Systems Engineering

Model-based systems engineering, integration, cyber-physical systems, analysis and control of stochastic systems, Markov decision processes, discrete event and hybrid systems, network optimization and management

ISR is a leader in using model-based systems engineering as an important tool in its research efforts.  Our Master of Science in Systems Engineering has given generations of students the advantage of "systems thinking." Our education program is not focused on knowledge in a single core domain, but rather teaches principles and methods applicable across domains as students study integration and design problems that involve multiple engineering disciplines. Students are taught design, analysis and optimization methods not found in other programs.

Recent publications by ISR systems engineering faculty

2019

Using Semantic Fluency Models Improves Network Reconstruction Engineering Knowledge

Thurston Sexton, Mark Fuge

The paper directly models a cognitive process by which technicians may record work orders, recovering implied engineering knowledge about system structure by processing written records.

ASME 2019 International Design Engineering Technical Conference/Computers and Information in Engineering Conference

Checking the automated construction of finite element simulations from Dirichlet boundary conditions

Keven Chiu, Mark Fuge

From engineering analysis and topology optimization to generative design and machine learning, many modern computational design approaches require either large amounts of data or a method to generate that data. This paper addresses key issues with automatically generating such data through automating the construction of Finite Element Method (FEM) simulations from Dirichlet boundary conditions.

ASME 2019 International Design Engineering Technical Conference/Computers and Information in Engineering Conference

ISR systems engineering news


Top