Energy Systems

Batteries, power electronics, renewable energy systems, energy harvesting, plug-in hybrid electric vehicles, more electric aircraft, more data-centers, pyroelectric systems, solar PV converters, smart grid technologies, energy markets

ISR research has contributed to advances in batteries, including a tobacco mosaic virus scaffold battery with high surface area and capacity, high-powered nanostructured 3D microbatteries, and carbon nanotube current collectors for aqueous battery systems. Wireless devices that operate with energy harvested from the environment have been created, and advances have been made in power electronics that convert electricity from one form to another for more electric aircraft, electric vehicles and solar power. In addition, ISR modeling advances the understanding of energy markets.

Recent news

Recent publications


Potential Energy Surfaces for Conceptual Design and Analysis of Mechanical Systems

Charles Manion, Mark Fuge

Current computational Design Synthesis approaches have had trouble generating components with higher kinematic pairs and have instead relied on libraries of predefined components. However, higher kinematic pairs are ubiquitous in many mechanical devices such as ratchets, latches, locks, trigger mechanisms, clock escapements, and materials handling systems. In many cases there is a need to synthesize new higher kinematic pair devices. To address this problem, we develop a new representation for mechanical systems that extends the capabilities of configuration spaces to consider arbitrary energy storing mechanical devices.

Proceedings of the ASME 2021 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2021)


Demand Response as a Real-Time, Physical Hedge for Retail Electricity Providers: The Electric Reliability Council of Texas Market Case Study

Andrew Blohm, Jaden Crawford, Steven Gabriel

Residential demand response (DR) programs are generally administered through an electricity distribution utility, or an electric grid operator. These programs typically reduce electricity consumption by inducing behavioral changes in the occupants of participating households. The authors propose implementing a wholesale-price-sensitive residential DR program through the retail electricity provider (REP), who has more naturally aligned incentives to avoid high wholesale electricity prices and maintain customer satisfaction, as compared to distribution utilities, grid operators, and the average residential consumer. They find that on average a REP can avoid USD 62.07 annually per household using a load-shifting program. Given that REPs operate in a low-margin industry, an annual avoided cost of this magnitude is not trivial.

MDPI Energies


Optimal thermostatically-controlled residential demand response for retail electric providers

Rachel Moglen, Pattanun Chanpiwat, Steven Gabriel

A dynamic programming formulation designed to optimally schedule demand response events to maximize savings for retail electric providers. Also considers the effects of price uncertainty on savings through the use of stochastic dynamic programming.

Energy Systems

Risk-Based, Multistage Stochastic Energy Project Selection

Billy Champion, Steven Gabriel, Ahti Salo

A risk-based, stochastic multi-period model with binary decision variables at each stage has usefulness for planning the retrofitting of buildings for energy conservation.

Energy Systems

Inverse Equilibrium Analysis of Oligopolistic Electricity Markets

Simon Risanger, Stein-Erik Fleten, Steven A. Gabriel

Inverse equilibrium modeling is a data-driven method that fit parameters of an equilibrium model in order to minimize the deviation from an observation. This paper shows how to use Karush-Kuhn-Tucker (KKT)conditions to invert equilibrium problems.

IEEE Transactions on Power Systems

Solving Binary-Constrained Mixed Complementarity Problems using Continuous Reformulations

Steven A. Gabriel, Marina Leal, Martin Schmidt

This work presents different continuous reformulations of the binary constrained mixed complementarity problem, common in many real-world engineering-economic systems such as energy markets, transportation networks, or supply chains. The main idea is to obtain purely continuous reformulations so that local NLP solvers can be applied that are usually faster compared to mixed-integer solvers.


Using Cluster Analysis and Dynamic Programming for Demand Response Applied to Electricity Load in Residential Homes

Pattanun Chanpiwat , Steven A. Gabriel , Rachel L. Moglen , Michael J. Siemann

A practical means to analyze and cluster residential households into homogeneous groups based on electricity load, a top priority for retail electric providers so that they can effectively plan and conduct demand response.

ASME Journal of Engineering for Sustainable Buildings and Cities


Planar Transformer With Asymmetric Integrated Leakage Inductance Using Horizontal Air Gap

Michael D'Antonio, Shiladri Chakraborty, Alireza Khaligh

The authors create a novel planar-based transformer winding and core structure with controllable leakage inductance generation for integrated magnetics applications.

IEEE Transactions on Power Electronics


Improved Frequency-Domain Steady-State Modeling of the Dual-Active-Bridge Converter Considering Finite ZVS Transition Time Effects

Michael D'Antonio, Shiladri Chakraborty, Alireza Khaligh

This paper presents an improved analytical modeling (IAM) approach for the dual-active-bridge (DAB) converter in the frequency-domain. Specifically, finite transition times are incorporated into the improved modeling that is significant in DAB converters operated at high frequency.

IEEE Transactions on Power Electronics

CCM vs. CRM Design Optimization of a Boost-derived Parallel Active Power Decoupler for Microinverter Applications

Yidi Shen, Michael D'Antonio, Shiladri Chakraborty, Alireza Khaligh

This paper deals with efficiency and size optimization of a parallel boost-type APD circuit for PV microinverter applications.

IEEE Energy Conversion Congress and Exposition (ECCE)

Design Optimization for Weighted Conduction Loss Minimization in a Dual-Active-Bridge-Based PV Microinverter

Michael D'Antonio, Shiladri Chakraborty, Alireza Khaligh

A harmonic-superposition-based frequency-domain approach for analysis and optimal design of a single-stage DAB-based DC-AC converter used in low-voltage DC to high voltage AC applications, such as a PV microinverter.

IEEE Energy Conversion Congress and Exposition (ECCE)

A Bare-die SiC-based Isolated Bidirectional DC-DC Converter for Electric Vehicle On-board Chargers

Yongwan Park, Shiladri Chakraborty, Alireza Khaligh

This paper discusses electrical design aspects of a cooling system-integrated, high power-density, 800 V to 600-800 V, bare-die SiC-based, 1 MHz, dual-active-bridge (DAB) dc-dc converter for three-phase onboard charging systems of electric vehicles.

2020 IEEE Transportation Electrification Conference & Expo (ITEC)

Electro-Thermal Co-Design of a Cooling System-Integrated High-Frequency Transformer

Yongwan Park,Sevket Yuruker, Shiladri Chakraborty, Alireza Khaligh, Raphael Mandel, Patrick McCluskey, Michael Ohadi, Lauren Boteler, Miguel Hinojosa

This paper presents electro-thermal design optimization of a high-frequency planar transformer with an integrated thermal management system involving a liquid-cooled chamber for combined core and winding cooling.

2020 IEEE Transportation Electrification Conference & Expo (ITEC)


Ion-Conducting, Electron-Blocking Layer for High-Performance Solid Electrolytes

Emily Hitz, Hua Xie, Yi Lin, John Connell, Gary Rubloff, Chuan-Fu Lin, Liangbing Hu

Lithium metal batteries bring greater promise for energy density, often relying on solid-state electrolytes to meet critical benchmarks. However, Li dendrite formation is a prevailing problem that limits the cycle life and Coulombic efficiency of solid-state Li metal batteries. For the first time, a thin (<100 nm) layer of electronically insulating, ionically conducting lithium phosphorus oxynitride (LiPON) is applied using atomic layer deposition between a Li anode and garnet Li7La3Zr2O12 (LLZO).

Small Structures


Elucidating Structural Transformations in LixV2O5 Electrochromic Thin Films by Multimodal Spectroscopies

Angelique Jarry, Mitchell Walker, Stefan Theodoru, Leonard Brillson, Gary W. Rubloff

Investigates the effects of lithiation on the structural and optical characteristics of a model thin film system—LixV2O5—as a function of depth, using several highly sensitive and nondestructive spectroscopic methods with different depth sensitivities.

ACS Chemistry of Materials

Atomic Layer Deposition of Sodium Phosphorus Oxynitride: a Conformal Solid-State Sodium-ion Conductor

Ramsay Blake Nuwayhid, Angelique Jarry, Keith Gregorczyk, Gary W. Rubloff

Demonstrates a thermal atomic layer deposition process for sodium phosphorus oxynitride (NaPON), a thin-film solid-state electrolyte for sodium-ion batteries. NaPON could become a viable solid-state electrolyte or passivation layer for solid-state sodium-ion batteries.

ACS Applied Materials and Interfaces

Mg2+ ion-catalyzed polymerization of 1,3-dioxolane in battery electrolytes

Emily Sahadeo, Yang Wang, Chuan-Fu Lin, Yue Li, Gary W. Rubloff, Sang Bok Lee

The polymerization behavior of DOL with multivalent Mg and Al salts is investigated. The researchers conclude that strong Lewis acid cations such as Al3+ and Mg2+ can catalyze DOL polymerization and their Lewis acidity, and ability to catalyze the reaction, is influenced by the associated anion. These discoveries could help expand the applications of Lewis acid catalysts in polymerization reactions and give insight into the importance of the properties of metal salts. These insights may also be critical in deciding whether to utilize DOL as a solvent for Mg battery systems and what electrolyte compositions may be ideal.

Chemical Communications

Enabling high performance all-solid-state lithium metal batteries using solid polymer electrolytes plasticized with ionic liquid

Matthew Widstrom, Kyle Ludwig, Jesse Matthews, Angelique Jarry, Metecan Erdi, Arthur Cresce, Gary Rubloff, Peter Kofinas

Ionic conductivity needs to be improved significantly for solid polymer electrolytes to be considered competitive alternatives to organic liquid electrolytes for battery technology. The strategy employed in this paper is to promote polymer microstructures that facilitate ion transport by developing an amorphous rather than crystalline polymer matrix.

Electrochimica Acta

Li-Containing Organic Thin Film: Structure of Lithium Propane Dioxide via Molecular Layer Deposition

Haotian Wang, Keith E. Gregorczyk, Sang Bok Lee, Gary W. Rubloff, Chuan-Fu Lin

In combining organometallic with organic precursors, molecular layer deposition (MLD) offers not only an expanded portfolio of molecular combinations but specifically the possibility of tuning mechanical properties for more robust functionality. This is appealing for applications in energy storage, where ion transport in and out of electrodes causes significant stress/strain cycling. It is particularly opportune for Li ion solid state batteries (LISSBs), where electrode and solid electrolyte structures are usually arranged densely for high power and energy. Despite diverse MLD applications to date, little prior research has been aimed at Li-containing MLD materials and processes. This work demonstrates the synthesis of a Li-containing organic thin film using organic-inorganic MLD reaction between LiOtBu and PD.

The Journal of Physical Chemistry C


Tuning Interfacial Processes in Mn-Based Li-Ion Systems through Vapor Phase Modification

Angelique Jarry, Emily Hitz, Jake Ballard, Carine L Margez, Joong Sun Park, Thomas A Greszler, Chuan-Fu Lin, Gary W. Rubloff

Among the different rechargeable battery technologies available, Co/Ni/Mn-based Li-ion systems appear to be a leading contender for automotive applications as a result of their high specific energy. However, the high operating potential of this system is outside the thermodynamic stability window of standard organic carbonate-based electrolytes. This results in electrolyte oxidation with transition metal dissolution and gas formation at the electrode/electrolyte interface during cycling, which leads to severe loss of electrochemical performance. To address these challenges, many strategies are currently being investigated, ranging from the development of new electrodes and electrolytes to the improvement of commercial Li-ion systems by surface engineering of the interfaces.

In this work, we mitigate parasitic interfacial processes in start/stop batteries by atomic layer deposition (ALD). We develop an Al2O3 or LiPON conformal artificial SEI layer on LMO and LTO electrodes and study its effect on the Li-ion batteries failure modes with differential electrochemical mass spectroscopy (DEMS), X-ray Photoelectron Spectroscopy (XPS) and ICP measurements. The beneficial impact of the protection layer on the kinetics of the gassing, metal dissolution and associated chemical cross-talk was clearly identified. The presence of a protection layer at the LMO surface, in particular of a 10 nm LiPON conformal layer, mitigate the electrolyte oxidation at high voltage at 60°C with a significant reduction of the amount of H2 produced. The formation of metal complexes and subsequent poisoning of the SEI is also attenuated. Interestingly, counter intuitively, the ratio of the inorganic to organic components of the SEI is lowered by the presence of an inorganic protection layer. The correlation between the nature of the electrode protection layer, the electrode's surface activity, and associated organic electrolyte oxidation pathways will be presented and discussed.

Electrochemical Society Meeting Abstracts


Broadband Acoustic Collimation and Focusing using Reduced Aberration Acoustic Luneburg Lens

Liuxian Zhao, Miao Yu

A practical reduced aberration acoustic Luneburg lens (RAALL) is proposed for broadband and omnidirectional acoustic collimation and focusing with reduced aberrations.

Flattened Structural Luneburg Lens for Broadband Beamforming

Liuxian Zhao, Miao Yu

A flattened structural Luneburg lens (FSLL) based on structural thickness variations is designed by using the quasi-conformal transformation (QCT)technique.

Journal of the Acoustical Society of America

Modified structural Luneburg lens for broadband focusing and collimation

Liuxian Zhao, Changquan Lai, Miao Yu

An alternative structural Luneburg lens which has a refractive index that varies smoothly with its radial distance as a result of a changing thickness.

Mechanical Systems and Signal Processing

Structural Luneburg Lens for Broadband Cloaking and Wave Guiding

Liuxian Zhao, Miao Yu

The paper explores the concept of a structural Luneburg Lens as a design framework for performing dynamic structural tailoring to obtain a structural wave cloak and a structural waveguide.

Nature Scientific Reports

Multi-Functional Variable Thickness Structure for Broadband and Omnidirectional Focusing and Collimation

Liuxian Zhao, Changquan Lai, Miao Yu

The paper proposes an alternative structural Luneburg lens with a refractive index that varies smoothly with its radial distance as a result of a changing thickness. This simple lens design enables a continuous gradient of refractive index, which allows flexural wave propagation to be manipulated and overcomes limitations in existing wave manipulation devices.