid. In effect the term W{(an) includes the
smoothing sweeps, the computation of the coarse grid correc-
tion equation (i.c., the right-hand side dF—1) and the interpo-
Jation back to the fine grid (If_, v*~!). Then we have

Theorem 5, [14]: Let T,(-) be a particular solution of
(41), i.c.,
T,(an) = ¢ Tp(n) + W(an).
Then the general solution of (41) is:
T(n) = a n'°8 ¢ + Ty(n), (42)

where a is an arbitrary constant. Using this result we have
the general solution to (42),

B(a? /{a? — ¢))n? if e < a?,
T(n) = { BnPlog,n+O(n?) ifc=aP, (43)
O(nl°8« ©) if ¢ > a?.

We see that it would take a single processor O(n) steps to
complete the above mentioned tasks on one dimension, while
n processors could do the same for a two-dimensional problem
in O(n) time.

We say that the MG algorithm is of optimal order if
T(n) = O(n?~7), a possibility that is sometimes precluded by
some choices of ¢,a,v and d, which in turn influence T(n).
Examination of (43) demonstrates the relations between the
various parameters. As an example, in the one-processor case,
with v = 0,d = 2, we have g(n) = n?. We then have an
optimal scheme if @ = 2,¢ < 4, for only then is T(n) = O(n?).
But ¢ > 4 is non-optimal, with T(n) = O(n?logn) for c = 4.

In general, we have an optimal scheme if and only if c <
af,

There also exists a natural way to build a VLSI system
to implement our algorithms. The v =1 machine can be
embedded in two dimensions as a system of communicating
rows of processors. The y = 2 machine can be embedded in
three dimensions as a system of communicating planes, and
so on. Realizations in three-space will be possible in a natural
way for any value of 4. Consider the case of d = 2,7 =2. In
this case, we have a set of homogeneous planar systolic arrays
layered one on top of the other. If welet a = 2, =3, and
np=1n,=214+1)-1=3,n; =2(34+1)-1=7T, we would

have a 7 x T array on top of a 3 x 3 array which is then on top

of a single processor corresponding to ny, see figure 3 below.
Unfortunately, this design differs from the classical sys-
tolic array concept of Kung {15} in that there exists no layout

118 / SPIE Vol. 977 Real Time Signal Processing X/ (1988)

in which wire lengths are all equal. Also, each layer of the sys-
tem is homogeneous while the entire machine is clearly not.
We might also remark that it is not necessary that the layers
converge down to a single processor as in fig. 3. Instead, 3
or 4 levels of grids could be used and the multigrid method
would still be highly efficient.

Now the four parameters c,a,7,d are to be chosen with
any implementation MG, and, of course, they are not unre-
lated to each other. Extending the earlier notation, we call
any one choice of the four a design and denote its correspond-
ing computing time by T(c, a,v,d). We will now begin with
an examination of the trade-offs incurred by one choice over

A mochine fordm2, y=2 gnd K =),
Figure 3. Architecture for MG.

another. Following [14], an important issue is efficiency, E vs.
speedup S in a particular design. We define,

S(c,a,7v,d) = T(c,a,0,d)/T(c,0,7,d)
E(c,a,7,d) = T(c,a,0,d)/(P(7)T(c,a,7,d))

(44)

Note that the speedup S corresponds to the gain in speed
going from the one-processor system to that of the multipro-
cessor. Whereas the efficiency E reflects the trade-off between
- using more processors vs. time. It thus is a measure of how

efficiently a given architecture exploits any additional increase
in the number of processors in the hope of improving speedup.

We say that a design T(c,a,v,d) is asymptotically effi-
cient if E tends to a constant as n — oo, and it will be
asymptotically inefficient if E — 0 asn n — +0o.

Theorem 6, [14]: Let v > 0.

1) If ¢ < a% 7 then E(c,q,7,d) = (a7 — 1)ad™7 -
¢)/(at —c).

2) If ¢ = a?”7 then E(c,a,7,d) = (a” — Da®7/((a? -
c)log, n).
3) Ifc¢>a?"7 then
O(1/nle8a(c=4+M) if ¢ < a?
E(c,a,v,d) = { O((log,n)/n?) ifc=a?
O(1/n") if ¢ > a?

We have at once that
1) A design is asymptotically efficient if and only if c <

a"",

2) The fully parallel design v = d, 1 always asymptots-
celly inefficient.

3) “Halfway” between asymptotic efficiency and inefi-
ciency is logarithmic asymptotic efficiency, with E = O(logn),
asn —= o0o. A fully parallel design (v = d) if logarithmically
asymptotically efficient iff c = 1.

4) If we start with a non-optimal design in the one pro-
cessor case, then adding more processors will not make the de-
sign asymptotically efficient. This is because so many coarse
grid corrections are being performed that if more processors
are added so as to lower the set-up time when transferring to
the coarser grids, we still would be losing too much time on
the coarser grids.

To get T(n) = O(n) we have to select ¢ = 1.

We also have considered the concurrent iteration schemes
of Gannon and Van Rosendale {16].

Thus the fully parallel architecture has a computation
time of at most O(logn) and so it is very competitive with the
systolic direct solver. More importantly, this time is largely
independent of dimension d, at least for small values of d. Of
course, increases in d will result in large increases in circuit
layout area, due to an increase in interconnections between
grids, and thus a subsequent loss in computing speed.

We can implement the SOR method in a parallel fashion,
using the “red-block” or “checker board” method (8, 9]. In
higher dimensions we need to utilize multicolor ordering. Em-
ploying the intrinsic locality of the SOR we can implement it
asynchronously as well.

A detailed analysis of timing performed in [8, 9] demon-
strates that if the real-time constraint for the Zakai equation is
1 msec, then we can realistically achieve real-time implemen-
tation with the multi-layered networks of this section, only for
dimension d € 8. We note that this is quite an advance from
the results of [7].

5. Neural Networks

The results presented in the previous sections can be
utilized to provide solution to a variety of real-time signal
processing problems of the detection and estimation type as
shown in section 2. However the resulting implementations
are very complex and therefore costly. Furthermore these de-
signs are based on perfect knowledge of the model parameters
fig,h in (3). In reality, the models will be at best known
with uncertainty. Although the methods of sections 2-4 can
be used to handle parametric uncertainties, the complexity of
the resulting designs will increase even further. In this section
we describe an alternative methodology which appears more
promising, particularly regarding complexity of resulting pro-
cessors.

To make the exposition simpler, let us assume that both
models discussed in section 1, 2 are Gaussian. Under either
hypothesis the vector of observed data

y = {y(1),- .-, y(N)} (45)

is Gaussian, with mean zero, and covariance matrix

=i = E{yi y;1Hx}

=cf A Ricy + dl (46)

,7=1....,N ;k=1,2

where Ak, Ri,dk, ci are the parameters of the underlying lin-
ear model

zi(t + l) = Akzk(t) + Bkvk(t)

y(t) = ciaa(t) + drwi(t), (47)
and y, has been assumed scalar for simplicity. Hence the prob-
ability density of the data given hypothesis Hy is Gaussian

1 L
Hy) = —-y'Z . 4
p(yl k) (27T)N/2(d€‘t Zk)l/g exp (2y k Y> (8)
Classical binary hypothesis testing theory, results to a decision
region in RY determined by the threshold rule:

1
py|Hy) >

ply|H2) <
2

(49)

Using (48) we can rewrite (49) after taking logarithms as

1
det T\ 1 p o ey L>
or
1
- - >
Yy (57 =)y + 41, 0. (51)
2

The test (51) is a quadratic form positivity test. It can be
thought of as a map from point y in RN (our decision space)
to the set {1,0} identifying the decisions for hypotheses H; or
H, to be true respectively. We first want to point out that this
map can be realized precisely as a three layer neural network.

To see this, observe that Z;l — Z7! is symmetric so it
can be diagoralized

A=%'-37 =wTDW. (52)
Let
N
z = "Vy, 2 = Z W;j y]‘. (53)
=t
®
)
W,
)
)
Figure 4. Neural network implementation
Then the test statistic in (51) becomes
N
yTWTDWy = (Wy)TDWy = >_ Dz} (54)

=1

SPIE Vol. 977 Real Time Signal Processing X/ (1988)/ 119

So let)
&= f(zi) =z,

Consider now a three layer network as shown in figure 4.
Here the data enter at the nodes of the (0) layer. Then

N
(1) =Wy =3 Wiy(j) (55)
=1
&(1) = f(zi(1) = = (56)
N
2(2) =Y Dii(1) (57)

=1

f(=(2)) (58)

o

1

§(2)

where f is the function

0

- Am

Since we can implement the optimal decision rule by a neu-

ral network, it stands to reason to examine whether a more -

generic neural network can accomplish the task, and in partic-
ular provide adaptive behavior, when the model parameters

¥),Z; are unknown. Note that in the above computations
L1, X, were assumed to be known.

Let us then consider a generic neural network with three
layers, N nodes in the (0) layer, M nodes in the intermediate
layer. The diagram is simjlar to that of figure 4.

Let
N
zi(1) = ZW.‘J'(I)!IJ‘
=1
(1) =fn(12i(1)) (59)
zi(2) = Z Wi;(2)€5(1)
=1

£i(2) = f(2i(2))

where f is the nonlinear function

(60)

We provide adaptation to this neural network, by a standard
back-propagation algorithm. Let tf") denote the correct out-
put for the n'™ training pattern, then the weight are adjusted

120 / SPIE Vol. 977 Real Time Signal Processing X! (1988)

by
WP =wE W+ 6MeNa-1y)
57(2) = (1" ~ €™ (2)) (2 (2))

(61)
5§70 = FEDW Y 0+ W 141
2

1=1,2

In [17] we show that this generic network, performs nearly
optimally without prior knowledge of the models. We also
provide estimates of the time it takes to identity the models.
The time performance of the network is quite satisfactory as
well.

In (17} we have also extended these ideas to the non-
Gaussian case described in (3). Here the data are y(1), .., y(N).
Considering for simplicity scalar y and block detection, we
know from our analysis of section (2) that the optimal al-
gorithm is to compute V;¥ VN from (12), utilizing the two
different models, corresponding to hypotheses H,,H,. Then
the optimal test is provided by

1
T V@) > 4 (62)
M N
Zim1 V(1) ; B

or, in the case neither is satisfied increase N. Here M is
the number of discretization points needed. We can with ap-
propriate transformations visualize this algorithm as a neural
network, with planar layers. This suggests again the consider-
ation of a more generic neural network. At this time we have
only preliminary results on this general case. The generic net-
work suggested has three layers, each layer being a planar
network. We shall describe these results elsewhere.

We are also incorporating these neural network algorithms
in the DELPHI system [4].

References

[1] M. Hazewinkel and J.C. Willems, edts, “Stochastic Sys-
tems: The Mathematics of Filtering and Identification”,
Proc. of NATO Advanced Institute, Les Arcs, France,
Dordrecht, The Netherlands: Reidel 1961.

{2] J. Doob, Stochastic Processes, Wiley, 1953.

[3] E. Wong, “Stochastic Processes in Engineering Systems”,
Springer-Verlag, 1985.

[4] J.S. Baras, F. Ebrahimi, B. Israel, A. LaVigna, and D.C.
MacEnany, “The DELPHI System: A System Level Tool
for Integrated Design of Real-Time Signal Processors”,
Proceedings of SPIE, Vol 827 Real Time Signal Process-
ing X, (J.P. Letellier ed), Aug 1987, pp10-14.

[5] J.S. Baras, “Ship RCS Scintillation Simulation”, Naval
Research Laboratory Technical Report 8189, 1978.

[6] J.S. Baras, A. Ephremedies and G. Panayotopoulos, “
Modeling of Scattering Returns and Discrimination of
Distributed Targets”, Technical Report, Electrical Engi-
neering Department, University of Maryland, 1980.

(7] J.S. Baras and A. LaVigna,“Architectures for Real-Time
Sequential Detection”, Proceedings of SPIE, Vol 827 Real
Time Signal Processing X, (J.P. Letellier ed), Aug 1987,
pp100-105.

(8] K. Holley, “Applications of the Multigrid Algorithm to
Solving the Zakai Equation of Nonlinear F iltering with
VLSI Implementation”, Ph.D. Thesis, University of Mary-
land, December 1986.

(9] J.S. Baras and K. Holley, “Parallel Architectures for Zakai
Equations in Higher Dimensions”, submitted for publica-
tion, 1988. .

{10} S.F. McCormick, Edt, “Multigrid Methods”, Frontiers in
Applied Mathematics, STAM 1987.

(11] W.L. Briggs, “A Multigrid Tutorial”, SIAM, 1987.

(12] H.J. Kushner, “Probability Methods for Approximations
in Stochastic Control and for Elliptic Equations”, Aca-
demic Press, 1977.

(13] K. Stiiben and V. Trottenberg, “Multigrid Methods: Fun-
damental Algorithms, Model Problem Analysis and Ap-
plications”, in Multigrid Methods, W. Hackbusch and W.
Trottenberg (edts), Springer Verlag, 1982.

[14] T. Chen and R. Schreiber, “Parallel Networks for Multi-
grid Algorithms: Architecture and Complexity”, SIAM
J. Sci. Stat. Comput., Vol. 6, No. 3, July 1985.

(15] H.T. Kung, “Systolic Algorithms”, in Large Scale Scien-
tific Computation, Academic Press, 1984.

[16] D. Gannon and J. Van Rosendale, “Highly Parallel Multi-
grid Solvers for Elliptic PDE's: An Experimental Analy-
sis”, ICASE Report No. §2-36, Nov. 1982.

(17] J.S. Baras and A. LaVigna, “Neural Network Algorithms
for Real-Time Detection”, in preparation.

SPIE Vol. 877 Real Time Signal Processing X! (1988) / 121

