Descriptions

Simon will use magnetoencephalography (MEG) to record from the auditory cortexes of the brains of human subjects, specifically the temporally dynamic neural responses to individual sound elements and their mixtures. Linking the neural responses with their auditory stimuli and attentional state will allow inferences of neural representations of these sounds. These neural representations are temporal: neural processing unfolds in time in response to ongoing acoustic dynamics. Simon will determine how the auditory cortex neurally represents speech in difficult listening situations.


Top

Top

Top

Descriptions

Technological advances have driven modern sensing systems towards generating massive amounts of data, making it increasingly challenging to store, transmit and process such data in a cost effective and reliable manner.


Top

Top

Descriptions

The ability to adapt to changes in the environment and to optimize performance against undesirable stimuli is among the hallmarks of the brain function. Capturing the adaptivity and robustness of brain function in real-time is crucial not only for deciphering its underlying mechanisms, but also for designing neural prostheses and brain-computer interface devices with adaptive and robust performance.


Top

Descriptions

This PFI: AIR Technology Translation project focuses on translating an integrated bidirectional onboard charger and dc/dc converter technology to fill the need for compact and efficient power converters for plug-in electric vehicles. The proposed technology is important because it reduces the weight, volume and cost of onboard converters, while enhancing their efficiencies, and enabling bidirectional operation.


Top

Descriptions


Top

Descriptions


Top

Top

Pages