Lateral Two-Terminal Nanotube Devices and Method for their Formation (ISR IP)

For more information, contact ISR External Relations Director
Jeff Coriale at coriale@umd.edu or 301.405.6604.

ISR intellectual property available to license

Inventors: Parag Banerjee, Israel Perez, Gary Rubloff, Sang Bok Lee, Erin Robertson

Description
Researchers at the University of Maryland have developed a method to enhance the efficiency of energy capture, storage, and delivery. Applications include solar energy capture, energy storage in capacitors and batteries, and integration of capture and storage elements within a thin film process technology to provide high performance energy/power systems at modest cost.

The invention introduces a novel approach for forming lateral nanotube energy capture and storage devices that may be configured in arrays. Lateral nanopores are created as anodic aluminum oxide (AAO) nanopores parallel to the surface from an initial aluminum layer. Atomic layer deposition (ALD), electrochemical deposition (ECD) and other processes are used to insert material into the nanopores such that active regions are separately contacted by wiring at opposite ends of the nanostructures. The unique combination of AAO with ALD/ECD enables material to be structured in the nanopores with large active volumes (depletion region for solar cells, capacitor surface area for storage devices) and to achieve the first energy devices from lateral AAO.

The devices are compatible with conventional thin film processing and with multilayers of lateral nanotube devices. For solar energy capture, the multilayer embodiments enable more efficient capture and tuning optical absorption in different layers to different parts of the spectrum. For energy storage, the structures promise high burst power for distributed sensor/actuator systems and other applications. Finally, capture and storage layers may be vertically stacked and combined with control electronics to provide integrated energy systems on a single platform with a common fabrication and process technology.

The University of Maryland College Park, the University of Maryland Baltimore County and the University of Maryland Biotechnology Institute are the owners of this technology.

For more information
If you would like to license this intellectual property, have questions, would like to contact the inventors, or need more information, contact ISR External Relations Director Jeff Coriale at coriale@umd.edu or 301.405.6604.

Find more ISR IP
You can go to our main IP search page to search by research category or faculty name. Or view the entire list of available IP on our complete IP listing page.

ISR-IP-Rubloff ISR-IP-nano ISR-IP-batteries

Published June 23, 2007