Abstract

A method and apparatus for encoding (622) digital image data wherein a region of interest (606) can be specified either before the encoding process has begun or during the encoding process, such that the priority (616) of the encoder outputs are modified so as to place more emphasis on the region of interest, therefore increasing the speed and/or increasing the fidelity of the reconstructed region of interest. The system, therefore, enables more effective reconstruction of digital images over communication lines.


Top

Top

Top

Abstract

A Group TDMA multiple destination, multiple node wireless network includes a first destination having a first group of nodes (Group 1) in communication range and a second destination having a second group of nodes (Group 2) in communication range. A third group of nodes (Group 3) are within communication range of both first and second destinations. Each group of nodes is assigned a periodically recurring set of time slots for transmitting to a designated destination.


Top

Top

Abstract

A method and apparatus for encoding digital image data wherein region of interest can be specified either before the encoding process has begun or during the encoding process (127), such that the priority of the encoder outputs are modified so as to place more emphasis on the region of interest, therefore increasing the speed and/or increasing the fidelity of the reconstructed region of interest. The system, therefore, enables more effective reconstruction of digital images over communication lines (128).


Top

Top

Abstract

A far-field optical microscope capable of reaching nanometer-scale resolution using the in-plane image magnification by surface plasmon polaritons is presented. The microscope utilizes a microscopy technique based on the optical properties of a metal-dielectric interface that may, in principle, provide extremely large values of the effective refractive index n.sub.eff up to 10.sup.2-10.sup.3 as seen by the surface plasmons. Thus, the theoretical diffraction limit on resolution becomes .lamda./2n.sub.eff, and falls into the nanometer-scale range.


Top

Abstract

A far-field optical microscope capable of reaching nanometer-scale resolution using the in-plane image magnification by surface plasmon polaritons is presented. The microscope utilizes a microscopy technique based on the optical properties of a metal-dielectric interface that may, in principle, provide extremely large values of the effective refractive index n.sub.eff up to 10.sup.2-10.sup.3 as seen by the surface plasmons. Thus, the theoretical diffraction limit on resolution becomes .lamda./2n.sub.eff, and falls into the nanometer-scale range.


Top

Abstract

In a communication network, the responsiveness of the transmission rate of data packets to packet drops is quantified for an aggregate of flows as opposed to on a per-flow basis. In an Aggregate Perturbation Method (APM), a small number of data packets is intentionally dropped from the aggregate at a switching node and a response thereto is measured. Traffic not conforming to the predetermined transmission control protocol may be discovered as a decrement in the reduction in traffic rate compared to that anticipated based on the rate of dropped packets.


Top

Pages