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Abstract- In this paper we show that the aggregation of
heavy-tailed on-off flows can exhibit multifractalility in nature
in addition to the well-known long-range dependency.
Justifications are provided through analyzing the power density
spectrum of 2 single on-off flow, calculating the multifractal
spectrum of aggregated flows, and measuring the distributions
of the increment process. Effects of the on and the off period on
the multifractal behavior are e¢xamined. With a new
understanding of the on-off medel taking into account the TCP
window-based control mechanism, possible roles of the TCP
window size and the RTT in producing multifractal traffic are
suggested.

1. INTRODUCTION

Self-similar and multiscaling traffic have aroused much
interest because of their special nature and complex effects
on network performance {1] [4] {7 [12]. Nevertheless, due o
their complexity, many problems are still open. It has been
known that aggregation of many on-off flows with heavy-
tailed on or off distributions can exhibit loug-range
dependence. However, explanations for the multifrctal
behavior in small scales are much more ambiguous. A well-
known multifratai model is the conservative cascade {51 [11],
which can generates multifractal data by multiplicatively
distributing an initial quantity. Based on it, paper {3] and [11]
suggest that some similar multiplicative mechanisms may lie
in the network and arc responsible for the multifractalility.
However, it is still unclear where they exactly are. In this
paper we give a different view. We show that aggregation of
heavy-tailed on-off flows is in nature multifractal as well as
long-range dependent. Consequently, it may be unnecessary
to resort to the multiplicative mechanism to understand the
multifractal behavior.

The rest of this paper is organized as follows. In Section 2
the mathiematical background for multifractal processes and
wavelet-based multifractal analysis is briefly reviewed.
Section 3 explores the inherent multifractality of aggregated
on-off flows through analyzing the power density spectrum of
a single flow. Section 4 tests the multifractality by calculating
the multifractal spectrum and measuring the distributions of
the increment process. Section 5 reconsiders the physical
implication of the on-off model for TCP traffic, and examines
the effects of on and off components on the multifractal
behavior. Section 6 concludes the paper.

I1. PRELIMINARY
A, Multifractal Processes

A multifractal process is a scaling process with many
scaling exponents in small time scales. Very simply speaking,
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a scaling process Y (r) is a process that has the following
property in certain time scales:

AY(D =Y+ A=Y () ~ A2 (1)
If there is only one scaling exponent, i.e,, 0f(f) is a constant
alt) = &, the process is mono-fractal with Hurst parameter
H =(a+1)/2. By contrast, the scaling structure of a
multifractal process is much richer, It has multiple or even
infinite scaling exponents, and they may vary with time and
realization. The scaling structure can be described statistically
with a multifractal spectrum. To show what the multifractal
spectrum is, let us consider a normalized time range [ = [0,
1]. Cut it into 2" equal intervais with the k-th interval being
o= (k27" (k+127"L k=0, 1, ..., 2"—1. The
approximate scaling exponent for the the k-th interval is
o = log, 1Y ((k+1)27") =¥ (k27"

1
= —-n

The exact scaling exponent at re [ :‘,, can be obtained as
alf)= lim of,
[
Obviously, @(f) may take many different values in the
whole range of /. Define

1, af,, e(~£0+E)
k
p. (€)=
0, otherwise
fet
|

N (e.e)= % p' (@)
[ VI

N, (&, €) is the number of af,, taking values within
(& — £, +€) . The multifractal spectrum is defined as

log, N (o, €) ,
a 2)

So fe(a) is the frequency that o(f) takes value of . It is

formaliy called the large deviation multifractal spectrum.

[n practice, a more numerically accessible multifractal
spectrum, the Legendre spectrum, is often used as a
substitute, 1t is calculated through the moments of AY (). It
can be shown that for a multifractal process this holds

foto =l
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inf (gar=Jf¢; taxr
ENAY()F] - A % a0
Let
7(q)= ir;f(qa—fa () (3)

(3) indicates T(g) is just the Legendre transform of f ().
It is called the structure function. It can obtained as

log, E[1AY{r) ]
log, Ar
fo(a) can then be estimated through the backward
Legendre transform of 7(q) . Namely, let
fil@)=inf(ga-r(g) 5
fila)y as an felen.
Mathematically, fg(a) € f,(@): when 7(g) exists and is
differentiable for all real g, f; (&)= f, (o) holds.
B. Wavelet-Based Multifracial Analysis

Wavelet analysis provides a very useful tool for calculating
the Legendre multifractal spectrum. Suppose Y (#) is the

#)

(¢) = lim
Ar—0

and use approximation of

cumulative load of a traffic process X (r). Then the wavelet
coefficients of X(f) can be viewed as samples of the
increment process AY(f). Thus the estimation of the
E[IAY (1) 1]
coefficients. Using the Harr wavelet

1, 0sr<li/2

-1, /2=

0. otherwise
the wavelet coefficient of X(#) is

1
djy= (X,y/j’,‘> =J—5',-—E:X(’)Wj,k (e)clt

in (5) can be based on the wavelet

wity=

-jn

w27 —ky is
affine mapping of W(z) at scale j (resolution 2) and
transiation k. Define

Here, ¥, (=2 the normalized

l
& =—gld, I (6)

. &

J
14)
i
is called the partition function. The structure function can be
estimated as

where #; is the number of wavelet coetficients at scale j. €

_ log, E[¢"
r(g) = lim ——1 - (7

J—
Then the Legendre spectrum is calculated with (3). The
expectation ot the second-order partition function is exactly
the energy of X {7) atscale j:

h l -
E[e{]= E[--Xld , '] (8)
.'l)- &
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. MULTIFRACTAL NATURE OF THE ON-OFF PROCESS

In this Section we explore the multifractality of heavy-
tailed on-off fiows by analyzing the power density spectrum
of a flow_ Assume both the on and the off periods have Pareto
distributions. A Pareto random variable is represented as (b,
¢), where b is the scale parameter and a is the shape
parameter. This covers a special case (c, =) which means a
fixed number ¢. Let T; and 75 are the durations of the on and
the off period. Thus T; = (b;, a;) with mean y; = ba/f(a;-1), i =
1, 2. Assume yy; is finite, which requires a; > 1. The on-off
process is given as

L ,if ¢is in on period
X(r) { (9

0, if ¢ is in off period
It can be shown thar an on-off process can be made stationary
by adding certain delay at the initial [6]. We simply assume it
is stationary here. 1ts autocorrelation function is
R, (T}y=E[X (D)X (¢t +7)]= E[X (D)X (7)]

It is easy to see that X(1)X(r+ 1) = 1 holds only when X(z) is 1
at both time f and #+ 7, and in all other cases X(0)X(t+1) = 0.
So

R,rx(r) = P[X(O) = I,X(T) = l]

=P X(D)=11X({O)=1]. P X(=1] (10)
P[-] denotes the probability. We know
PIX(0)=1]= P[X(r) = 1] =—E2 ay
H+ U,
Denote
7 (D) =PX(D)=11X0)=1] (12)
From renewal theory [3] we have
fr“(r)=I:F—',l‘]’—’dr+j’gh,3(t)f,(r—t)dr (13)

Here, E(t) is the complementary distribution function of
the on period. A;,(?) is the renewal density of the on period

given that the flow is in off state at ¢+ = 0. Making Laplace
transform on both sides, {13) becomes

i~
HalZ10) (14)
5

2
5

M, (s}, L;(s), and H ,(s) are the Laplace transforms of
7 (1), T, and hy, (£) It can be shown
g L6=L)
) =77 F tond 1o
)U[S(l —LI(S)LZ(S))
We then get the Laplace transtormof R (7T):
S ()= H (I=LsPA=L,(s)
,\LL'(J) = . ]
(+in)s o+ )5 (= Ls)a() 15)
Here, L,(s)is the Laplace cranform of T, . It can be obtained

L(s)=ah " T(-a;.sb)s"

1=
nli(5)=%_ ’uL[(S) +H,(5)

where f"(a,b) is the incomplete Gamma function



Ta,b) =[x e dx.6>0
b
When st — oo, from (15) we have

1
S.u(s} = ﬂl - 2
(W +iy)s  (p+y)s
From the relation between the Laplace transform and the
Fourier transtorm, we can get the power density spectrum at
high frequencies (f — oo):

(16)

) l /A ,
F(fy=8 (j2nfy=— ENeY)
()=S.i27) TR ?-ﬂ(Mﬂla)f( )
The magnitude of F{f) is
A’ Pl Y4y’ et
PR LV e e Ut e VN
AT (p +) " A () f

To test whether X(f) is monofractal, fit A(f) to the frequency-
domain scaling function, i.e., let

A(_f) =Cff—a(fl
¢ can be obtained by letting £= 1 on both sides of (18).

1f42rz[112 +1

c; == (19)
4m (g + 1)
Finally, we get
log, J(-i.vz,u,z-l-i)/(‘lxzy(zﬂlfl)
a(f) =1+ 14.'1’ (M +f7) 20
0g 5 f

Depending on the values of 4 and 1, the second term on the
right-hand side of (20) can be within {~1, 0). Then & g isa

scaling exponent taking value between O and { and varies
with £ It is easy to see from (20) that when g5 >> iy, there is
a big value space of (), i) that allows O< o <1, We will

show in Section 5 that this is just the case of a typical TCP
flow in WAN.

When there are many different on-off flows, the overall
traffic has many different scaling exponents in small scales.
Thus multifractality appears. Cross dependence among flows
make the scaling structure even richer. In particular, if the

flows arrive in a Poisson process and each lasts for a period
that has a heavy-tailed distribution, the number of fiows
varying with time forms a M/G/e process [9]. The overall
traffic process can be viewed as the product of a M/Gieo
process and an on-off process. The overall power density
spectrum is thus the convolution of the spectra of the two
processes. From the property of convolution, scaling
exponents in the spectrum of the on-oft process will remain
in the final spectrum, but their weights will be re-assigned.
New scaling exponents may also be introduced through the
convolution. So the aggregated traffic has a considerably big
collection of scaling exponents.

Iv. TEST OF MULTIFRACTALITY

To verify the conciusion in Section 3, we calculate the
multifractal spectrum for aggregated on-off flows using the
wavelet-based approach described in Section 2.2. The waffic
data are generated by adding & flows at each clock cycle.
These fiows start randomly and remain alive thereafter. A
quite large number of initial data are cut out to guarantee
stationarity. The final data length is M. Parameters chosen to
generate the data are: 7, = (16, «), T» = (512, 1.2}, N = 100,
and M = 2%, Figure 1 gives results for the partition function

()
€j

., the structure function 7(g), and the Legendre

{¢)

spectrum f; (@) . We see the curves of ¢* have different

slopes for different ¢, 7(g) is concave, and f; (&) includes
arich set of ¢ . All these show the data are multifractal. As
paper £2] indicated, the distributions of increment process
also give information about the scalin§ property.  If
increments at any time scale j, rescaled by 242 where H is
the long-range Hurst parameter, have Gaussian distributions,
and the probability density functions of all scales colitapse
onto a single curve, the process is monofractal. Qtherwise,
multiple scaling exponents are included. Figure 2 gives the
probability density functions of rescaled increments for scale
1 to 6. Clearly, the smaller the scale is, the more distant the
distribution is from Gaussian. They do not collapse onto a
single curve.
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Fig. 1. Partition function (a) (for g = 1 to 30 bottom-up), structure function (b). and multifractal spectrum (c) of an aggregation
of heavy-tailed on-oft flows
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Fig. 2. Distributions of the increment process of an
aggregation of on-off flows at different scales (j = 1 to 6,
from left to right)}

V. PHYSICAL INTERPRETATION

On-off models have been long used to model traffic in
packet-switched networks. Usually the on period is thought
of as being corresponding to the packet and the off period
corresponding fo the inter-packet silence. While this is
suitable for the UDP flow, it does not properly reflect the
case of the TCP connection. Since TCP uses a window-based
congestion control, packets of the same window are sent in
bulk at the source node. They form a packet cluster moving in
the network. Packets are tighter within a cluster than between
clusters. So a TCP flow can be more accurately modeled as
an embedded on-off model: a coarse on-off process profiles
packet clusters and inter-cluster silences, and a finer on-off
process describes the details within a single cluster. It is easy
to see the coarse level actually embodies the roles of the
round trip time (RTT) and the TCP window size. In a WAN
setting, the packet cluster is much shorter than the inter-
cluster interval, and the latter is approximately the RTT. As
we have shown elsewhere [8], the cluster level is more
important to the small scale behavior than the packet level.
Modeling the TCP connection at only the coarse level
produces’ a very similar result to that of the full model.
Obviously, the relation ¥ >> w, holds in the coarse level on-
off model of the TCP connection. This supports the
rationality in Section 3. Qur cheice of the parameters in
Section 4 also follows this guideline.

To understand the roles of packet cluster and the RTT in
affecting traffic behaviors, let's see the effects of the on and
the off period on the energy density and the multifractal
spectrum. Figure 3 gives the logsale energy vs. time scale and
the multifratal spectra for different b,. Figure 4 shows those
tor difterent a,. In theses figures ali other parameters are the
same with those given in Section 4. We can see that by, which
can be also interpreted as an approximation of & when a, is
big, controls the energy allocation between small scales and
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large scales. The scaling exponents become smaller
accordingly when b; decreases. @, has a dramatic domain-
dependent effect. [n the domain of a; > 2.0, the multifractal
spectrum shrinks with the decrease of a;. Then when a; < 2.0,
the multifractal spectrum completely disappears. The reason
for this needs further analysis. Intuitively, if T, keeps still, the
decrease of @, will enlarge the occupancy of the on period in
the on-off process. This will reduce the spikiness of the
precess and make it more Gaussian noise like. In contrast to
the active role of the on period, the off period, either b or aa,
does not show significant impact on small scale behaviors. It
mainly controls the long-range behavior, as much previous
work has indicated [10] (14]. Results about it are omitted
here.

Going back to the network context, the effects of the on and
the off period suggest that the dynamics of the TCP window
size governs the small scale behavior. We know that the TCP
window size changes in a quasi-periodical manner [13],
which is a rather conservative variation from the point of
view of random processes. When this vartation is
approximated with the Pareto random variable T, ¢; would
be surely above 2.0. a; being big also makes sure gh >> ).
Thus, it is the conservative variation of the TCP window size
that makes the multifractal traffic realistic. Of course, this is
in the condition that the RTT is heavy-tailed. As we have
known, it is the case in WAN.

vIL CONCLUSIONS

In this paper we show that the aggregation of many heavy-
tailed on-off flows may exhibit multifractalility in nature.
This is done ihrough analyzing the scaling behavior of a
single on-off flow, calculating the multifractal spectrum of
aggregated flows, and measuring the distributions of the
increment process. Effects of the on and the off period on the
multifractal behavior are examined. It is shown that both the
average value and the variability of the on period are critical
to the multifractality. By contrast, the off period has no
significant impact. We reconsider the physical implication of
the on-off model taking into account the TCP control
mechanism, and suggest that, if a standard, non-embedded
on-off process is used to model a TCP flow, it may be more
properly viewed as a description of packet clusters rather than
the packets. This is critical to physical interpretation of the
multtifractal traffic. With this understanding, we indicate that
the dynamics of the TCP window size largely decides the
multifractality of the TCP traffic.
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Fig. 3. Logsacale energy vs. time scale (a) and muitifractal spectra (b) for different minimum values of the on period
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Fig. 4. Logsacale energy vs. time scale (a) and muitifractal spectra (b) for different variabilities of the on period
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