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Abstract

Kohonen’s Learning Vector Quantization is a nonpara.métric classification scheme which clas-
sifies observations by comparing them to k templates called Voronoi vectors. The locations
of these vectors are determined from past labeled data through a learning algorithm. When
learning is complete, the class of a new observatxon is the same as the class of the closest
Voronoi vector. Hence LVQ is similar to nearest neighbors, except that instead of all of the
past observations being searched only the & Voronoi vectors are searched.

In this paper, we show that the LVQ learning algorithm converges to asymptotically
stable zeros of an ordinary differential éqﬁa.tion. It is shown that the learning algorithm
performs stochastic approximation. Cogvergence of the vectors is guaranteed under ‘the
appropriate conditions on the underlying statistics of the classification problem. We also

present a modification to the learning algorithm which results in more robust convergence.

1.1 Learning Vector Quantization

The LVQ algonthm is now descnbed Let {(:z:,, d) Y, be the training data or past obser-
vation set. This means that z; is observed when pattern d,' is in effect. Let §; be a Voronox,
vector and let @ = {f,,...,0x}. We assume that there are many more observations than
Voronoi vectors (Duda & Hart [1973]). Once the Voronoi vectors are initialized, trammg
proceeds by ta.kmg a sa.mple (z;,dz ) from the training set, finding the closest Voronoi vec-
tor and adjusting its value a.ccordmg to equations (1) and (2). 'After several passes through
the data, the Voronoi vectors converge and training is complete. :

Suppose 8. is the closest vector. Adjust 6. as follows:
f.(n +1) = f:(n) + Cn (z; = 0c(n)) (1)

if dgc = d,_.’. a.nd
6e(n +1) = 8u(n) — an (25 — bu(n)) (2)

if déc # dz;. The other Voronoi vectors are not modified.
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This update has the effect that if z; and 8. have the same decision then 6, is moved closer
to z;, however if they have different decisions then 8, is moved away from z;. The constants
{an} are positive and decreasing, €.g., &tn = 1/n.

1.2 Convergence of the Learning Algorithm

The LVQ algorithm has the general form
8:(n + 1) = 0i(n) + an 7(dzn, doi(n)s Tns 0,) (z. — 6:(n)) (3)

where z., is the currently chosen past observation. The function 7 determines whether there

is an update and what its sign should be. It is given by

4(dzns dais Ty On) = Lzneve,} (Liden=da,} = Ldende,})- (4)

Here 1(} represents the indicator function and Vj; represents the set of points closest to 8;.
The update in (3) is a stochastic approximation algorithm (Benveniste, Metivier &
Priouret [1987]). It has the form

en+1 =0, + an H(@mzn) (5)

where © is the vector with components 8;; H(©, z) is the vector with components defined in
the obvious manner from (3) and z, is the random pair consisting of the observation and the
associated true pattern number. If the appropriate conditions are satisfied by a,, H, and

zn, then O, approaches the solution of

500 = H(B() ©)

for the appropriate choice of h(0O).
Let p;(z) represent the pattern density for pattern i and let 7; represent its prior. Suppose
there are £ patterns. It can be shown (Kohonen [1986]) that :

WO = [, 6= B)p(@)mdz = 3 [ (2= 0)pi=) i ds (7)

Jj=1
J#dg,

The following hypotheses are assumed:
[H.1] {a.} is 2 nonincreasing sequence of positive reals such that ¥, an = 00, 2.n ) < oo,
[H.2] Given d;,, 7, are independent and distributed according to pa,,(%)-

[H.3] The pattern densities, pi(z), are continuous.
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Figure 1: A possible distribution of observations and two Voronot vectors.

With these assumptions it is possible, using techniques from (Benveniste, Metivier & Priouret
(1987]) or (Kushner & Clark [1978]), to prove the following theorem.

Theorem 1 Assume that [H.1]-[H.3] hold. Let ©* be a locally asymptotic stable equilibrium
point of (6) with domain of attraction D*. Let Q be a compact subset of D*. If ©, € Q for
infinitely many n then ' '

lim ©, = 6~ (8)

n—0c0

Proof: (see (LaVigna [1989]))

Hence if the initial locations and decisions of the Voronoi vectors are close to a locally
asymptotic stable equilibrium of (6) and if they do not move too much then the vectors

converge.

1.3 Modified LVQ Algorithm

The convergence results above require that the initial conditions are close to the stable points
of (6) in order for the algorithm to converge. In this section we present a modification to the
LVQ algorithm which increases the number of stable equilibrium for equation (6) and hence
increases the chances of convergence. First we present a simple example which emphasizes
a defect of LVQ and suggests an appropriate modification to the algorithm.

Let O represent an observation from pattern 2 and let A represent an observation from
pattern 1. We assume that the observations are scalar. Figure 1 shows a possible distribution
of observations. Suppose there are two Voronoi vectors 6; and 6, with decisions 1 and 2,
respectively, initialized as shown i in Figure 1. At each update of the LVQ algorithm, a point
is picked at random from the observation set and the closest Voronoi vector is modified. We
see that during this update, 8(n) is pushed towards co and 01(n) is pushed towards —oo,
hence the Voronoi vectors do not converge. - . '

This divergence happens because the decisions of the Voronoi vectors do not agree with
the majority vote of the observations closest to each vector. As a result, the Voronoi vectors
are pushed away from the origin. This phenomena occurs even though the observation data
is bounded. The point here is that, if the decision associated with a Voronoi vector does not
agree with the majority vote of the observations closest to that vector then it is possible for

the vector to diverge. A simple solution to this problem is to correct the decisions of all the
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Voronoi vectors after every adjustierns so that their decisions correspond to the majority
vote. In practice this correction wuuld only be done during the beginning iterations of the
learning algorithm since that is when o is large and the Voronoi vectors are moving around
significantly. With this modification it i3 possible to show.convergence to the Bayes optimal

classifier (LaVigna [1989]) as the numter of Voronoi vectors become large.

1.4 Conclusions

We have shown convergence of the Voronoi vectors in the LVQ algorithm. We have also
presented the majority vote modification of the LVQ algorithm. This modification prevents
divergence of the Voronoi vectors and results in convergence for a larger set of initial con-
ditions. In addition, with this modification it is possible to show that as the appropriate

parameters go to infinity the decinion egions associated with the modified LVQ algorithm

approach the Bayesian optimal (LaViga [1989]).
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